Search results for: pretrained model
15353 A Closed-Loop Design Model for Sustainable Manufacturing by Integrating Forward Design and Reverse Design
Authors: Yuan-Jye Tseng, Yi-Shiuan Chen
Abstract:
In this paper, a new concept of closed-loop design model is presented. The closed-loop design model is developed by integrating forward design and reverse design. Based on this new concept, a closed-loop design model for sustainable manufacturing by integrated evaluation of forward design, reverse design, and green manufacturing using a fuzzy analytic network process is developed. In the design stage of a product, with a given product requirement and objective, there can be different ways to design the detailed components and specifications. Therefore, there can be different design cases to achieve the same product requirement and objective. Thus, in the design evaluation stage, it is required to analyze and evaluate the different design cases. The purpose of this research is to develop a model for evaluating the design cases by integrated evaluation of forward design, reverse design, and green manufacturing models. A fuzzy analytic network process model is presented for integrated evaluation of the criteria in the three models. The comparison matrices for evaluating the criteria in the three groups are established. The total relational values among the three groups represent the total relational effects. In application, a super matrix can be created and the total relational values can be used to evaluate the design cases for decision-making to select the final design case. An example product is demonstrated in this presentation. It shows that the model is useful for integrated evaluation of forward design, reverse design, and green manufacturing to achieve a closed-loop design for sustainable manufacturing objective.Keywords: design evaluation, forward design, reverse design, closed-loop design, supply chain management, closed-loop supply chain, fuzzy analytic network process
Procedia PDF Downloads 67615352 Modeling Corruption Dynamics Within Bono and Ahafo Police Service in Ghana
Authors: Adam Ahmed Hosney
Abstract:
The existence of a culture of corruption within an institution, such as the police, could be a sign of failure from various angles. There is a general perception among Ghanaians that the most corrupt institution is the police service. The purpose of this study is to formulate and analyze a nonlinear mathematical model to investigate corruption as an epidemic within the Ghana police service, this study revealed the basic reproduction number for corruption extinction and corruption survival. The threshold conditions for all kinds of equilibrium points are obtained using linearization methods and Lyapunov functional methods, and they demonstrate local asymptotic stability for both corrupt endemic and corrupt free equilibrium states. The model was analyzed qualitatively, and the solution was derived. The model appears to be positively invariant and attractive. Therefore, the region exhibits positive invariance. Thus, it is adequate to think about the dynamics of the model. For the purpose of illustrating the solution, the graphic result was presented and discussed. Results show that corruption will die out within the police service if the government shows no tolerance for those involved in corrupt practices. Study findings indicate that leaders should be trustworthy, demonstrate a complete and viable commitment to addressing corruption, and make it a priority to provide mass education to all citizens as well as using religious leaders to fight corruption since most Ghanaians are religious and trust their leaders.Keywords: mathematical model, differential equation, dynamical system, simulation
Procedia PDF Downloads 2615351 Specific Frequency of Globular Clusters in Different Galaxy Types
Authors: Ahmed H. Abdullah, Pavel Kroupa
Abstract:
Globular clusters (GC) are important objects for tracing the early evolution of a galaxy. We study the correlation between the cluster population and the global properties of the host galaxy. We found that the correlation between cluster population (NGC) and the baryonic mass (Mb) of the host galaxy are best described as 10 −5.6038Mb. In order to understand the origin of the U -shape relation between the GC specific frequency (SN) and Mb (caused by the high value of SN for dwarfs galaxies and giant ellipticals and a minimum SN for intermediate mass galaxies≈ 1010M), we derive a theoretical model for the specific frequency (SNth). The theoretical model for SNth is based on the slope of the power-law embedded cluster mass function (β) and different time scale (Δt) of the forming galaxy. Our results show a good agreement between the observation and the model at a certain β and Δt. The model seems able to reproduce higher value of SNth of β = 1.5 at the midst formation time scale.Keywords: galaxies: dwarf, globular cluster: specific frequency, number of globular clusters, formation time scale
Procedia PDF Downloads 32515350 Using Structural Equation Modeling to Analyze the Impact of Remote Work on Job Satisfaction
Authors: Florian Pfeffel, Valentin Nickolai, Christian Louis Kühner
Abstract:
Digitalization has disrupted the traditional workplace environment by allowing many employees to work from anywhere at any time. This trend of working from home was further accelerated due to the COVID-19 crisis, which forced companies to rethink their workplace models. While in many companies, this shift happened out of pure necessity; many employees were left more satisfied with their job due to the opportunity to work from home. This study focuses on employees’ job satisfaction in the service sector in dependence on the different work models, which are defined as a “work from home” model, the traditional “work in office” model, and a hybrid model. Using structural equation modeling (SEM), these three work models have been analyzed based on 13 influencing factors on job satisfaction that have been further summarized in the three groups “classic influencing factors”, “influencing factors changed by remote working”, and “new remote working influencing factors”. Based on the influencing factors on job satisfaction, a survey has been conducted with n = 684 employees in the service sector. Cronbach’s alpha of the individual constructs was shown to be suitable. Furthermore, the construct validity of the constructs was confirmed by face validity, content