Search results for: participatory air quality network siting
12771 Analysing the Moderating Effect of Customer Loyalty on Long Run Repurchase Intentions
Authors: John Akpesiri Olotewo
Abstract:
One of the controversies in existing marketing literatures is on how to retain existing and new customers to have repurchase intention in the long-run; however, empirical answer to this question is scanty in existing studies. Thus, this study investigates the moderating effect of consumer loyalty on long-run repurchase intentions in telecommunication industry using Lagos State environs. The study adopted field survey research design using questionnaire to elicit responses from 250 respondents who were selected using random and stratified random sampling techniques from the telecommunication industry in Lagos State, Nigeria. The internal consistency of the research instrument was verified using the Cronbach’s alpha, the result of 0.89 implies the acceptability of the internal consistency of the survey instrument. The test of the research hypotheses were analyzed using Pearson Product Method of Correlation (PPMC), simple regression analysis and inferential statistics with the aid of Statistical Package for Social Science version 20.0 (SPSS). The study confirmed that customer satisfaction has a significant relationship with customer loyalty in the telecommunication industry; also Service quality has a significant relationship with customer loyalty to a brand; loyalty programs have a significant relationship with customer loyalty to a network operator in Nigeria and Customer loyalty has a significant effect on the long run repurchase intentions of the customer. The study concluded that one of the determinants of long term profitability of a business entity is the long run repurchase intentions of its customers which hinges on the level of brand loyalty of the customer. Thus, it was recommended that service providers in Nigeria should improve on factors like customer satisfaction, service quality, and loyalty programs in order to increase the loyalty of their customer to their brands thereby increasing their repurchase intentions.Keywords: customer loyalty, long run repurchase intentions, brands, service quality and customer satisfaction
Procedia PDF Downloads 23312770 Modelling Biological Treatment of Dye Wastewater in SBR Systems Inoculated with Bacteria by Artificial Neural Network
Authors: Yasaman Sanayei, Alireza Bahiraie
Abstract:
This paper presents a systematic methodology based on the application of artificial neural networks for sequencing batch reactor (SBR). The SBR is a fill-and-draw biological wastewater technology, which is specially suited for nutrient removal. Employing reactive dye by Sphingomonas paucimobilis bacteria at sequence batch reactor is a novel approach of dye removal. The influent COD, MLVSS, and reaction time were selected as the process inputs and the effluent COD and BOD as the process outputs. The best possible result for the discrete pole parameter was a= 0.44. In orderto adjust the parameters of ANN, the Levenberg-Marquardt (LM) algorithm was employed. The results predicted by the model were compared to the experimental data and showed a high correlation with R2> 0.99 and a low mean absolute error (MAE). The results from this study reveal that the developed model is accurate and efficacious in predicting COD and BOD parameters of the dye-containing wastewater treated by SBR. The proposed modeling approach can be applied to other industrial wastewater treatment systems to predict effluent characteristics. Note that SBR are normally operated with constant predefined duration of the stages, thus, resulting in low efficient operation. Data obtained from the on-line electronic sensors installed in the SBR and from the control quality laboratory analysis have been used to develop the optimal architecture of two different ANN. The results have shown that the developed models can be used as efficient and cost-effective predictive tools for the system analysed.Keywords: artificial neural network, COD removal, SBR, Sphingomonas paucimobilis
Procedia PDF Downloads 41212769 On the Bootstrap P-Value Method in Identifying out of Control Signals in Multivariate Control Chart
Authors: O. Ikpotokin
Abstract:
In any production process, every product is aimed to attain a certain standard, but the presence of assignable cause of variability affects our process, thereby leading to low quality of product. The ability to identify and remove this type of variability reduces its overall effect, thereby improving the quality of the product. In case of a univariate control chart signal, it is easy to detect the problem and give a solution since it is related to a single quality characteristic. However, the problems involved in the use of multivariate control chart are the violation of multivariate normal assumption and the difficulty in identifying the quality characteristic(s) that resulted in the out of control signals. The purpose of this paper is to examine the use of non-parametric control chart (the bootstrap approach) for obtaining control limit to overcome the problem of multivariate distributional assumption and the p-value method for detecting out of control signals. Results from a performance study show that the proposed bootstrap method enables the setting of control limit that can enhance the detection of out of control signals when compared, while the p-value method also enhanced in identifying out of control variables.Keywords: bootstrap control limit, p-value method, out-of-control signals, p-value, quality characteristics
