Search results for: sterile insect technique
5504 Numerical Modelling of Skin Tumor Diagnostics through Dynamic Thermography
Authors: Luiz Carlos Wrobel, Matjaz Hribersek, Jure Marn, Jurij Iljaz
Abstract:
Dynamic thermography has been clinically proven to be a valuable diagnostic technique for skin tumor detection as well as for other medical applications such as breast cancer diagnostics, diagnostics of vascular diseases, fever screening, dermatological and other applications. Thermography for medical screening can be done in two different ways, observing the temperature response under steady-state conditions (passive or static thermography), and by inducing thermal stresses by cooling or heating the observed tissue and measuring the thermal response during the recovery phase (active or dynamic thermography). The numerical modelling of heat transfer phenomena in biological tissue during dynamic thermography can aid the technique by improving process parameters or by estimating unknown tissue parameters based on measured data. This paper presents a nonlinear numerical model of multilayer skin tissue containing a skin tumor, together with the thermoregulation response of the tissue during the cooling-rewarming processes of dynamic thermography. The model is based on the Pennes bioheat equation and solved numerically by using a subdomain boundary element method which treats the problem as axisymmetric. The paper includes computational tests and numerical results for Clark II and Clark IV tumors, comparing the models using constant and temperature-dependent thermophysical properties, which showed noticeable differences and highlighted the importance of using a local thermoregulation model.Keywords: boundary element method, dynamic thermography, static thermography, skin tumor diagnostic
Procedia PDF Downloads 1075503 An Assessment of Financial Viability and Sustainability of Hydroponics Using Reclaimed Water Using LCA and LCC
Authors: Muhammad Abdullah, Muhammad Atiq Ur Rehman Tariq, Faraz Ul Haq
Abstract:
In developed countries, sustainability measures are widely accepted and acknowledged as crucial for addressing environmental concerns. Hydroponics, a soilless cultivation technique, has emerged as a potentially sustainable solution as it can reduce water consumption, land use, and environmental impacts. However, hydroponics may not be economically viable, especially when using reclaimed water, which may entail additional costs and risks. This study aims to address the critical question of whether hydroponics using reclaimed water can achieve a balance between sustainability and financial viability. Life Cycle Assessment (LCA) and Life Cycle Cost (LCC) will be integrated to assess the potential of hydroponics whether it is environmentally sustainable and economically viable. Life cycle assessment, or LCA, is a methodology for assessing environmental impacts associated with all the stages of the life cycle of a commercial product, process, or service. While Life Cycle Cost (LCC) is an approach that assesses the total cost of an asset over its life cycle, including initial capital costs and maintenance costs. The expected benefits of this study include supporting evidence-based decision-making for policymakers, farmers, and stakeholders involved in agriculture. By quantifying environmental impacts and economic costs, this research will facilitate informed choices regarding the adoption of hydroponics with reclaimed water. It is believed that the outcomes of this research work will help to achieve a sustainable approach to agricultural production, aligning with sustainability goals while considering economic factors by adopting hydroponic technique.Keywords: hydroponic, life cycle assessment, life cycle cost, sustainability
Procedia PDF Downloads 715502 Rapid Soil Classification Using Computer Vision with Electrical Resistivity and Soil Strength
Authors: Eugene Y. J. Aw, J. W. Koh, S. H. Chew, K. E. Chua, P. L. Goh, Grace H. B. Foo, M. L. Leong
Abstract:
This paper presents the evaluation of various soil testing methods such as the four-probe soil electrical resistivity method and cone penetration test (CPT) that can complement a newly developed novel rapid soil classification scheme using computer vision, to improve the accuracy and productivity of on-site classification of excavated soil. In Singapore, excavated soils from the local construction industry are transported to Staging Grounds (SGs) to be reused as fill material for land reclamation. Excavated soils are mainly categorized into two groups (“Good Earth” and “Soft Clay”) based on particle size distribution (PSD) and water content (w) from soil investigation reports and on-site visual survey, such that proper treatment and usage can be exercised. However, this process is time-consuming and labor-intensive. Thus, a rapid classification method is needed at the SGs. Four-probe soil electrical resistivity and CPT were evaluated for their feasibility as suitable additions to the computer vision system to further develop this innovative non-destructive and instantaneous classification method. The computer vision technique comprises soil image acquisition using an industrial-grade camera; image processing and analysis via calculation of Grey Level Co-occurrence Matrix (GLCM) textural parameters; and decision-making using an Artificial Neural Network (ANN). It was found from the previous study that the ANN model coupled with ρ can classify soils into “Good Earth” and “Soft Clay” in less than a minute, with an accuracy of 85% based on selected representative soil images. To further improve the technique, the following three items were targeted to be added onto the computer vision scheme: the apparent electrical resistivity of soil (ρ) measured using a set of four probes arranged in Wenner’s array, the soil strength measured using a modified mini cone penetrometer, and w measured using a set of time-domain reflectometry (TDR) probes. Laboratory proof-of-concept was conducted through a series of seven tests with three types of soils – “Good Earth”, “Soft Clay,” and a mix of the two. Validation was performed against the PSD and w of each soil type obtained from conventional laboratory tests. The results show that ρ, w and CPT measurements can be collectively analyzed to classify soils into “Good Earth” or “Soft Clay” and are feasible as complementing methods to the computer vision system.Keywords: computer vision technique, cone penetration test, electrical resistivity, rapid and non-destructive, soil classification
Procedia PDF Downloads 2395501 Application of the Finite Window Method to a Time-Dependent Convection-Diffusion Equation
Authors: Raoul Ouambo Tobou, Alexis Kuitche, Marcel Edoun
Abstract:
The FWM (Finite Window Method) is a new numerical meshfree technique for solving problems defined either in terms of PDEs (Partial Differential Equation) or by a set of conservation/equilibrium laws. The principle behind the FWM is that in such problem each element of the concerned domain is interacting with its neighbors and will always try to adapt to keep in equilibrium with respect to those neighbors. This leads to a very simple and robust problem solving scheme, well suited for transfer problems. In this work, we have applied the FWM to an unsteady scalar convection-diffusion equation. Despite its simplicity, it is well known that convection-diffusion problems can be challenging to be solved numerically, especially when convection is highly dominant. This has led researchers to set the scalar convection-diffusion equation as a benchmark one used to analyze and derive the required conditions or artifacts needed to numerically solve problems where convection and diffusion occur simultaneously. We have shown here that the standard FWM can be used to solve convection-diffusion equations in a robust manner as no adjustments (Upwinding or Artificial Diffusion addition) were required to obtain good results even for high Peclet numbers and coarse space and time steps. A comparison was performed between the FWM scheme and both a first order implicit Finite Volume Scheme (Upwind scheme) and a third order implicit Finite Volume Scheme (QUICK Scheme). The results of the comparison was that for equal space and time grid spacing, the FWM yields a much better precision than the used Finite Volume schemes, all having similar computational cost and conditioning number.Keywords: Finite Window Method, Convection-Diffusion, Numerical Technique, Convergence