validity, convergent validity (AVE > 0.5: CR > 0.7), and discriminant validity. Additionally, confirmatory factor analysis (CFA) confirmed the model fit for the investigated sample (CMIN/DF: 2.567; CFI: 0.927; RMSEA: 0.048). The SEM-analysis has shown that the most significant influencing factor on job satisfaction is “identification with the work” with β = 0.540, followed by “Appreciation” (β = 0.151), “Compensation” (β = 0.124), “Work-Life-Balance” (β = 0.116), and “Communication and Exchange of Information” (β = 0.105). While the significance of each factor can vary depending on the work model, the SEM-analysis shows that the identification with the work is the most significant factor in all three work models and, in the case of the traditional office work model, it is the only significant influencing factor. The study shows that employees who work entirely remotely or have a hybrid work model are significantly more satisfied with their job, with a job satisfaction score of 5.0 respectively on a scale from 1 (very dissatisfied) to 7 (very satisfied), than employees do not have the option to work from home with a score of 4.6. This comes as a result of the lower identification with the work in the model without any remote working. Furthermore, the responses indicate that it is important to consider the individual preferences of each employee when it comes to the work model to achieve overall higher job satisfaction. Thus, it can be argued that companies can profit off of more motivation and higher productivity by considering the individual work model preferences, therefore, increasing the identification with the respective work.Keywords: home-office, identification with work, job satisfaction, new work, remote work, structural equation modeling
Procedia PDF Downloads 8215349 Using the Technology Acceptance Model to Examine Seniors’ Attitudes toward Facebook
Authors: Chien-Jen Liu, Shu Ching Yang
Abstract:
Using the technology acceptance model (TAM), this study examined the external variables of technological complexity (TC) to acquire a better understanding of the factors that influence the acceptance of computer application courses by learners at Active Aging Universities. After the learners in this study had completed a 27-hour Facebook course, 44 learners responded to a modified TAM survey. Data were collected to examine the path relationships among the variables that influence the acceptance of Facebook-mediated community learning. The partial least squares (PLS) method was used to test the measurement and the structural model. The study results demonstrated that attitudes toward Facebook use directly influence behavioral intentions (BI) with respect to Facebook use, evincing a high prediction rate of 58.3%. In addition to the perceived usefulness (PU) and perceived ease of use (PEOU) measures that are proposed in the TAM, other external variables, such as TC, also indirectly influence BI. These four variables can explain 88% of the variance in BI and demonstrate a high level of predictive ability. Finally, limitations of this investigation and implications for further research are discussed.Keywords: technology acceptance model (TAM), technological complexity, partial least squares (PLS), perceived usefulness
Procedia PDF Downloads 34615348 Scenario-Based Analysis of Electric Vehicle Penetration in Road Transportation in Laos
Authors: Bouneua Khamphilavanh, Toshihiko Masui
Abstract:
The penetration of EV (electric vehicle) technology in Lao road transportation, in this study, was analyzed by using the AIM/CGE [Laos] model. The computable general equilibrium (CGE) model was developed by the Asia-Pacific Integrated Model (AIM) team. In line with the increase of the number of road vehicles, the energy demand in the transport sector has been gradually increased which resulted in a large amount of budget spent for importing fossil fuels during the last decade, and a high carbon dioxide emission from the transport sector, hence the aim of this research is to analyze the impact of EVs penetration on economic and CO₂ emission in short-term, middle-term, and long-term. By the year 2050, the expected gross domestic product (GDP) value, due to Laos will spend more budget for importing the EV, will be gradually lost up to one percent. The cumulative CO₂ emission from 2020 to 2050 in BAU case will be 12,000 GgCO₂eq, and those in the EV mitigation case will be 9,300 GgCO₂eq, which accounting for likely 77% cumulative CO₂ emission reduction in the road transport sector by introducing the EV technology.Keywords: GDP, CO₂ mitigation, CGE model, EV technology, transport
Procedia PDF Downloads 27815347 Bankruptcy Prediction Analysis on Mining Sector Companies in Indonesia
Authors: Devina Aprilia Gunawan, Tasya Aspiranti, Inugrah Ratia Pratiwi
Abstract:
This research aims to classify the mining sector companies based on Altman’s Z-score model, and providing an analysis based on the Altman’s Z-score model’s financial ratios to provide a picture about the financial condition in mining sector companies in Indonesia and their viability in the future, and to find out the partial and simultaneous impact of each of the financial ratio variables in the Altman’s Z-score model, namely (WC/TA), (RE/TA), (EBIT/TA), (MVE/TL), and (S/TA), toward the financial condition represented by the Z-score itself. Among 38 mining sector companies listed in Indonesia Stock Exchange (IDX), 28 companies are selected as research sample according to the purposive sampling criteria.The results of this research showed that during 3 years research period at 2010-2012, the amount of the companies that was predicted to be healthy in each year was less than half of the total sample companies and not even reach up to 50%. The multiple regression analysis result showed that all of the research hypotheses are accepted, which means that (WC/TA), (RE/TA), (EBIT/TA), (MVE/TL), and (S/TA), both partially and simultaneously had an impact towards company’s financial condition.Keywords: Altman’s Z-score model, financial condition, mining companies, Indonesia
Procedia PDF Downloads 52915346 Anomaly Detection in a Data Center with a Reconstruction Method Using a Multi-Autoencoders Model
Authors: Victor Breux, Jérôme Boutet, Alain Goret, Viviane Cattin
Abstract:
Early detection of anomalies in data centers is important to reduce downtimes and the costs of periodic maintenance. However, there is little research on this topic and even fewer on the fusion of sensor data for the detection of abnormal events. The goal of this paper is to propose a method for anomaly detection in data centers by combining sensor data (temperature, humidity, power) and deep learning models. The model described in the paper uses one autoencoder per sensor to reconstruct the inputs. The auto-encoders contain Long-Short Term Memory (LSTM) layers and are trained using the normal samples of the relevant sensors selected by correlation analysis. The difference signal between the input and its reconstruction is then used to classify the samples using feature extraction and a random forest classifier. The data measured by the sensors of a data center between January 2019 and May 2020 are used to train the model, while the data between June 2020 and May 2021 are used to assess it. Performances of the model are assessed a posteriori through F1-score by comparing detected anomalies with the data center’s history. The proposed model outperforms the state-of-the-art reconstruction method, which uses only one autoencoder taking multivariate sequences and detects an anomaly with a threshold on the reconstruction error, with an F1-score of 83.60% compared to 24.16%.Keywords: anomaly detection, autoencoder, data centers, deep learning
Procedia PDF Downloads 19415345 Model and Neural Control of the Depth of Anesthesia during Surgery
Authors: Javier Fernandez, Mayte Medina, Rafael Fernandez de Canete, Nuria Alcain, Juan Carlos Ramos-Diaz
Abstract:
At present, the experimentation of anesthetic drugs on patients requires a regulation protocol, and the response of each patient to several doses of entry drug must be well known. Therefore, the development of pharmacological dose control systems is a promising field of research in anesthesiology. In this paper, it has been developed a non-linear compartmental the pharmacokinetic-pharmacodynamical model which describes the anesthesia depth effect in a sufficiently reliable way over a set of patients with the depth effect quantified by the Bi-Spectral Index. Afterwards, an Artificial Neural Network (ANN) predictive controller has been designed based on the depth of anesthesia model so as to keep the patient in the optimum condition while he undergoes surgical treatment. For the purpose of quantifying the efficiency of the neural predictive controller, a classical proportional-integral-derivative controller has also been developed to compare both strategies. Results show the superior performance of predictive neural controller during BiSpectral Index reference tracking.Keywords: anesthesia, bi-spectral index, neural network control, pharmacokinetic-pharmacodynamical model
Procedia PDF Downloads 33715344 Developing a Model for Information Giving Behavior in Virtual Communities
Authors: Pui-Lai To, Chechen Liao, Tzu-Ling Lin
Abstract:
Virtual communities have created a range of new social spaces in which to meet and interact with one another. Both as a stand-alone model or as a supplement to sustain competitive advantage for normal business models, building virtual communities has been hailed as one of the major strategic innovations of the new economy. However for a virtual community to evolve, the biggest challenge is how to make members actively give information or provide advice. Even in busy virtual communities, usually, only a small fraction of members post information actively. In order to investigate the determinants of information giving willingness of those contributors who usually actively provide their opinions, we proposed a model to understand the reasons for contribution in communities. The study will definitely serve as a basis for the future growth of information giving in virtual communities.Keywords: information giving, social identity, trust, virtual community
Procedia PDF Downloads 32215343 Numerical Simulations on Feasibility of Stochastic Model Predictive Control for Linear Discrete-Time Systems with Random Dither Quantization
Authors: Taiki Baba, Tomoaki Hashimoto
Abstract:
The random dither quantization method enables us to achieve much better performance than the simple uniform quantization method for the design of quantized control systems. Motivated by this fact, the stochastic model predictive control method in which a performance index is minimized subject to probabilistic constraints imposed on the state variables of systems has been proposed for linear feedback control systems with random dither quantization. In other words, a method for solving optimal control problems subject to probabilistic state constraints for linear discrete-time control systems with random dither quantization has been already established. To our best knowledge, however, the feasibility of such a kind of optimal control problems has not yet been studied. Our objective in this paper is to investigate the feasibility of stochastic model predictive control problems for linear discrete-time control systems with random dither quantization. To this end, we provide the results of numerical simulations that verify the feasibility of stochastic model predictive control problems for linear discrete-time control systems with random dither quantization.Keywords: model predictive control, stochastic systems, probabilistic constraints, random dither quantization
Procedia PDF Downloads 28215342 A Comparative Evaluation of the SIR and SEIZ Epidemiological Models to Describe the Diffusion Characteristics of COVID-19 Polarizing Viewpoints on Online
Authors: Maryam Maleki, Esther Mead, Mohammad Arani, Nitin Agarwal
Abstract:
This study is conducted to examine how opposing viewpoints related to COVID-19 were diffused on Twitter. To accomplish this, six datasets using two epidemiological models, SIR (Susceptible, Infected, Recovered) and SEIZ (Susceptible, Exposed, Infected, Skeptics), were analyzed. The six datasets were chosen because they represent opposing viewpoints on the COVID-19 pandemic. Three of the datasets contain anti-subject hashtags, while the other three contain pro-subject hashtags. The time frame for all datasets is three years, starting from January 2020 to December 2022. The findings revealed that while both models were effective in evaluating the propagation trends of these polarizing viewpoints, the SEIZ model was more accurate with a relatively lower error rate (6.7%) compared to the SIR model (17.3%). Additionally, the relative error for both models was lower for anti-subject hashtags compared to pro-subject hashtags. By leveraging epidemiological models, insights into the propagation trends of polarizing viewpoints on Twitter were gained. This study paves the way for the development of methods to prevent the spread of ideas that lack scientific evidence while promoting the dissemination of scientifically backed ideas.Keywords: mathematical modeling, epidemiological model, seiz model, sir model, covid-19, twitter, social network analysis, social contagion