Procedia PDF Downloads 34712768 Design of Control System Based On PLC and Kingview for Granulation Product Line
Authors: Mei-Feng, Yude-Fan, Min-Zhu
Abstract:
Based on PLC and kingview, this paper proposed a method that designed a set of the automatic control system according to the craft flow and demands for granulation product line. There were the main station and subordinate stations in PLC which were communicated by PROFIBUS network. PLC and computer were communicated by Ethernet network. The conversation function between human and machine was realized by kingview software, including actual time craft flows, historic report curves and product report forms. The construction of the control system, hardware collocation and software design were introduced. Besides these, PROFIBUS network frequency conversion control, the difficult points and configuration software design were elaborated. The running results showed that there were several advantages in the control system. They were high automatic degree, perfect function, perfect steady and convenient operation.Keywords: PLC, PROFIBUS, configuration, frequency
Procedia PDF Downloads 40212767 Students' Perspectives on Quality of Course Evaluation Practices and Feedbacks in Eritrea
Authors: Ermias Melake Tesfay
Abstract:
The importance of evaluation practice and feedback to student advancement and retention has gained importance in the literature over the past ten years. So many issues and cases have been raised about the quality and types of evaluation carried out in higher education and the quality and quantity of student feedback. The aim of this study was to explore the students’ perspectives on the quality of course evaluation practice and feedback in College of Education and College of Science. The study used both quantitative and qualitative methods to collect data. Data were collected from third-year and fourth-year students of 13 departments in the College of Education and College of Science in Eritrea. A modified Service Performance (SERVPERF) questionnaire and focus group discussions were used to collect the data. The sample population comprised of 135 third-year and fourth-year students’ from both Colleges. A questionnaire using a 5 point Likert-scale was administered to all respondents whilst two focus group discussions were conducted. Findings from survey data and focus group discussions showed that the majority of students hold a positive perception of the quality of course evaluation practice but had a negative perception of methods of awarding grades and administrators’ role in listening to the students complain about the course. Furthermore, the analysis from the questionnaire showed that there is no statistically significant difference between third-year and fourth-year students, College of Education and College of Science and male and female students on the quality of course evaluation practice and feedback. The study recommends that colleges improve the quality of fairness and feedback during course assessment.Keywords: evaluation, feedback, quality, students' perception
Procedia PDF Downloads 15712766 Predicting Shot Making in Basketball Learnt Fromadversarial Multiagent Trajectories
Authors: Mark Harmon, Abdolghani Ebrahimi, Patrick Lucey, Diego Klabjan
Abstract:
In this paper, we predict the likelihood of a player making a shot in basketball from multiagent trajectories. Previous approaches to similar problems center on hand-crafting features to capture domain-specific knowledge. Although intuitive, recent work in deep learning has shown, this approach is prone to missing important predictive features. To circumvent this issue, we present a convolutional neural network (CNN) approach where we initially represent the multiagent behavior as an image. To encode the adversarial nature of basketball, we use a multichannel image which we then feed into a CNN. Additionally, to capture the temporal aspect of the trajectories, we use “fading.” We find that this approach is superior to a traditional FFN model. By using gradient ascent, we were able to discover what the CNN filters look for during training. Last, we find that a combined FFN+CNN is the best performing network with an error rate of 39%.Keywords: basketball, computer vision, image processing, convolutional neural network
Procedia PDF Downloads 15312765 Advances in Fiber Optic Technology for High-Speed Data Transmission