Procedia PDF Downloads 3325500 Utilizing Laser Cutting Method in Men's' Custom-Made Casualwear
Authors: M A. Habit, S. A. Syed-Sahil, A. Bahari
Abstract:
Abstract—Laser cutting is a method of manufacturing process that uses laser in order to cut materials. It provides and ensures extreme accuracy which has a clean cut effect, CO2 laser dominate this application due to their good- quality beam combined with high output power. It comes with a small scale and it has a limitation in cutting sizes of materials, therefore it is more appropriate for custom- made products. The same laser cutting machine is also capable in cutting fine material such as fine silk, cotton, leather, polyester, etc. Lack of explorations and knowledge besides being unaware about this technology had caused many of the designers not to use this laser cutting method in their collections. The objectives of this study are: 1) To identify the potential of laser cutting technique in Custom-Made Garments for men’s casual wear: 2) To experiment the laser cutting technique in custom made garments: 3) To offer guidelines and formula for men’s custom- made casualwear designs with aesthetic value. In order to achieve the objectives, this research has been conducted by using mixed methods which are interviews with two (2) local experts in the apparel manufacturing industries and interviews via telephone with five (5) local respondents who are local emerging fashion designers, the questionnaires were distributed to one hundred (100) respondents around Klang Valley, in order to gain the information about their understanding and awareness regarding laser cutting technology. The experiment was conducted by using natural and man- made fibers. As a conclusion, all of the objectives had been achieved in producing custom-made men’s casualwear and with the production of these attires it will help to educate and enhance the innovation in fine technology. Therefore, there will be a good linkage and collaboration between the design experts and the manufacturing companies.Keywords: custom-made, fashion, laser cut, men’s wear
Procedia PDF Downloads 4415499 Virtual Process Hazard Analysis (Pha) Of a Nuclear Power Plant (Npp) Using Failure Mode and Effects Analysis (Fmea) Technique
Authors: Lormaine Anne A. Branzuela, Elysa V. Largo, Monet Concepcion M. Detras, Neil C. Concibido
Abstract:
The electricity demand is still increasing, and currently, the Philippine government is investigating the feasibility of operating the Bataan Nuclear Power Plant (BNPP) to address the country’s energy problem. However, the lack of process safety studies on BNPP focused on the effects of hazardous substances on the integrity of the structure, equipment, and other components, have made the plant operationalization questionable to the public. The three major nuclear power plant incidents – TMI-2, Chernobyl, and Fukushima – have made many people hesitant to include nuclear energy in the energy matrix. This study focused on the safety evaluation of possible operations of a nuclear power plant installed with a Pressurized Water Reactor (PWR), which is similar to BNPP. Failure Mode and Effects Analysis (FMEA) is one of the Process Hazard Analysis (PHA) techniques used for the identification of equipment failure modes and minimizing its consequences. Using the FMEA technique, this study was able to recognize 116 different failure modes in total. Upon computation and ranking of the risk priority number (RPN) and criticality rating (CR), it showed that failure of the reactor coolant pump due to earthquakes is the most critical failure mode. This hazard scenario could lead to a nuclear meltdown and radioactive release, as identified by the FMEA team. Safeguards and recommended risk reduction strategies to lower the RPN and CR were identified such that the effects are minimized, the likelihood of occurrence is reduced, and failure detection is improved.Keywords: PHA, FMEA, nuclear power plant, bataan nuclear power plant
Procedia PDF Downloads 1315498 A Comparative Study Mechanical Properties of Polytetrafluoroethylene Materials Synthesized by Non-Conventional and Conventional Techniques
Authors: H. Lahlali F. El Haouzi, A.M.Al-Baradi, I. El Aboudi, M. El Azhari, A. Mdarhri
Abstract:
Polytetrafluoroethylene (PTFE) is a high performance thermoplastic polymer with exceptional physical and chemical properties, such as a high melting temperature, high thermal stability, and very good chemical resistance. Nevertheless, manufacturing PTFE is problematic due to its high melt viscosity (10 12 Pa.s). In practice, it is by now well established that this property presents a serious problem when the classical methods are used to synthesized the dense PTFE materials in particularly hot pressing, high temperature extrusion. In this framework, we use here a new process namely spark plasma sintering (SPS) to elaborate PTFE samples from the micro metric particles powder. It consists in applying simultaneous electric current and pressure directly on the sample powder. By controlling the processing parameters of this technique, a series of PTFE samples are easy obtained and associated to remarkably short time as is reported in an early work. Our central goal in the present study is to understand how the non conventional SPS affects the mechanical properties at room temperature. For this end, a second commercially series of PTFE synthesized by using the extrusion method is investigated. The first data according to the tensile mechanical properties are found to be superior for the first set samples (SPS). However, this trend is not observed for the results obtained from the compression testing. The observed macro-behaviors are correlated to some physical properties of the two series of samples such as their crystallinity or density. Upon a close examination of these properties, we believe the SPS technique can be seen as a promising way to elaborate the polymer having high molecular mass without compromising their mechanical properties.Keywords: PTFE, extrusion, Spark Plasma Sintering, physical properties, mechanical behavior
Procedia PDF Downloads 3075497 Effects of Different Meteorological Variables on Reference Evapotranspiration Modeling: Application of Principal Component Analysis
Authors: Akinola Ikudayisi, Josiah Adeyemo
Abstract:
The correct estimation of reference evapotranspiration (ETₒ) is required for effective irrigation water resources planning and management. However, there are some variables that must be considered while estimating and modeling ETₒ. This study therefore determines the multivariate analysis of correlated variables involved in the estimation and modeling of ETₒ at Vaalharts irrigation scheme (VIS) in South Africa using Principal Component Analysis (PCA) technique. Weather and meteorological data between 1994 and 2014 were obtained both from South African Weather Service (SAWS) and Agricultural Research Council (ARC) in South Africa for this study. Average monthly data of minimum and maximum temperature (°C), rainfall (mm), relative humidity (%), and wind speed (m/s) were the inputs to the PCA-based model, while ETₒ is the output. PCA technique was adopted to extract the most important information from the dataset and also to analyze the relationship between the five variables and ETₒ. This is to determine the most significant variables affecting ETₒ estimation at VIS. From the model performances, two principal components with a variance of 82.7% were retained after the eigenvector extraction. The results of the two principal components were compared and the model output shows that minimum temperature, maximum temperature and windspeed are the most important variables in ETₒ estimation and modeling at VIS. In order words, ETₒ increases with temperature and windspeed. Other variables such as rainfall and relative humidity are less important and cannot be used to provide enough information about ETₒ estimation at VIS. The outcome of this study has helped to reduce input variable dimensionality from five to the three most significant variables in ETₒ modelling at VIS, South Africa.Keywords: irrigation, principal component analysis, reference evapotranspiration, Vaalharts