Procedia PDF Downloads 6215341 Dynamics of Adiabatic Rapid Passage in an Open Rabi Dimer Model
Authors: Justin Zhengjie Tan, Yang Zhao
Abstract:
Adiabatic Rapid Passage, a popular method of achieving population inversion, is studied in a Rabi dimer model in the presence of noise which acts as a dissipative environment. The integration of the multi-Davydov D2 Ansatz into the time-dependent variational framework enables us to model the intricate quantum system accurately. By influencing the system with a driving field strength resonant with the energy spacing, the probability of adiabatic rapid passage, which is modelled after the Landau Zener model, can be derived along with several other observables, such as the photon population. The effects of a dissipative environment can be reproduced by coupling the system to a common phonon mode. By manipulating the strength and frequency of the driving field, along with the coupling strength of the phonon mode to the qubits, we are able to control the qubits and photon dynamics and subsequently increase the probability of Adiabatic Rapid Passage happening.Keywords: quantum electrodynamics, adiabatic rapid passage, Landau-Zener transitions, dissipative environment
Procedia PDF Downloads 8615340 Adsorption of Cd2+ from Aqueous Solutions Using Chitosan Obtained from a Mixture of Littorina littorea and Achatinoidea Shells
Authors: E. D. Paul, O. F. Paul, J. E. Toryila, A. J. Salifu, C. E. Gimba
Abstract:
Adsorption of Cd2+ ions from aqueous solution by Chitosan, a natural polymer, obtained from a mixture of the exoskeletons of Littorina littorea (Periwinkle) and Achatinoidea (Snail) was studied at varying adsorbent dose, contact time, metal ion concentrations, temperature and pH using batch adsorption method. The equilibrium adsorption isotherms were determined between 298 K and 345 K. The adsorption data were adjusted to Langmuir, Freundlich and the pseudo second order kinetic models. It was found that the Langmuir isotherm model most fitted the experimental data, with a maximum monolayer adsorption of 35.1 mgkg⁻¹ at 308 K. The entropy and enthalpy of adsorption were -0.1121 kJmol⁻¹K⁻¹ and -11.43 kJmol⁻¹ respectively. The Freundlich adsorption model, gave Kf and n values consistent with good adsorption. The pseudo-second order reaction model gave a straight line plot with rate constant of 1.291x 10⁻³ kgmg⁻¹ min⁻¹. The qe value was 21.98 mgkg⁻¹, indicating that the adsorption of Cadmium ion by the chitosan composite followed the pseudo-second order kinetic model.Keywords: adsorption, chitosan, littorina littorea, achatinoidea, natural polymer
Procedia PDF Downloads 40315339 Developing a Green Strategic Management Model with regarding HSE-MS
Authors: Amin Padash, Gholam Reza Nabi Bid Hendi, Hassan Hoveidi
Abstract:
Purpose: The aim of this research is developing a model for green management based on Health, Safety and Environmental Management System. An HSE-MS can be a powerful tool for organizations to both improve their environmental, health and safety performance, and enhance their business efficiency to green management. Model: The model is developed in this study can be used for industries as guidelines for implementing green management issue by considering Health, Safety and Environmental Management System. Case Study: The Pars Special Economic / Energy Zone Organization on behalf of Iran’s Petroleum Ministry and National Iranian Oil Company (NIOC) manages and develops the South and North oil and gas fields in the region. Methodology: This research according to objective is applied and based on implementing is descriptive and also prescription. We used technique MCDM (Multiple Criteria Decision-Making) for determining the priorities of the factors. Based on process approach the model consists of the following steps and components: first factors involved in green issues are determined. Based on them a framework is considered. Then with using MCDM (Multiple Criteria Decision-Making) algorithms (TOPSIS) the priority of basic variables are determined. The authors believe that the proposed model and results of this research can aid industries managers to implement green subjects according to Health, Safety and Environmental Management System in a more efficient and effective manner. Finding and conclusion: Basic factors involved in green issues and their weights can be the main finding. Model and relation between factors are the other finding of this research. The case is considered Petrochemical Company for promoting the system of ecological industry thinking.Keywords: Fuzzy-AHP method , green management, health, safety and environmental management system, MCDM technique, TOPSIS
Procedia PDF Downloads 41115338 Service Interactions Coordination Using a Declarative Approach: Focuses on Deontic Rule from Semantics of Business Vocabulary and Rules Models
Authors: Nurulhuda A. Manaf, Nor Najihah Zainal Abidin, Nur Amalina Jamaludin
Abstract:
Coordinating service interactions are a vital part of developing distributed applications that are built up as networks of autonomous participants, e.g., software components, web services, online resources, involve a collaboration between a diverse number of participant services on different providers. The complexity in coordinating service interactions reflects how important the techniques and approaches require for designing and coordinating the interaction between participant services to ensure the overall goal of a collaboration between participant services is achieved. The objective of this research is to develop capability of steering a complex service interaction towards a desired outcome. Therefore, an efficient technique for modelling, generating, and verifying the coordination of service interactions is developed. The developed model describes service interactions using service choreographies approach and focusing on a declarative approach, advocating an Object Management Group (OMG) standard, Semantics of Business Vocabulary and Rules (SBVR). This model, namely, SBVR model for service choreographies focuses on a declarative deontic rule expressing both obligation and prohibition, which can be more useful in working with coordinating service interactions. The generated SBVR model is then be formulated and be transformed into Alloy model using Alloy Analyzer for verifying the generated SBVR model. The transformation of SBVR into Alloy allows to automatically generate the corresponding coordination of service interactions (service choreography), hence producing an immediate instance of execution that satisfies the constraints of the specification and verifies whether a specific request can be realised in the given choreography in the generated choreography.Keywords: service choreography, service coordination, behavioural modelling, complex interactions, declarative specification, verification, model transformation, semantics of business vocabulary and rules, SBVR