Authors: Salim Yusif
Abstract:
Fiber optic technology has revolutionized telecommunications and data transmission, providing unmatched speed, bandwidth, and reliability. This paper presents the latest advancements in fiber optic technology, focusing on innovations in fiber materials, transmission techniques, and network architectures that enhance the performance of high-speed data transmission systems. Key advancements include the development of ultra-low-loss optical fibers, multi-core fibers, advanced modulation formats, and the integration of fiber optics into next-generation network architectures such as Software-Defined Networking (SDN) and Network Function Virtualization (NFV). Additionally, recent developments in fiber optic sensors are discussed, extending the utility of optical fibers beyond data transmission. Through comprehensive analysis and experimental validation, this research offers valuable insights into the future directions of fiber optic technology, highlighting its potential to drive innovation across various industries.Keywords: fiber optics, high-speed data transmission, ultra-low-loss optical fibers, multi-core fibers, modulation formats, coherent detection, software-defined networking, network function virtualization, fiber optic sensors
Procedia PDF Downloads 6112764 Privacy Preservation Concerns and Information Disclosure on Social Networks: An Ongoing Research
Authors: Aria Teimourzadeh, Marc Favier, Samaneh Kakavand
Abstract:
The emergence of social networks has revolutionized the exchange of information. Every behavior on these platforms contributes to the generation of data known as social network data that are processed, stored and published by the social network service providers. Hence, it is vital to investigate the role of these platforms in user data by considering the privacy measures, especially when we observe the increased number of individuals and organizations engaging with the current virtual platforms without being aware that the data related to their positioning, connections and behavior is uncovered and used by third parties. Performing analytics on social network datasets may result in the disclosure of confidential information about the individuals or organizations which are the members of these virtual environments. Analyzing separate datasets can reveal private information about relationships, interests and more, especially when the datasets are analyzed jointly. Intentional breaches of privacy is the result of such analysis. Addressing these privacy concerns requires an understanding of the nature of data being accumulated and relevant data privacy regulations, as well as motivations for disclosure of personal information on social network platforms. Some significant points about how user's online information is controlled by the influence of social factors and to what extent the users are concerned about future use of their personal information by the organizations, are highlighted in this paper. Firstly, this research presents a short literature review about the structure of a network and concept of privacy in Online Social Networks. Secondly, the factors of user behavior related to privacy protection and self-disclosure on these virtual communities are presented. In other words, we seek to demonstrates the impact of identified variables on user information disclosure that could be taken into account to explain the privacy preservation of individuals on social networking platforms. Thirdly, a few research directions are discussed to address this topic for new researchers.Keywords: information disclosure, privacy measures, privacy preservation, social network analysis, user experience
Procedia PDF Downloads 28112763 On the Combination of Patient-Generated Data with Data from a Secure Clinical Network Environment: A Practical Example
Authors: Jeroen S. de Bruin, Karin Schindler, Christian Schuh
Abstract:
With increasingly more mobile health applications appearing due to the popularity of smartphones, the possibility arises that these data can be used to improve the medical diagnostic process, as well as the overall quality of healthcare, while at the same time lowering costs. However, as of yet there have been no reports of a successful combination of patient-generated data from smartphones with data from clinical routine. In this paper, we describe how these two types of data can be combined in a secure way without modification to hospital information systems, and how they can together be used in a medical expert system for automatic nutritional classification and triage.Keywords: mobile health, data integration, expert systems, disease-related malnutrition
Procedia PDF Downloads 47712762 A Machine Learning Approach for Anomaly Detection in Environmental IoT-Driven Wastewater Purification Systems
Authors: Giovanni Cicceri, Roberta Maisano, Nathalie Morey, Salvatore Distefano
Abstract:
The main goal of this paper is to present a solution for a water purification system based on an Environmental Internet of Things (EIoT) platform to monitor and control water quality and machine learning (ML) models to support decision making and speed up the processes of purification of water. A real case study has been implemented by deploying an EIoT platform and a network of devices, called Gramb meters and belonging to the Gramb project, on wastewater purification systems located in Calabria, south of Italy. The data thus collected are used to control the wastewater quality, detect anomalies and predict the behaviour of the purification system. To this extent, three different statistical and machine learning models have been adopted and thus compared: Autoregressive Integrated Moving Average (ARIMA), Long Short Term Memory (LSTM) autoencoder, and Facebook Prophet (FP). The results demonstrated that the ML solution (LSTM) out-perform classical statistical approaches (ARIMA, FP), in terms of both accuracy, efficiency and effectiveness in monitoring and controlling the wastewater purification processes.Keywords: environmental internet of things, EIoT, machine learning, anomaly detection, environment monitoring
Procedia PDF Downloads 15112761 The Study of Security Techniques on Information System for Decision Making
Authors: Tejinder Singh
Abstract:
Information system is the flow of data from different levels to different directions for decision making and data operations in information system (IS). Data can be violated by different manner like manual or technical errors, data tampering or loss of integrity. Security system called firewall of IS is effected by such type of violations. The flow of data among various levels of Information System is done by networking system. The flow of data on network is in form of packets or frames. To protect these packets from unauthorized access, virus attacks, and to maintain the integrity level, network security is an important factor. To protect the data to get pirated, various security techniques are used. This paper represents the various security techniques and signifies different harmful attacks with the help of detailed data analysis. This paper will be beneficial for the organizations to make the system more secure, effective, and beneficial for future decisions making.Keywords: information systems, data integrity, TCP/IP network, vulnerability, decision, data
Procedia PDF Downloads 30712760 A Systematic Review on Challenges in Big Data Environment
Authors: Rimmy Yadav, Anmol Preet Kaur
Abstract:
Big Data has demonstrated the vast potential in streamlining, deciding, spotting business drifts in different fields, for example, producing, fund, Information Technology. This paper gives a multi-disciplinary diagram of the research issues in enormous information and its procedures, instruments, and system identified with the privacy, data storage management, network and energy utilization, adaptation to non-critical failure and information representations. Other than this, result difficulties and openings accessible in this Big Data platform have made.Keywords: big data, privacy, data management, network and energy consumption
Procedia PDF Downloads 31112759 Adding Business Value in Enterprise Applications through Quality Matrices Using Agile
Authors: Afshan Saad, Muhammad Saad, Shah Muhammad Emaduddin
Abstract:
Nowadays the business condition is so quick paced that enhancing ourselves consistently has turned into a huge factor for the presence of an undertaking. We can check this for structural building and significantly more so in the quick-paced universe of data innovation and programming designing. The lithe philosophies, similar to Scrum, have a devoted advance in the process that objectives the enhancement of the improvement procedure and programming items. Pivotal to process enhancement is to pick up data that grants you to assess the condition of the procedure and its items. From the status data, you can design activities for the upgrade and furthermore assess the accomplishment of those activities. This investigation builds a model that measures the product nature of the improvement procedure. The product quality is dependent on the useful and auxiliary nature of the product items, besides the nature of the advancement procedure is likewise vital to enhance programming quality. Utilitarian quality covers the adherence to client prerequisites, while the auxiliary quality tends to the structure of the product item's source code with reference to its practicality. The procedure quality is identified with the consistency and expectedness of the improvement procedure. The product quality model is connected in a business setting by social occasion the information for the product measurements in the model. To assess the product quality model, we investigate the information and present it to the general population engaged with the light-footed programming improvement process. The outcomes from the application and the client input recommend that the model empowers a reasonable evaluation of the product quality and that it very well may be utilized to help the persistent enhancement of the advancement procedure and programming items.Keywords: Agile SDLC Tools, Agile Software development, business value, enterprise applications, IBM, IBM Rational Team Concert, RTC, software quality, software metrics