Procedia PDF Downloads 2585496 The Influence of Guided and Independent Training Toward Teachers’ Competence to Plan Early Childhood Education Learning Program
Authors: Sofia Hartati
Abstract:
This research is aimed at describing training in early childhood education program empirically, describing teachers ability to plan lessons empirically, and acquiring empirical data as well as analyzing the influence of guided and independent training toward teachers competence in planning early childhood learning program. The method used is an experiment. It collected data with a population of 76 early childhood educators in Tunjung Teja Sub District area through random sampling technique and grouped into two namely 38 people in an experiment class and 38 people in a controlled class. The technique used for data collections is a test. The result of the research shows that there is a significant influence between training for guided educators toward Teachers Ability toward Planning Early Childhood Learning Program. Guided training has been proven to improve the ability to comprehend planning a learning program. The ability to comprehend planning a learning program owned by teachers of early childhood program comprises of 1) determining the characteristics and competence of students prior to learning; 2) formulating the objective of the learning; 3) selecting materials and its sequences; 4) selecting teaching methods; 5) determining the means or learning media; 6) selecting evaluation strategy as a part of teachers pedagogic competence. The result of this research describes a difference in the competence level of teachers who have joined guided training which is relatively higher than the teachers who joined the independent training. Guided training is one of an effective way to improve the knowledge and competence of early childhood educators.Keywords: competence, planning, teachers, training
Procedia PDF Downloads 2645495 Quantum Statistical Machine Learning and Quantum Time Series
Authors: Omar Alzeley, Sergey Utev
Abstract:
Minimizing a constrained multivariate function is the fundamental of Machine learning, and these algorithms are at the core of data mining and data visualization techniques. The decision function that maps input points to output points is based on the result of optimization. This optimization is the central of learning theory. One approach to complex systems where the dynamics of the system is inferred by a statistical analysis of the fluctuations in time of some associated observable is time series analysis. The purpose of this paper is a mathematical transition from the autoregressive model of classical time series to the matrix formalization of quantum theory. Firstly, we have proposed a quantum time series model (QTS). Although Hamiltonian technique becomes an established tool to detect a deterministic chaos, other approaches emerge. The quantum probabilistic technique is used to motivate the construction of our QTS model. The QTS model resembles the quantum dynamic model which was applied to financial data. Secondly, various statistical methods, including machine learning algorithms such as the Kalman filter algorithm, are applied to estimate and analyses the unknown parameters of the model. Finally, simulation techniques such as Markov chain Monte Carlo have been used to support our investigations. The proposed model has been examined by using real and simulated data. We establish the relation between quantum statistical machine and quantum time series via random matrix theory. It is interesting to note that the primary focus of the application of QTS in the field of quantum chaos was to find a model that explain chaotic behaviour. Maybe this model will reveal another insight into quantum chaos.Keywords: machine learning, simulation techniques, quantum probability, tensor product, time series
Procedia PDF Downloads 4695494 Accuracy of VCCT for Calculating Stress Intensity Factor in Metal Specimens Subjected to Bending Load
Authors: Sanjin Kršćanski, Josip Brnić
Abstract:
Virtual Crack Closure Technique (VCCT) is a method used for calculating stress intensity factor (SIF) of a cracked body that is easily implemented on top of basic finite element (FE) codes and as such can be applied on the various component geometries. It is a relatively simple method that does not require any special finite elements to be used and is usually used for calculating stress intensity factors at the crack tip for components made of brittle materials. This paper studies applicability and accuracy of VCCT applied on standard metal specimens containing trough thickness crack, subjected to an in-plane bending load. Finite element analyses were performed using regular 4-node, regular 8-node and a modified quarter-point 8-node 2D elements. Stress intensity factor was calculated from the FE model results for a given crack length, using data available from FE analysis and a custom programmed algorithm based on virtual crack closure technique. Influence of the finite element size on the accuracy of calculated SIF was also studied. The final part of this paper includes a comparison of calculated stress intensity factors with results obtained from analytical expressions found in available literature and in ASTM standard. Results calculated by this algorithm based on VCCT were found to be in good correlation with results obtained with mentioned analytical expressions.Keywords: VCCT, stress intensity factor, finite element analysis, 2D finite elements, bending
Procedia PDF Downloads 3055493 African Culture and Youth Morality: A Critique of the On-Going Transitional Rites in Thulamela Municipality, South Africa
Authors: Bassey Rofem Inyang, Matshidze Pfarelo, Mabale Dolphin
Abstract:
Using a qualitative descriptive design, this study established the consequences of the on-going transitional rites on youth morality in the Thulamela Local Municipality, South Africa. The participants were sampled using a non-random sampling procedure, specifically, a purposive sampling technique and a snowball sampling technique. A semi-structured interview guide was recruited to collect data from the Indigenous Knowledge (IK) custodians, the parents of the youths and the youths until the point of saturation. The analysis was performed using a thematic content method. With the emergence of themes and sub-themes, broad categories were generated to differentiate and explain the thoughts expressed by the various respondents and the observations made in the field. The study findings suggest that the on-going transitional rites are depicted by weekend social activities with the practice of substance use and abuse among the youths at recreational spots. The transitional rites are structured under the guise of “freaks” as an evolving culture among the youths. The freaks culture is a counterculture of the usual initiation schools for transitional rites of passage which is believed to instill morality among youths. The findings comprehensively show that the on-going transitional rites influence inappropriate youth morality. This study concluded that the on-going transitional rites activities and practices evolved as a current socialization standard for quick maturity status; as a result, it will be challenging to provide a complete turnaround of this evolving culture. The study, however, recommends building on the exciting transitional rites of passage to moderate appropriate youths’ morality in Thulamela communities.Keywords: morality, transitional rites, youths, behaviour
Procedia PDF Downloads 935492 Experimental Investigation of the Thermal Conductivity of Neodymium and Samarium Melts by a Laser Flash Technique
Authors: Igor V. Savchenko, Dmitrii A. Samoshkin
Abstract:
The active study of the properties of lanthanides has begun in the late 50s of the last century, when methods for their purification were developed and metals with a relatively low content of impurities were obtained. Nevertheless, up to date, many properties of the rare earth metals (REM) have not been experimentally investigated, or insufficiently studied. Currently, the thermal conductivity and thermal diffusivity of lanthanides have been studied most thoroughly in the low-temperature region and at moderate temperatures (near 293 K). In the high-temperature region, corresponding to the solid phase, data on the thermophysical characteristics of the REM are fragmentary and in some cases contradictory. Analysis of the literature showed that the data on the thermal conductivity and thermal diffusivity of light REM in the liquid state are few in number, little informative (only one point corresponds to the liquid state region), contradictory (the nature of the thermal conductivity change with temperature is not reproduced), as well as the results of measurements diverge significantly beyond the limits of the total errors. Thereby our experimental results allow to fill this gap and to clarify the existing information on the heat transfer coefficients of neodymium and samarium in a wide temperature range from the melting point up to 1770 K. The measurement of the thermal conductivity of investigated metallic melts was carried out by laser flash technique on an automated experimental setup LFA-427. Neodymium sample of brand NM-1 (99.21 wt % purity) and samarium sample of brand SmM-1 (99.94 wt % purity) were cut from metal ingots and then ones were annealed in a vacuum (1 mPa) at a temperature of 1400 K for 3 hours. Measuring cells of a special design from tantalum were used for experiments. Sealing of the cell with a sample inside it was carried out by argon-arc welding in the protective atmosphere of the glovebox. The glovebox was filled with argon with purity of 99.998 vol. %; argon was additionally cleaned up by continuous running through sponge titanium heated to 900–1000 K. The general systematic error in determining the thermal conductivity of investigated metallic melts was 2–5%. The approximation dependences and the reference tables of the thermal conductivity and thermal diffusivity coefficients were developed. New reliable experimental data on the transport properties of the REM and their changes in phase transitions can serve as a scientific basis for optimizing the industrial processes of production and use of these materials, as well as ones are of interest for the theory of thermophysical properties of substances, physics of metals, liquids and phase transformations.Keywords: high temperatures, laser flash technique, liquid state, metallic melt, rare earth metals, thermal conductivity, thermal diffusivity
Procedia PDF Downloads 1985491 Mastopexy with the "Dermoglandular Autоaugmentation" Method. Increased Stability of the Result. Personalized Technique
Authors: Maksim Barsakov
Abstract:
Introduction. In modern plastic surgery, there are a large number of breast lift techniques.Due to the spreading information about the "side effects" of silicone implants, interest in implant-free mastopexy is increasing year after year. However, despite the variety of techniques, patients sometimes do not get full satisfaction from the results of mastopexy because of the unexpressed filling of the upper pole, extended anchoring postoperative scars and sometimes because of obtaining an aesthetically unattractive breast shape. The stability of the result after mastopexy depends on many factors, including postoperative rehabilitation. Stability of weight and hormonal background, stretchability of tissues. The high recurrence rate of ptosis and short-term aesthetic effect of mastopexy indicate the urgency of improving surgical techniques and increasing the stabilization of breast tissue. Purpose of the study. To develop and introduce into practice a technique of mastopexy based on the use of a modified Ribeiro flap, as well as elements of tissue movement and fixation designed to increase the stability of postoperative mastopexy. In addition, to give indications for the application of this surgical technique. Materials and Methods. it operated on 103 patients aged 18 to 53 years from 2019 to 2023 according to the reported method. These were patients with primary mastopexy, secondary mastopexy, and also patient with implant removal and one-stage mastopexy. The patients were followed up for 12 months to assess the stability of the result. Results and their discussion. Observing the patients, we noted greater stability of the breast shape and upper pole filling compared to the conventional classical methods. We did not have to resort to anchoring scars. In 90 percent of cases, a inverted T-shape scar was used. In 10 percent, the J-scar was used. The quantitative distribution of complications identified among the operated patients is as follows: worsened healing of the junction of vertical and horizontal sutures at the period of 1-1.5 months after surgery - 15 patients; at treatment with ointment method healing was observed in 7-30 days; permanent loss of NAC sensitivity - 0 patients; vascular disorders in the area of NAC/areola necrosis - 0 patients; marginal necrosis of the areola-2 patients. independent healing within 3-4 weeks without aesthetic defects. Aesthetically unacceptable mature scars-3 patients; partial liponecrosis of the autoflap unilaterally - 1 patient. recurrence of ptosis - 1 patient (after weight loss of 12 kg). In the late postoperative period, 2 patients became pregnant, gave birth, and no lactation problems were observed. Conclusion. Thus, in the world of plastic surgery methods of breast lift continue to improve, which is especially relevant in modern times, due to the increased attention to this operation. The author's proposed method of mastopexy with glandular autoflap allows obtaining in most cases a stable result, a fuller breast shape, avoiding the presence of extended anchoring scars, and also preserves the possibility of lactation. The author of this article has obtained a patent for invention for this method of mastopexy.Keywords: mastopexy, mammoplasty, autoflap, personal technique
Procedia PDF Downloads 375490 Implementation of a Monostatic Microwave Imaging System using a UWB Vivaldi Antenna
Authors: Babatunde Olatujoye, Binbin Yang
Abstract:
Microwave imaging is a portable, noninvasive, and non-ionizing imaging technique that employs low-power microwave signals to reveal objects in the microwave frequency range. This technique has immense potential for adoption in commercial and scientific applications such as security scanning, material characterization, and nondestructive testing. This work presents a monostatic microwave imaging setup using an Ultra-Wideband (UWB), low-cost, miniaturized Vivaldi antenna with a bandwidth of 1 – 6 GHz. The backscattered signals (S-parameters) of the Vivaldi antenna used for scanning targets were measured in the lab using a VNA. An automated two-dimensional (2-D) scanner was employed for the 2-D movement of the transceiver to collect the measured scattering data from different positions. The targets consist of four metallic objects, each with a distinct shape. Similar setup was also simulated in Ansys HFSS. A high-resolution Back Propagation Algorithm (BPA) was applied to both the simulated and experimental backscattered signals. The BPA utilizes the phase and amplitude information recorded over a two-dimensional aperture of 50 cm × 50 cm with a discreet step size of 2 cm to reconstruct a focused image of the targets. The adoption of BPA was demonstrated by coherently resolving and reconstructing reflection signals from conventional time-of-flight profiles. For both the simulation and experimental data, BPA accurately reconstructed a high resolution 2D image of the targets in terms of shape and location. An improvement of the BPA, in terms of target resolution, was achieved by applying the filtering method in frequency domain.Keywords: back propagation, microwave imaging, monostatic, vivialdi antenna, ultra wideband
Procedia PDF Downloads 195489 Surface Modified Quantum Dots for Nanophotonics, Stereolithography and Hybrid Systems for Biomedical Studies
Authors: Redouane Krini, Lutz Nuhn, Hicham El Mard Cheol Woo Ha, Yoondeok Han, Kwang-Sup Lee, Dong-Yol Yang, Jinsoo Joo, Rudolf Zentel
Abstract:
To use Quantum Dots (QDs) in the two photon initiated polymerization technique (TPIP) for 3D patternings, QDs were modified on the surface with photosensitive end groups which are able to undergo a photopolymerization. We were able to fabricate fluorescent 3D lattice structures using photopatternable QDs by TPIP for photonic devices such as photonic crystals and metamaterials. The QDs in different diameter have different emission colors and through mixing of RGB QDs white light fluorescent from the polymeric structures has been created. Metamaterials are capable for unique interaction with the electrical and magnetic components of the electromagnetic radiation and for manipulating light it is crucial to have a negative refractive index. In combination with QDs via TPIP technique polymeric structures can be designed with properties which cannot be found in nature. This makes these artificial materials gaining a huge importance for real-life applications in photonic and optoelectronic. Understanding of interactions between nanoparticles and biological systems is of a huge interest in the biomedical research field. We developed a synthetic strategy of polymer functionalized nanoparticles for biomedical studies to obtain hybrid systems of QDs and copolymers with a strong binding network in an inner shell and which can be modified in the end through their poly(ethylene glycol) functionalized outer shell. These hybrid systems can be used as models for investigation of cell penetration and drug delivery by using measurements combination between CryoTEM and fluorescence studies.Keywords: biomedical study models, lithography, photo induced polymerization, quantum dots
Procedia PDF Downloads 5265488 The Effect of Micro/Nano Structure of Poly (ε-caprolactone) (PCL) Film Using a Two-Step Process (Casting/Plasma) on Cellular Responses
Authors: JaeYoon Lee, Gi-Hoon Yang, JongHan Ha, MyungGu Yeo, SeungHyun Ahn, Hyeongjin Lee, HoJun Jeon, YongBok Kim, Minseong Kim, GeunHyung Kim
Abstract:
One of the important factors in tissue engineering is to design optimal biomedical scaffolds, which can be governed by topographical surface characteristics, such as size, shape, and direction. Of these properties, we focused on the effects of nano- to micro-sized hierarchical surface. To fabricate the hierarchical surface structure on poly(ε-caprolactone) (PCL) film, we employed a micro-casting technique by pressing the mold and nano-etching technique using a modified plasma process. The micro-sized topography of PCL film was controlled by sizes of the micro structures on lotus leaf. Also, the nano-sized topography and hydrophilicity of PCL film were controlled by a modified plasma process. After the plasma treatment, the hydrophobic property of the PCL film was significantly changed into hydrophilic property, and the nano-sized structure was well developed. The surface properties of the modified PCL film were investigated in terms of initial cell morphology, attachment, and proliferation using osteoblast-like-cells (MG63). In particular, initial cell attachment, proliferation and osteogenic differentiation in the hierarchical structure were enhanced dramatically compared to those of the smooth surface. We believe that these results are because of a synergistic effect between the hierarchical structure and the reactive functional groups due to the plasma process. Based on the results presented here, we propose a new biomimetic surface model that maybe useful for effectively regenerating hard tissues.Keywords: hierarchical surface, lotus leaf, nano-etching, plasma treatment
Procedia PDF Downloads 3765487 Genomic Identification of Anisakis Simplex Larvae by PCR-RAPD
Authors: Fumiko Kojima, Shuji Fujimoto
Abstract:
Anisakiasis is a disease caused by infection with an anisakid larvae, mostly Anisakis simplex. The larvae commonly infect in marine fish and the disease is frequently reported in areas of the world where fish is consumed raw, lightly pickled or salted. In Japan, people have the habit of eating raw fish such as ‘sushi’ or ‘sashimi’, so they have more chance of infection with larvae of anisakid nematodes. There are three sibling species in A. simplex larvae, namely, A. simplex sensu stricto (Asss), A. pegreffii (Ap) and A. simplex C. It was revealed that Ap is dominant among the larvae from fish (Scomber japonics) in the Japan Sea side and Asss is dominant among those of the Pacific Ocean side conversely. Although anisakiasis has happened in Japan among both the Japan Sea side area and the Pacific Ocean side area. The aim of this study was to investigate genetic variations between the siblings (Asss and Ap) and within the same sibling species by random amplified polymorphic DNA (RAPD) technique. In order to investigate the genetic difference among the each A. simplex larvae, we used RAPD technique to differentiate individuals of A. simplex obtained from Scomber japonics fish those were caught in the Japan sea (Goto Islands in Nagasaki Prefecture) and the cost of Pacific Ocean (Kanagawa Prefecture). The RAPD patterns of the control DNA (Genus Raphidascaris) were markedly different from those of the A. simplex. There were differences in amplification patterns between Asss and Ap. The RAPD patterns for larvae obtained from fish of the same sea were somewhat different and variations were detected even among larvae from the same fish. These results suggest the considerable high genetic variability between Asss and Ap and the possible existence of genetic variation within the sibling species.Keywords: Anisakiasis in Japan, Anisakis simplex, genomic identification, PCR-RAPD
Procedia PDF Downloads 1815486 Axillary Evaluation with Targeted Axillary Dissection Using Ultrasound-Visible Clips after Neoadjuvant Chemotherapy for Patients with Node-Positive Breast Cancer
Authors: Naomi Sakamoto, Eisuke Fukuma, Mika Nashimoto, Yoshitomo Koshida
Abstract:
Background: Selective localization of the metastatic lymph node with clip and removal of clipped nodes with sentinel lymph node (SLN), known as targeted axillary dissection (TAD), reduced false-negative rates (FNR) of SLN biopsy (SLNB) after neoadjuvant chemotherapy (NAC). For the patients who achieved nodal pathologic complete response (pCR), accurate staging of axilla by TAD lead to omit axillary lymph node dissection (ALND), decreasing postoperative arm morbidity without a negative effect on overall survival. This study aimed to investigate the ultrasound (US) identification rate and success removal rate of two kinds of ultrasound-visible clips placed in metastatic lymph nodes during TAD procedure. Methods: This prospective study was conducted using patients with clinically T1-3, N1, 2, M0 breast cancer undergoing NAC followed by surgery. A US-visible clip was placed in the suspicious lymph node under US guidance before neoadjuvant chemotherapy. Before surgery, US examination was performed to evaluate the detection rate of clipped node. During the surgery, the clipped node was removed using several localization techniques, including hook-wire localization, dye-injection, or fluorescence technique, followed by a dual-technique SLNB and resection of palpable nodes if present. For the fluorescence technique, after injection of 0.1-0.2 mL of indocyanine green dye (ICG) into the clipped node, ICG fluorescent imaging was performed using the Photodynamic Eye infrared camera (Hamamatsu Photonics k. k., Shizuoka, Japan). For the dye injection method, 0.1-0.2 mL of pyoktanin blue dye was injected into the clipped node. Results: A total of 29 patients were enrolled. Hydromark™ breast biopsy site markers (Hydromark, T3 shape; Devicor Medical Japan, Tokyo, Japan) was used in 15patients, whereas a UltraCor™ Twirl™ breast marker (Twirl; C.R. Bard, Inc, NJ, USA) was placed in 14 patients. US identified the clipped node marked with the UltraCore Twirl in 100% (14/14) and with the Hydromark in 93.3% (14/15, p = ns). Success removal of clipped node marked with the UltraCore Twirl was achieved in 100% (14/14), whereas the node marked with the Hydromark was removed in 80% (12/15) (p = ns). Conclusions: The ultrasound identification rate differed between the two types of ultrasound-visible clips, which also affected the success removal rate of clipped nodes. Labelling the positive node with a US-highly-visible clip allowed successful TAD.Keywords: breast cancer, neoadjuvant chemotherapy, targeted axillary dissection, breast tissue marker, clip
Procedia PDF Downloads 665485 Finite Element Analysis of Human Tarsals, Meta Tarsals and Phalanges for Predicting probable location of Fractures
Authors: Irfan Anjum Manarvi, Fawzi Aljassir
Abstract:
Human bones have been a keen area of research over a long time in the field of biomechanical engineering. Medical professionals, as well as engineering academics and researchers, have investigated various bones by using medical, mechanical, and materials approaches to discover the available body of knowledge. Their major focus has been to establish properties of these and ultimately develop processes and tools either to prevent fracture or recover its damage. Literature shows that mechanical professionals conducted a variety of tests for hardness, deformation, and strain field measurement to arrive at their findings. However, they considered these results accuracy to be insufficient due to various limitations of tools, test equipment, difficulties in the availability of human bones. They proposed the need for further studies to first overcome inaccuracies in measurement methods, testing machines, and experimental errors and then carry out experimental or theoretical studies. Finite Element analysis is a technique which was developed for the aerospace industry due to the complexity of design and materials. But over a period of time, it has found its applications in many other industries due to accuracy and flexibility in selection of materials and types of loading that could be theoretically applied to an object under study. In the past few decades, the field of biomechanical engineering has also started to see its applicability. However, the work done in the area of Tarsals, metatarsals and phalanges using this technique is very limited. Therefore, present research has been focused on using this technique for analysis of these critical bones of the human body. This technique requires a 3-dimensional geometric computer model of the object to be analyzed. In the present research, a 3d laser scanner was used for accurate geometric scans of individual tarsals, metatarsals, and phalanges from a typical human foot to make these computer geometric models. These were then imported into a Finite Element Analysis software and a length refining process was carried out prior to analysis to ensure the computer models were true representatives of actual bone. This was followed by analysis of each bone individually. A number of constraints and load conditions were applied to observe the stress and strain distributions in these bones under the conditions of compression and tensile loads or their combination. Results were collected for deformations in various axis, and stress and strain distributions were observed to identify critical locations where fracture could occur. A comparative analysis of failure properties of all the three types of bones was carried out to establish which of these could fail earlier which is presented in this research. Results of this investigation could be used for further experimental studies by the academics and researchers, as well as industrial engineers, for development of various foot protection devices or tools for surgical operations and recovery treatment of these bones. Researchers could build up on these models to carryout analysis of a complete human foot through Finite Element analysis under various loading conditions such as walking, marching, running, and landing after a jump etc.Keywords: tarsals, metatarsals, phalanges, 3D scanning, finite element analysis
Procedia PDF Downloads 3295484 Composing Method of Decision-Making Function for Construction Management Using Active 4D/5D/6D Objects
Authors: Hyeon-Seung Kim, Sang-Mi Park, Sun-Ju Han, Leen-Seok Kang
Abstract:
As BIM (Building Information Modeling) application continually expands, the visual simulation techniques used for facility design and construction process information are becoming increasingly advanced and diverse. For building structures, BIM application is design - oriented to utilize 3D objects for conflict management, whereas for civil engineering structures, the usability of nD object - oriented construction stage simulation is important in construction management. Simulations of 5D and 6D objects, for which cost and resources are linked along with process simulation in 4D objects, are commonly used, but they do not provide a decision - making function for process management problems that occur on site because they mostly focus on the visual representation of current status for process information. In this study, an nD CAD system is constructed that facilitates an optimized schedule simulation that minimizes process conflict, a construction duration reduction simulation according to execution progress status, optimized process plan simulation according to project cost change by year, and optimized resource simulation for field resource mobilization capability. Through this system, the usability of conventional simple simulation objects is expanded to the usability of active simulation objects with which decision - making is possible. Furthermore, to close the gap between field process situations and planned 4D process objects, a technique is developed to facilitate a comparative simulation through the coordinated synchronization of an actual video object acquired by an on - site web camera and VR concept 4D object. This synchronization and simulation technique can also be applied to smartphone video objects captured in the field in order to increase the usability of the 4D object. Because yearly project costs change frequently for civil engineering construction, an annual process plan should be recomposed appropriately according to project cost decreases/increases compared with the plan. In the 5D CAD system provided in this study, an active 5D object utilization concept is introduced to perform a simulation in an optimized process planning state by finding a process optimized for the changed project cost without changing the construction duration through a technique such as genetic algorithm. Furthermore, in resource management, an active 6D object utilization function is introduced that can analyze and simulate an optimized process plan within a possible scope of moving resources by considering those resources that can be moved under a given field condition, instead of using a simple resource change simulation by schedule. The introduction of an active BIM function is expected to increase the field utilization of conventional nD objects.Keywords: 4D, 5D, 6D, active BIM
Procedia PDF Downloads 2765483 Estimation of the Mean of the Selected Population
Authors: Kalu Ram Meena, Aditi Kar Gangopadhyay, Satrajit Mandal
Abstract:
Two normal populations with different means and same variance are considered, where the variances are known. The population with the smaller sample mean is selected. Various estimators are constructed for the mean of the selected normal population. Finally, they are compared with respect to the bias and MSE risks by the method of Monte-Carlo simulation and their performances are analysed with the help of graphs.Keywords: estimation after selection, Brewster-Zidek technique, estimators, selected populations
Procedia PDF Downloads 5125482 Optimization Technique for the Contractor’s Portfolio in the Bidding Process
Authors: Taha Anjamrooz, Sareh Rajabi, Salwa Bheiry
Abstract:
Selection between the available projects in bidding processes for the contractor is one of the essential areas to concentrate on. It is important for the contractor to choose the right projects within its portfolio during the tendering stage based on certain criteria. It should align the bidding process with its origination strategies and goals as a screening process to have the right portfolio pool to start with. Secondly, it should set the proper framework and use a suitable technique in order to optimize its selection process for concertation purpose and higher efforts during the tender stage with goals of success and winning. In this research paper, a two steps framework proposed to increase the efficiency of the contractor’s bidding process and the winning chance of getting the new projects awarded. In this framework, initially, all the projects pass through the first stage screening process, in which the portfolio basket will be evaluated and adjusted in accordance with the organization strategies to the reduced version of the portfolio pool, which is in line with organization activities. In the second stage, the contractor uses linear programming to optimize the portfolio pool based on available resources such as manpower, light equipment, heavy equipment, financial capability, return on investment, and success rate of winning the bid. Therefore, this optimization model will assist the contractor in utilizing its internal resource to its maximum and increase its winning chance for the new project considering past experience with clients, built-relation between two parties, and complexity in the exertion of the projects. The objective of this research will be to increase the contractor's winning chance in the bidding process based on the success rate and expected return on investment.Keywords: bidding process, internal resources, optimization, contracting portfolio management