Procedia PDF Downloads 15415337 A Phase Field Approach to Model Crack Interface Interaction in Ceramic Matrix Composites
Authors: Dhaladhuli Pranavi, Amirtham Rajagopal
Abstract:
There are various failure modes in ceramic matrix composites; notable ones are fiber breakage, matrix cracking and fiber matrix debonding. Crack nucleation and propagation in microstructure of such composites requires an understanding of interaction of crack with the multiple inclusion heterogeneous system and interfaces. In order to assess structural integrity, the material parameters especially of the interface that governs the crack growth should be determined. In the present work, a nonlocal phase field approach is proposed to model the crack interface interaction in such composites. Nonlocal approaches help in understanding the complex mechanisms of delamination growth and mitigation and operates at a material length scale. The performance of the proposed formulation is illustrated through representative numerical examples. The model proposed is implemented in the framework of the finite element method. Several parametric studies on interface crack interaction are conducted. The proposed model is easy and simple to implement and works very well in modeling fracture in composite systems.Keywords: composite, interface, nonlocal, phase field
Procedia PDF Downloads 14215336 Application of Seasonal Autoregressive Integrated Moving Average Model for Forecasting Monthly Flows in Waterval River, South Africa
Authors: Kassahun Birhanu Tadesse, Megersa Olumana Dinka
Abstract:
Reliable future river flow information is basic for planning and management of any river systems. For data scarce river system having only a river flow records like the Waterval River, a univariate time series models are appropriate for river flow forecasting. In this study, a univariate Seasonal Autoregressive Integrated Moving Average (SARIMA) model was applied for forecasting Waterval River flow using GRETL statistical software. Mean monthly river flows from 1960 to 2016 were used for modeling. Different unit root tests and Mann-Kendall trend analysis were performed to test the stationarity of the observed flow time series. The time series was differenced to remove the seasonality. Using the correlogram of seasonally differenced time series, different SARIMA models were identified, their parameters were estimated, and diagnostic check-up of model forecasts was performed using white noise and heteroscedasticity tests. Finally, based on minimum Akaike Information (AIc) and Hannan-Quinn (HQc) criteria, SARIMA (3, 0, 2) x (3, 1, 3)12 was selected as the best model for Waterval River flow forecasting. Therefore, this model can be used to generate future river information for water resources development and management in Waterval River system. SARIMA model can also be used for forecasting other similar univariate time series with seasonality characteristics.Keywords: heteroscedasticity, stationarity test, trend analysis, validation, white noise
Procedia PDF Downloads 20515335 Exploring the Effect of Using Lesh Model in Enhancing Prospective Mathematics Teachers’ Number Sense
Authors: Areej Isam Barham
Abstract:
Developing students’ number sense is an essential element in the learning of mathematics. Number sense is one of the foundational ideas in mathematics where students need to understand numbers, representing them in different ways, and realize the relationships among numbers. Number sense also reflects students’ understanding of the meaning of operations, how they related to one another, how to compute fluently and make reasonable estimates. Developing students’ number sense in the mathematics classroom requires good preparation for mathematics teachers, those who will direct their students towards the real understanding of numbers and its implementation in the learning of mathematics. This study describes the development of elementary prospective mathematics teachers’ number sense through a mathematics teaching methods course at Qatar University. The study examined the effect of using the Lesh model in enhancing mathematics prospective teachers’ number sense. Thirty-nine elementary prospective mathematics teachers involved in the current study. The study followed an experimental research approach, and quantitative research methods were used to answer the research questions. Pre-post number sense test was constructed and implemented before and after teaching by using the Lesh model. Data were analyzed using Statistical Packages for Social Sciences (SPSS). Descriptive data analysis and t-test were used to examine the impact of using the Lesh model in enhancing prospective teachers’ number sense. Finding of the study indicated poor number sense and limited numeracy skills before implementing the use of the Lesh model, which highly demonstrate the importance of the study. The results of the study also revealed a positive impact on the use of the Lesh model in enhancing prospective teachers’ number sense with statistically significant differences. The discussion of the study addresses different features and issues related to the participants’ number sense. In light of the study, the research presents recommendations and suggestions for the future development of mathematics prospective teachers’ number sense.Keywords: number sense, Lesh model, prospective mathematics teachers, development of number sense
Procedia PDF Downloads 14015334 Machine Learning Model to Predict TB Bacteria-Resistant Drugs from TB Isolates