Procedia PDF Downloads 17412758 Using Probabilistic Neural Network (PNN) for Extracting Acoustic Microwaves (Bulk Acoustic Waves) in Piezoelectric Material
Authors: Hafdaoui Hichem, Mehadjebia Cherifa, Benatia Djamel
Abstract:
In this paper, we propose a new method for Bulk detection of an acoustic microwave signal during the propagation of acoustic microwaves in a piezoelectric substrate (Lithium Niobate LiNbO3). We have used the classification by probabilistic neural network (PNN) as a means of numerical analysis in which we classify all the values of the real part and the imaginary part of the coefficient attenuation with the acoustic velocity in order to build a model from which we note the Bulk waves easily. These singularities inform us of presence of Bulk waves in piezoelectric materials. By which we obtain accurate values for each of the coefficient attenuation and acoustic velocity for Bulk waves. This study will be very interesting in modeling and realization of acoustic microwaves devices (ultrasound) based on the propagation of acoustic microwaves.Keywords: piezoelectric material, probabilistic neural network (PNN), classification, acoustic microwaves, bulk waves, the attenuation coefficient
Procedia PDF Downloads 43212757 Annual and Seasonal Variations in Air Quality Index of the National Capital Region, India
Authors: Surinder Deswal, Vineet Verma
Abstract:
Air Quality Index (AQI) is used as a tool to indicate the level of severity and disseminate the information on air pollution to enable the public to understand the health and environmental impacts of air pollutant concentration levels. The annual and seasonal variation of criteria air pollutants concentration based on the National Ambient Air Quality Monitoring Programme has been conducted for a period of nine years (2006-2014) using the AQI system. AQI was calculated using IND-AQI methodology and Maximum Operator Concept is applied. An attempt has been made to quantify the variations in AQI on an annual and seasonal basis over a period of nine years. Further, year-wise frequency of occurrence of AQI in each category for all the five stations is analysed, which presents in depth analysis of trends over the period of study. The best air quality was observed in the Noida residential area, followed by Noida industrial area during the study period; whereas, Bulandshahar industrial area and Faridabad residential area were observed to have the worst air quality. A shift in the worst air quality from winter to summer season has also been observed during the study period. Further, the level of Respirable Suspended Particulate Matter was found to be above permissible limit at all the stations. The present study helps in enhancing public awareness and calls for the need of immediate measures to be taken to counter-effect the cause of the increasing level of air pollution.Keywords: air quality index, annual trends, criteria pollutants, seasonal variation
Procedia PDF Downloads 28112756 Enhancement of Environmental Security by the Application of Wireless Sensor Network in Nigeria
Authors: Ahmadu Girgiri, Lawan Gana Ali, Mamman M. Baba
Abstract:
Environmental security clearly articulates the perfections and developments of various communities around the world irrespective of the region, culture, religion or social inclination. Although, the present state of insecurity has become serious issue devastating the peace, unity, stability and progress of man and his physical environment particularly in developing countries. Recently, measure of security and it management in Nigeria has been a bottle-neck to the effectiveness and advancement of various sectors that include; business, education, social relations, politics and above all an economy. Several measures have been considered on mitigating environment insecurity such as surveillance, demarcation, security personnel empowerment and the likes, but still the issue remains disturbing. In this paper, we present the application of new technology that contributes to the improvement of security surveillance known as “Wireless Sensor Network (WSN)”. The system is new, smart and emerging technology that provides monitoring, detection and aggregation of information using sensor nodes and wireless network. WSN detects, monitors and stores information or activities in the deployed area such as schools, environment, business centers, public squares, industries, and outskirts and transmit to end users. This will reduce the cost of security funding and eases security surveillance depending on the nature and the requirement of the deployment.Keywords: application, environment, insecurity, sensor, wireless sensor network