Procedia PDF Downloads 1425481 The Fabrication of Stress Sensing Based on Artificial Antibodies to Cortisol by Molecular Imprinted Polymer
Authors: Supannika Klangphukhiew, Roongnapa Srichana, Rina Patramanon
Abstract:
Cortisol has been used as a well-known commercial stress biomarker. A homeostasis response to psychological stress is indicated by an increased level of cortisol produced in hypothalamus-pituitary-adrenal (HPA) axis. Chronic psychological stress contributing to the high level of cortisol relates to several health problems. In this study, the cortisol biosensor was fabricated that mimicked the natural receptors. The artificial antibodies were prepared using molecular imprinted polymer technique that can imitate the performance of natural anti-cortisol antibody with high stability. Cortisol-molecular imprinted polymer (cortisol-MIP) was obtained using the multi-step swelling and polymerization protocol with cortisol as a target molecule combining methacrylic acid:acrylamide (2:1) with bisacryloyl-1,2-dihydroxy-1,2-ethylenediamine and ethylenedioxy-N-methylamphetamine as cross-linkers. Cortisol-MIP was integrated to the sensor. It was coated on the disposable screen-printed carbon electrode (SPCE) for portable electrochemical analysis. The physical properties of Cortisol-MIP were characterized by means of electron microscope techniques. The binding characteristics were evaluated via covalent patterns changing in FTIR spectra which were related to voltammetry response. The performance of cortisol-MIP modified SPCE was investigated in terms of detection range, high selectivity with a detection limit of 1.28 ng/ml. The disposable cortisol biosensor represented an application of MIP technique to recognize steroids according to their structures with feasibility and cost-effectiveness that can be developed to use in point-of-care.Keywords: stress biomarker, cortisol, molecular imprinted polymer, screen-printed carbon electrode
Procedia PDF Downloads 2735480 The Bayesian Premium Under Entropy Loss
Authors: Farouk Metiri, Halim Zeghdoudi, Mohamed Riad Remita
Abstract:
Credibility theory is an experience rating technique in actuarial science which can be seen as one of quantitative tools that allows the insurers to perform experience rating, that is, to adjust future premiums based on past experiences. It is used usually in automobile insurance, worker's compensation premium, and IBNR (incurred but not reported claims to the insurer) where credibility theory can be used to estimate the claim size amount. In this study, we focused on a popular tool in credibility theory which is the Bayesian premium estimator, considering Lindley distribution as a claim distribution. We derive this estimator under entropy loss which is asymmetric and squared error loss which is a symmetric loss function with informative and non-informative priors. In a purely Bayesian setting, the prior distribution represents the insurer’s prior belief about the insured’s risk level after collection of the insured’s data at the end of the period. However, the explicit form of the Bayesian premium in the case when the prior is not a member of the exponential family could be quite difficult to obtain as it involves a number of integrations which are not analytically solvable. The paper finds a solution to this problem by deriving this estimator using numerical approximation (Lindley approximation) which is one of the suitable approximation methods for solving such problems, it approaches the ratio of the integrals as a whole and produces a single numerical result. Simulation study using Monte Carlo method is then performed to evaluate this estimator and mean squared error technique is made to compare the Bayesian premium estimator under the above loss functions.Keywords: bayesian estimator, credibility theory, entropy loss, monte carlo simulation
Procedia PDF Downloads 3345479 Enhancement of 2, 4-Dichlorophenoxyacetic Acid Solubility via Solid Dispersion Technique
Authors: Tamer M. Shehata, Heba S. Elsewedy, Mashel Al Dosary, Alaa Elshehry, Mohamed A. Khedr, Maged E. Mohamed
Abstract:
Objective: 2,4-Dichlorophenoxy acetic acid (2,4-D) is a well-known herbicide widely used as a weed killer. Recently, 2,4-D was rediscovered as a new anti-inflammatory agent through in silico as well as in-vivo experiments. However, poor solubility of 2,4-D could represent a problems during pharmaceutical development in addition to lower bioavailability. Solid dispersion (SD) refers to a group of solid products consisting of at least two different components, usually a hydrophobic drug and hydrophilic matrix. It is well known technique for enhancing drug solubility. Therefore, selecting SD as a tool for enhancing 2,4-D could be of great interest to the formulator. Method: In our project, several polymers were investigated (such as PEG, HPMC, citric acid and others) in addition to drug polymer ratios and its effect on solubility. Evaluation of drug polymer interaction was investigated through both Fourier Transform Infrared (FTIR) and Differential Scanning Calorimetry (DSC). Finally, in-vivo evaluation was performed for the best selected preparation through inflammatory response of rat induce hind paw. Results: Results indicated that, citric acid 2,4-D and in ratio of 0.75 : 1 showed modified the dissolution profile of the drug. The FTIR resltes indicated no significant chemical interaction, however DSC showed shifting of the drug melting point. Finally, Carragenan induced rat hind paw edema showed significant reduction of the drug solid dispersion in comparison to the pure drug, indicating rapid and complete absorption of the drug in solid dispersion form. Conclusion: Solid dispersion technology can be utilized efficiently to enhance the solubility of 2,4-D.Keywords: solid dispersion, 2, 4-D solubility, carragenan induced edema
Procedia PDF Downloads 4535478 Efficient Implementation of Finite Volume Multi-Resolution Weno Scheme on Adaptive Cartesian Grids
Authors: Yuchen Yang, Zhenming Wang, Jun Zhu, Ning Zhao
Abstract:
An easy-to-implement and robust finite volume multi-resolution Weighted Essentially Non-Oscillatory (WENO) scheme is proposed on adaptive cartesian grids in this paper. Such a multi-resolution WENO scheme is combined with the ghost cell immersed boundary method (IBM) and wall-function technique to solve Navier-Stokes equations. Unlike the k-exact finite volume WENO schemes which involve large amounts of extra storage, repeatedly solving the matrix generated in a least-square method or the process of calculating optimal linear weights on adaptive cartesian grids, the present methodology only adds very small overhead and can be easily implemented in existing edge-based computational fluid dynamics (CFD) codes with minor modifications. Also, the linear weights of this adaptive finite volume multi-resolution WENO scheme can be any positive numbers on condition that their sum is one. It is a way of bypassing the calculation of the optimal linear weights and such a multi-resolution WENO scheme avoids dealing with the negative linear weights on adaptive cartesian grids. Some benchmark viscous problems are numerical solved to show the efficiency and good performance of this adaptive multi-resolution WENO scheme. Compared with a second-order edge-based method, the presented method can be implemented into an adaptive cartesian grid with slight modification for big Reynolds number problems.Keywords: adaptive mesh refinement method, finite volume multi-resolution WENO scheme, immersed boundary method, wall-function technique.