Authors: Rosa Tsegaye Aga, Xuan Jiang, Pavel Vazquez Faci, Siqing Liu, Simon Rayner, Endalkachew Alemu, Markos Abebe
Abstract:
Tuberculosis (TB) is a major cause of disease globally. In most cases, TB is treatable and curable, but only with the proper treatment. There is a time when drug-resistant TB occurs when bacteria become resistant to the drugs that are used to treat TB. Current strategies to identify drug-resistant TB bacteria are laboratory-based, and it takes a longer time to identify the drug-resistant bacteria and treat the patient accordingly. But machine learning (ML) and data science approaches can offer new approaches to the problem. In this study, we propose to develop an ML-based model to predict the antibiotic resistance phenotypes of TB isolates in minutes and give the right treatment to the patient immediately. The study has been using the whole genome sequence (WGS) of TB isolates as training data that have been extracted from the NCBI repository and contain different countries’ samples to build the ML models. The reason that different countries’ samples have been included is to generalize the large group of TB isolates from different regions in the world. This supports the model to train different behaviors of the TB bacteria and makes the model robust. The model training has been considering three pieces of information that have been extracted from the WGS data to train the model. These are all variants that have been found within the candidate genes (F1), predetermined resistance-associated variants (F2), and only resistance-associated gene information for the particular drug. Two major datasets have been constructed using these three information. F1 and F2 information have been considered as two independent datasets, and the third information is used as a class to label the two datasets. Five machine learning algorithms have been considered to train the model. These are Support Vector Machine (SVM), Random forest (RF), Logistic regression (LR), Gradient Boosting, and Ada boost algorithms. The models have been trained on the datasets F1, F2, and F1F2 that is the F1 and the F2 dataset merged. Additionally, an ensemble approach has been used to train the model. The ensemble approach has been considered to run F1 and F2 datasets on gradient boosting algorithm and use the output as one dataset that is called F1F2 ensemble dataset and train a model using this dataset on the five algorithms. As the experiment shows, the ensemble approach model that has been trained on the Gradient Boosting algorithm outperformed the rest of the models. In conclusion, this study suggests the ensemble approach, that is, the RF + Gradient boosting model, to predict the antibiotic resistance phenotypes of TB isolates by outperforming the rest of the models.Keywords: machine learning, MTB, WGS, drug resistant TB
Procedia PDF Downloads 5215333 An Application of the Single Equation Regression Model
Authors: S. K. Ashiquer Rahman
Abstract:
Recently, oil has become more influential in almost every economic sector as a key material. As can be seen from the news, when there are some changes in an oil price or OPEC announces a new strategy, its effect spreads to every part of the economy directly and indirectly. That’s a reason why people always observe the oil price and try to forecast the changes of it. The most important factor affecting the price is its supply which is determined by the number of wildcats drilled. Therefore, a study about the number of wellheads and other economic variables may give us some understanding of the mechanism indicated by the amount of oil supplies. In this paper, we will consider a relationship between the number of wellheads and three key factors: the price of the wellhead, domestic output, and GNP constant dollars. We also add trend variables in the models because the consumption of oil varies from time to time. Moreover, this paper will use an econometrics method to estimate parameters in the model, apply some tests to verify the result we acquire, and then conclude the model.Keywords: price, domestic output, GNP, trend variable, wildcat activity
Procedia PDF Downloads 6215332 An Enhanced Digital Forensic Model for Internet of Things Forensic
Authors: Tina Wu, Andrew Martin
Abstract:
The expansion of the Internet of Things (IoT) brings a new level of threat. Attacks on IoT are already being used by criminals to form botnets, launch Distributed Denial of Service (DDoS) and distribute malware. This opens a whole new digital forensic arena to develop forensic methodologies in order to have the capability to investigate IoT related crimes. However, existing proposed IoT forensic models are still premature requiring further improvement and validation, many lack details on the acquisition and analysis phase. This paper proposes an enhanced theoretical IoT digital forensic model focused on identifying and acquiring the main sources of evidence in a methodical way. In addition, this paper presents a theoretical acquisition framework of the different stages required in order to be capable of acquiring evidence from IoT devices.Keywords: acquisition, Internet of Things, model, zoning
Procedia PDF Downloads 27115331 Building Information Modeling Applied for the Measurement of Water Footprint of Construction Supplies
Authors: Julio Franco
Abstract:
Water is used, directly and indirectly, in all activities of the construction productive chain, making it a subject of worldwide relevance for sustainable development. The ongoing expansion of urban areas leads to a high demand for natural resources, which in turn cause significant environmental impacts. The present work proposes the application of BIM tools to assist the measurement of the water footprint (WF) of civil construction supplies. Data was inserted into the model as element properties, allowing them to be analyzed by element or in the whole model. The WF calculation was automated using parameterization in Autodesk Revit software. Parameterization was associated to the materials of each element in the model so that any changes in these elements directly alter the results of WF calculations. As a case study, we applied into a building project model to test the parameterized calculus of WF. Results show that the proposed parameterization successfully automated WF calculations according to design changes. We envision this tool to assist the measurement and rationalization of the environmental impact in terms of WF of construction projects.Keywords: building information modeling, BIM, sustainable development, water footprint