Procedia PDF Downloads 26312755 Performance Evaluation of Routing Protocols for Video Conference over MPLS VPN Network
Authors: Abdullah Al Mamun, Tarek R. Sheltami
Abstract:
Video conferencing is a highly demanding facility now a days in order to its real time characteristics, but faster communication is the prior requirement of this technology. Multi Protocol Label Switching (MPLS) IP Virtual Private Network (VPN) address this problem and it is able to make a communication faster than others techniques. However, this paper studies the performance comparison of video traffic between two routing protocols namely the Enhanced Interior Gateway Protocol(EIGRP) and Open Shortest Path First (OSPF). The combination of traditional routing and MPLS improve the forwarding mechanism, scalability and overall network performance. We will use GNS3 and OPNET Modeler 14.5 to simulate many different scenarios and metrics such as delay, jitter and mean opinion score (MOS) value are measured. The simulation result will show that OSPF and BGP-MPLS VPN offers best performance for video conferencing application.Keywords: OSPF, BGP, EIGRP, MPLS, Video conference, Provider router, edge router, layer3 VPN
Procedia PDF Downloads 33112754 Artificial Neural Network Model Based Setup Period Estimation for Polymer Cutting
Authors: Zsolt János Viharos, Krisztián Balázs Kis, Imre Paniti, Gábor Belső, Péter Németh, János Farkas
Abstract:
The paper presents the results and industrial applications in the production setup period estimation based on industrial data inherited from the field of polymer cutting. The literature of polymer cutting is very limited considering the number of publications. The first polymer cutting machine is known since the second half of the 20th century; however, the production of polymer parts with this kind of technology is still a challenging research topic. The products of the applying industrial partner must met high technical requirements, as they are used in medical, measurement instrumentation and painting industry branches. Typically, 20% of these parts are new work, which means every five years almost the entire product portfolio is replaced in their low series manufacturing environment. Consequently, it requires a flexible production system, where the estimation of the frequent setup periods' lengths is one of the key success factors. In the investigation, several (input) parameters have been studied and grouped to create an adequate training information set for an artificial neural network as a base for the estimation of the individual setup periods. In the first group, product information is collected such as the product name and number of items. The second group contains material data like material type and colour. In the third group, surface quality and tolerance information are collected including the finest surface and tightest (or narrowest) tolerance. The fourth group contains the setup data like machine type and work shift. One source of these parameters is the Manufacturing Execution System (MES) but some data were also collected from Computer Aided Design (CAD) drawings. The number of the applied tools is one of the key factors on which the industrial partners’ estimations were based previously. The artificial neural network model was trained on several thousands of real industrial data. The mean estimation accuracy of the setup periods' lengths was improved by 30%, and in the same time the deviation of the prognosis was also improved by 50%. Furthermore, an investigation on the mentioned parameter groups considering the manufacturing order was also researched. The paper also highlights the manufacturing introduction experiences and further improvements of the proposed methods, both on the shop floor and on the quotation preparation fields. Every week more than 100 real industrial setup events are given and the related data are collected.Keywords: artificial neural network, low series manufacturing, polymer cutting, setup period estimation
Procedia PDF Downloads 24512753 Establishing Quality Evaluation Indicators of Early Education Center for 0~3 Years Old
Authors: Lina Feng
Abstract:
The study aimed at establishing quality evaluation indicators of an early education center for 0~3 years old, and defining the weight system of it. Expert questionnaire and Fuzzy Delphi method were applied. Firstly, in order to ensure the indicators in accordance with the practice of early education, 16 experts were invited as respondents to a preliminary Expert Questionnaire about Quality Evaluation Indicators of Early Education Center for 0~3 Years Old. The indicators were based on relevant studies on quality evaluation indicators of early education centers in China and abroad. Secondly, 20 scholars, kindergarten principals, and educational administrators were invited to form a fuzzy Delphi expert team. The experts’ opinions on the importance of indicators were