Procedia PDF Downloads 1495477 The Application of Lesson Study Model in Writing Review Text in Junior High School
Authors: Sulastriningsih Djumingin
Abstract:
This study has some objectives. It aims at describing the ability of the second-grade students to write review text without applying the Lesson Study model at SMPN 18 Makassar. Second, it seeks to describe the ability of the second-grade students to write review text by applying the Lesson Study model at SMPN 18 Makassar. Third, it aims at testing the effectiveness of the Lesson Study model in writing review text at SMPN 18 Makassar. This research was true experimental design with posttest Only group design involving two groups consisting of one class of the control group and one class of the experimental group. The research populations were all the second-grade students at SMPN 18 Makassar amounted to 250 students consisting of 8 classes. The sampling technique was purposive sampling technique. The control class was VIII2 consisting of 30 students, while the experimental class was VIII8 consisting of 30 students. The research instruments were in the form of observation and tests. The collected data were analyzed using descriptive statistical techniques and inferential statistical techniques with t-test types processed using SPSS 21 for windows. The results shows that: (1) of 30 students in control class, there are only 14 (47%) students who get the score more than 7.5, categorized as inadequate; (2) in the experimental class, there are 26 (87%) students who obtain the score of 7.5, categorized as adequate; (3) the Lesson Study models is effective to be applied in writing review text. Based on the comparison of the ability of the control class and experimental class, it indicates that the value of t-count is greater than the value of t-table (2.411> 1.667). It means that the alternative hypothesis (H1) proposed by the researcher is accepted.Keywords: application, lesson study, review text, writing
Procedia PDF Downloads 2025476 Geographic Variation in the Baseline Susceptibility of Helicoverpa armigera (Hubner) (Noctuidae: Lepidoptera) Field Populations to Bacillus thuringiensis Cry Toxins for Resistance Monitoring
Authors: Muhammad Arshad, M. Sufian, Muhammad D. Gogi, A. Aslam
Abstract:
The transgenic cotton expressing Bacillus thuringiensis (Bt) provides an effective control of Helicoverpa armigera, a most damaging pest of the cotton crop. However, Bt cotton may not be the optimal solution owing to the selection pressure of Cry toxins. As Bt cotton express the insecticidal proteins throughout the growing seasons, there are the chances of resistance development in the target pests. A regular monitoring and surveillance of target pest’s baseline susceptibility to Bt Cry toxins is crucial for early detection of any resistance development. The present study was conducted to monitor the changes in the baseline susceptibility of the field population of H. armigera to Bt Cry1Ac toxin. The field-collected larval populations were maintained in the laboratory on artificial diet and F1 generation larvae were used for diet incorporated diagnostic studies. The LC₅₀ and MIC₅₀ were calculated to measure the level of resistance of population as a ratio over susceptible population. The monitoring results indicated a significant difference in the susceptibility (LC₅₀) of H. armigera for first, second, third and fourth instar larval populations sampled from different cotton growing areas over the study period 2016-17. The variations in susceptibility among the tested insects depended on the age of the insect and susceptibility decreased with the age of larvae. The overall results show that the average resistant ratio (RR) of all field-collected populations (FSD, SWL, MLT, BWP and DGK) exposed to Bt toxin Cry1Ac ranged from 3.381-fold to 7.381-fold for 1st instar, 2.370-fold to 3.739-fold for 2nd instar, 1.115-fold to 1.762-fold for 3rd instar and 1.141-fold to 2.504-fold for 4th instar, depicting maximum RR from MLT population, whereas minimum RR for FSD and SWL population. The results regarding moult inhibitory concentration of H. armigera larvae (1-4th instars) exposed to different concentrations of Bt Cry1Ac toxin indicated that among all field populations, overall Multan (MLT) and Bahawalpur (BWP) populations showed higher MIC₅₀ values as compared to Faisalabad (FSD) and Sahiwal (SWL), whereas DG Khan (DGK) population showed an intermediate moult inhibitory concentrations. This information is important for the development of more effective resistance monitoring programs. The development of Bt Cry toxins baseline susceptibility data before the widespread commercial release of transgenic Bt cotton cultivars in Pakistan is important for the development of more effective resistance monitoring programs to identify the resistant H. armigera populations.Keywords: Bt cotton, baseline, Cry1Ac toxins, H. armigera
Procedia PDF Downloads 1415475 Flexural Behavior of Eco-Friendly Prefabricated Low Cost Bamboo Reinforced Wall Panels
Authors: Vishal Puri, Pradipta Chakrabortty, Swapan Majumdar
Abstract:
Precast concrete construction is the most commonly used technique for a rapid construction. This technique is very frequently used in the developed countries. Different guidelines required to utilize the potential of prefabricated construction are still not available in the developing countries. This causes over dependence on in-situ construction procedure which further affects the quality, scheduling, and duration of construction. Also with the ever increasing costs of building materials and their negative impact on the environment it has become imperative to look out for alternate construction materials which are cheap and sustainable. Bamboo and fly ash are alternate construction materials having great potential in the construction industry. Thus there is a great need to develop prefabricated components by utilizing the potential of these materials. Bamboo reinforced beams, bamboo reinforced columns and bamboo arches as researched previously have shown great prospects for prefabricated construction industry. But, many other prefabricated components still need to be studied and widely tested before their utilization in the prefabricated construction industry. In the present study, authors have showcased prefabricated bamboo reinforced wall panel for the prefabricated construction industry. It presents a detailed methodology for the development of such prefabricated panels. It also presents the flexural behavior of such panels as tested under flexural loads following ASTM guidelines. It was observed that these wall panels are much flexible and do not show brittle failure as observed in traditional brick walls. It was observed that prefabricated walls are about 42% cheaper as compared to conventional brick walls. It was also observed that prefabricated walls are considerably lighter in weight and are environment friendly. It was thus concluded that this type of wall panels are an excellent alternative for partition brick walls.Keywords: bamboo, prefabricated walls, reinforced structure, sustainable infrastructure
Procedia PDF Downloads 311