Procedia PDF Downloads 14715330 Operation Cycle Model of ASz62IR Radial Aircraft Engine
Authors: M. Duk, L. Grabowski, P. Magryta
Abstract:
Today's very important element relating to air transport is the environment impact issues. Nowadays there are no emissions standards for turbine and piston engines used in air transport. However, it should be noticed that the environmental effect in the form of exhaust gases from aircraft engines should be as small as possible. For this purpose, R&D centers often use special software to simulate and to estimate the negative effect of engine working process. For cooperation between the Lublin University of Technology and the Polish aviation company WSK "PZL-KALISZ" S.A., to achieve more effective operation of the ASz62IR engine, one of such tools have been used. The AVL Boost software allows to perform 1D simulations of combustion process of piston engines. ASz62IR is a nine-cylinder aircraft engine in a radial configuration. In order to analyze the impact of its working process on the environment, the mathematical model in the AVL Boost software have been made. This model contains, among others, model of the operation cycle of the cylinders. This model was based on a volume change in combustion chamber according to the reciprocating movement of a piston. The simplifications that all of the pistons move identically was assumed. The changes in cylinder volume during an operating cycle were specified. Those changes were important to determine the energy balance of a cylinder in an internal combustion engine which is fundamental for a model of the operating cycle. The calculations for cylinder thermodynamic state were based on the first law of thermodynamics. The change in the mass in the cylinder was calculated from the sum of inflowing and outflowing masses including: cylinder internal energy, heat from the fuel, heat losses, mass in cylinder, cylinder pressure and volume, blowdown enthalpy, evaporation heat etc. The model assumed that the amount of heat released in combustion process was calculated from the pace of combustion, using Vibe model. For gas exchange, it was also important to consider heat transfer in inlet and outlet channels because of much higher values there than for flow in a straight pipe. This results from high values of heat exchange coefficients and temperature coefficients near valves and valve seats. A Zapf modified model of heat exchange was used. To use the model with the flight scenarios, the impact of flight altitude on engine performance has been analyze. It was assumed that the pressure and temperature at the inlet and outlet correspond to the values resulting from the model for International Standard Atmosphere (ISA). Comparing this model of operation cycle with the others submodels of the ASz62IR engine, it could be noticed, that a full analysis of the performance of the engine, according to the ISA conditions, can be made. This work has been financed by the Polish National Centre for Research and Development, INNOLOT, underKeywords: aviation propulsion, AVL Boost, engine model, operation cycle, aircraft engine
Procedia PDF Downloads 29215329 Probability-Based Damage Detection of Structures Using Model Updating with Enhanced Ideal Gas Molecular Movement Algorithm
Authors: M. R. Ghasemi, R. Ghiasi, H. Varaee
Abstract:
Model updating method has received increasing attention in damage detection structures based on measured modal parameters. Therefore, a probability-based damage detection (PBDD) procedure based on a model updating procedure is presented in this paper, in which a one-stage model-based damage identification technique based on the dynamic features of a structure is investigated. The presented framework uses a finite element updating method with a Monte Carlo simulation that considers the uncertainty caused by measurement noise. Enhanced ideal gas molecular movement (EIGMM) is used as the main algorithm for model updating. Ideal gas molecular movement (IGMM) is a multiagent algorithm based on the ideal gas molecular movement. Ideal gas molecules disperse rapidly in different directions and cover all the space inside. This is embedded in the high speed of molecules, collisions between them and with the surrounding barriers. In IGMM algorithm to accomplish the optimal solutions, the initial population of gas molecules is randomly generated and the governing equations related to the velocity of gas molecules and collisions between those are utilized. In this paper, an enhanced version of IGMM, which removes unchanged variables after specified iterations, is developed. The proposed method is implemented on two numerical examples in the field of structural damage detection. The results show that the proposed method can perform well and competitive in PBDD of structures.Keywords: enhanced ideal gas molecular movement (EIGMM), ideal gas molecular movement (IGMM), model updating method, probability-based damage detection (PBDD), uncertainty quantification
Procedia PDF Downloads 27715328 A Comparative Asessment of Some Algorithms for Modeling and Forecasting Horizontal Displacement of Ialy Dam, Vietnam
Authors: Kien-Trinh Thi Bui, Cuong Manh Nguyen
Abstract:
In order to simulate and reproduce the operational characteristics of a dam visually, it is necessary to capture the displacement at different measurement points and analyze the observed movement data promptly to forecast the dam safety. The accuracy of forecasts is further improved by applying machine learning methods to data analysis progress. In this study, the horizontal displacement monitoring data of the Ialy hydroelectric dam was applied to machine learning algorithms: Gaussian processes, multi-layer perceptron neural networks, and the M5-rules algorithm for modelling and forecasting of horizontal displacement of the Ialy hydropower dam (Vietnam), respectively, for analysing. The database which used in this research was built by collecting time series of data from 2006 to 2021 and divided into two parts: training dataset and validating dataset. The final results show all three algorithms have high performance for both training and model validation, but the MLPs is the best model. The usability of them are further investigated by comparison with a benchmark models created by multi-linear regression. The result show the performance which obtained from all the GP model, the MLPs model and the M5-Rules model are much better, therefore these three models should be used to analyze and predict the horizontal displacement of the dam.Keywords: Gaussian processes, horizontal displacement, hydropower dam, Ialy dam, M5-Rules, multi-layer perception neural networks
Procedia PDF Downloads 21015327 A Pedagogical Study of Computational Design in a Simulated Building Information Modeling-Cloud Environment
Authors: Jaehwan Jung, Sung-Ah Kim
Abstract:
Building Information Modeling (BIM) provides project stakeholders with various information about property and geometry of entire component as a 3D object-based parametric building model. BIM represents a set of Information and solutions that are expected to improve collaborative work process and quality of the building design. To improve collaboration among project participants, the BIM model should provide the necessary information to remote participants in real time and manage the information in the process. The purpose of this paper is to propose a process model that can apply effective architectural design collaborative work process in architectural design education in BIM-Cloud environment.Keywords: BIM, cloud computing, collaborative design, digital design education
Procedia PDF Downloads 43315326 LORA: A Learning Outcome Modelling Approach for Higher Education
Authors: Aqeel Zeid, Hasna Anees, Mohamed Adheeb, Mohamed Rifan, Kalpani Manathunga
Abstract:
To achieve constructive alignment in a higher education program, a clear set of learning outcomes must be defined. Traditional learning outcome definition techniques such as Bloom’s taxonomy are not written to be utilized by the student. This might be disadvantageous for students in student-centric learning settings where the students are expected to formulate their own learning strategies. To solve the problem, we propose the learning outcome relation and aggregation (LORA) model. To achieve alignment, we developed learning outcome, assessment, and resource authoring tools which help teachers to tag learning outcomes during creation. A pilot study was conducted with an expert panel consisting of experienced professionals in the education domain to evaluate whether the LORA model and tools present an improvement over the traditional methods. The panel unanimously agreed that the model and tools are beneficial and effective. Moreover, it helped them model learning outcomes in a more student centric and descriptive way.Keywords: learning design, constructive alignment, Bloom’s taxonomy, learning outcome modelling
Procedia PDF Downloads 18715325 Model of Application of Blockchain Technology in Public Finances
Authors: M. Vlahovic
Abstract:
This paper presents a model of public finances, which combines three concepts: participatory budgeting, crowdfunding and blockchain technology. Participatory budgeting is defined as a process in which community members decide how to spend a part of community’s budget. Crowdfunding is a practice of funding a project by collecting small monetary contributions from a large number of people via an Internet platform. Blockchain technology is a distributed ledger that enables efficient and reliable transactions that are secure and transparent. In this hypothetical model, the government or authorities on local/regional level would set up a platform where they would propose public projects to citizens. Citizens would browse through projects and support or vote for those which they consider justified and necessary. In return, they would be entitled to a tax relief in the amount of their monetary contribution. Since the blockchain technology enables tracking of transactions, it can be used to mitigate corruption, money laundering and lack of transparency in public finances. Models of its application have already been created for e-voting, health records or land registries. By presenting a model of application of blockchain technology in public finances, this paper takes into consideration the potential of blockchain technology to disrupt governments and make processes more democratic, secure, transparent and efficient. The framework for this paper consists of multiple streams of research, including key concepts of direct democracy, public finance (especially the voluntary theory of public finance), information and communication technology, especially blockchain technology and crowdfunding. The framework defines rules of the game, basic conditions for the implementation of the model, benefits, potential problems and development perspectives. As an oversimplified map of a new form of public finances, the proposed model identifies primary factors, that influence the possibility of implementation of the model, and that could be tracked, measured and controlled in case of experimentation with the model.Keywords: blockchain technology, distributed ledger, participatory budgeting, crowdfunding, direct democracy, internet platform, e-government, public finance
Procedia PDF Downloads 14915324 Facility Anomaly Detection with Gaussian Mixture Model
Authors: Sunghoon Park, Hank Kim, Jinwon An, Sungzoon Cho
Abstract:
Internet of Things allows one to collect data from facilities which are then used to monitor them and even predict malfunctions in advance. Conventional quality control methods focus on setting a normal range on a sensor value defined between a lower control limit and an upper control limit, and declaring as an anomaly anything falling outside it. However, interactions among sensor values are ignored, thus leading to suboptimal performance. We propose a multivariate approach which takes into account many sensor values at the same time. In particular Gaussian Mixture Model is used which is trained to maximize likelihood value using Expectation-Maximization algorithm. The number of Gaussian component distributions is determined by Bayesian Information Criterion. The negative Log likelihood value is used as an anomaly score. The actual usage scenario goes like a following. For each instance of sensor values from a facility, an anomaly score is computed. If it is larger than a threshold, an alarm will go off and a human expert intervenes and checks the system. A real world data from Building energy system was used to test the model.Keywords: facility anomaly detection, gaussian mixture model, anomaly score, expectation maximization algorithm
Procedia PDF Downloads 272