calculated through triangle fuzzy numbers in order to select appropriate indicators and calculate indicator weights. This procedure resulted in the final Quality Evaluation Indicators of Early education Center for 0~3 Years Old. The Indicators contained three major levels, including 6 first-level indicators, 30 second-level indicators, and 147 third-level indicators. The 6 first-level indicators were health and safety; educational and cultivating activities; development of babies; conditions of the center; management of the center; and collaboration between family and the community. The indicators established by this study could provide suggestions for the high-quality environment for promoting the development of early year children.Keywords: early education center for 0~3 years old, educational management, fuzzy delphi method, quality evaluation indicator
Procedia PDF Downloads 26112752 Evaluation of the Effect of Auriculotherapy on Pain Control and Sleep Quality in Chronic Patients
Authors: Fagner Luiz P. Salles, Janaina C. Oliveira, Ivair P. Cesar
Abstract:
Statement of the Problem: Auriculotherapy (AT) is a TCM technique, which uses seeds instead of needles, based physiologically on the mechanical stimulation of the cranial nerves. In the context of understanding the new concept of health of the WHO, the AT is an integrative approach for achieving Global Health Care so as to achieve the global health care concerns. This study aimed to evaluate the effect of auriculotherapy on pain and sleep quality in patients with chronic pain. Methodology and Theoretical Orientation: This study was performed between February and March 2017 at the Faculdade Estácio de Sá de Vitória, Brazil. The pain evaluation was through VAS in 4 periods: maximum, minimum, average and at the time of evaluation; the evaluation of sleep quality was used the Pittsburgh Sleep Quality Index. Socio-demographic data included: gender, age, use of medication and BMI. All data are presented as mean (standard deviation), Teste Mann-Whitney and T-student with P-values < 0.05 were regarded as significant. Findings: Participated in this study thirty-two individuals with age (M = 43.18, SD = 17.86), the time with pain in years (M = 3.67, SD = 3.68), 81.7% were female, 75% of the individuals used medication and BMI (M = 26.67; SD = 6.20). The pain presented improvement in the maximum level and the average of the pain and sleep quality before did not have statistically significant results. Conclusion and Significance: This study showed that TA is efficacy for reduction levels of pain. However, AT was not effective in improving sleep quality.Keywords: auriculotherapy, chronic pain, sleep quality, integrative approach
Procedia PDF Downloads 20712751 Quality Service Standard of Food and Beverage Service Staff in Hotel
Authors: Thanasit Suksutdhi
Abstract:
This survey research aims to study the standard of service quality of food and beverage service staffs in hotel business by studying the service standard of three sample hotels, Siam Kempinski Hotel Bangkok, Four Seasons Resort Chiang Mai, and Banyan Tree Phuket. In order to find the international service standard of food and beverage service, triangular research, i.e. quantitative, qualitative, and survey were employed. In this research, questionnaires and in-depth interview were used for getting the information on the sequences and method of services. There were three parts of modified questionnaires to measure service quality and guest’s satisfaction including service facilities, attentiveness, responsibility, reliability, and circumspection. This study used sample random sampling to derive subjects with the return rate of the questionnaires was 70% or 280. Data were analyzed by SPSS to find arithmetic mean, SD, percentage, and comparison by t-test and One-way ANOVA. The results revealed that the service quality of the three hotels were in the international level which could create high satisfaction to the international customers. Recommendations for research implementations were to maintain the area of good service quality, and to improve some dimensions of service quality such as reliability. Training in service standard, product knowledge, and new technology for employees should be provided. Furthermore, in order to develop the service quality of the industry, training collaboration between hotel organization and educational institutions in food and beverage service should be considered.Keywords: service standard, food and beverage department, sequence of service, service method
Procedia PDF Downloads 35212750 Assessment of Water Availability and Quality in the Climate Change Context in Urban Areas
Authors: Rose-Michelle Smith, Musandji Fuamba, Salomon Salumu
Abstract:
Water is vital for life. Access to drinking water and sanitation for humans is one of the Sustainable Development Goals (specifically the sixth) approved by United Nations Member States in September 2015. There are various problems identified relating to water: insufficient fresh water, inequitable distribution of water resources, poor water management in certain places on the planet, detection of water-borne diseases due to poor water quality, and the negative impacts of climate change on water. One of the major challenges in the world is finding ways to ensure that people and the environment have enough water resources to sustain and support their existence. Thus, this research project aims to develop a tool to assess the availability, quality and needs of water in current and future situations with regard to climate change. This tool was tested using threshold values for three regions in three countries: the Metropolitan Community of Montreal (Canada), Normandie Region (France) and North Department (Haiti). The WEAP software was used to evaluate the available quantity of water resources. For water quality, two models were performed: the Canadian Council of Ministers of the Environment (CCME) and the Malaysian Water Quality Index (WQI). Preliminary results showed that the ratio of the needs could be estimated at 155, 308 and 644 m3/capita in 2023 for Normandie, Cap-Haitian and CMM, respectively. Then, the Water Quality Index (WQI) varied from one country to another. Other simulations regarding the water availability and quality are still in progress. This tool will be very useful in decision-making on projects relating to water use in the future; it will make it possible to estimate whether the available resources will be able to satisfy the needs.Keywords: climate change, water needs, balance sheet, water quality
Procedia PDF Downloads 7512749 STATCOM’s Contribution to the Improvement of Voltage Plan and Power Flow in an Electrical Transmission Network
Authors: M. Adjabi, A. Amiar, P. O. Logerais
Abstract:
Flexible Alternative Current Systems Transmission (FACTS) are used since nearly four decades and present very good dynamic performances. The purpose of this work is to study the behavior of a system where Static Compensator (STATCOM) is located at the midpoint of a transmission line which is the idea of the project functioning in disturbed modes with various levels of load. The studied model and starting from the analysis of various alternatives will lead to the checking of the aptitude of the STATCOM to maintain the voltage plan and to improve the power flow in electro-energetic system which is the east region of Algerian 400 kV transmission network. The steady state performance of STATCOM’s controller is analyzed through computer simulations with Matlab/Simulink program. The simulation results have demonstrated that STATCOM can be effectively applied in power transmission systems to solve the problems of poor dynamic performance and voltage regulation.Keywords: STATCOM, reactive power, power flow, voltage plan, Algerian network
Procedia PDF Downloads 56912748 STATCOM's Contribution to the Improvement of Voltage Plan and Power Flow in an Electrical Transmission Network
Authors: M. Adjabi, A. Amiar, P. O. Logerais
Abstract:
Flexible Alternative Current Systems Transmission (FACTS) are used since nearly four decades and present very good dynamic performances. The purpose of this work is to study the behavior of a system where Static Compensator (STATCOM) is located at the midpoint of a transmission line which is the idea of the project functioning in disturbed modes with various levels of load. The studied model and starting from the analysis of various alternatives will lead to the checking of the aptitude of the STATCOM to maintain the voltage plan and to improve the power flow in electro-energetic system which is the east region of Algerian 400 kV transmission network. The steady state performance of STATCOM’s controller is analyzed through computer simulations with Matlab/Simulink program. The simulation results have demonstrated that STATCOM can be effectively applied in power transmission systems to solve the problems of poor dynamic performance and voltage regulation.Keywords: STATCOM, reactive power, power flow, voltage plan, Algerian network
Procedia PDF Downloads 60012747 Wireless Sensor Anomaly Detection Using Soft Computing
Authors: Mouhammd Alkasassbeh, Alaa Lasasmeh
Abstract:
We live in an era of rapid development as a result of significant scientific growth. Like other technologies, wireless sensor networks (WSNs) are playing one of the main roles. Based on WSNs, ZigBee adds many features to devices, such as minimum cost and power consumption, and increasing the range and connect ability of sensor nodes. ZigBee technology has come to be used in various fields, including science, engineering, and networks, and even in medicinal aspects of intelligence building. In this work, we generated two main datasets, the first being based on tree topology and the second on star topology. The datasets were evaluated by three machine learning (ML) algorithms: J48, meta.j48 and multilayer perceptron (MLP). Each topology was classified into normal and abnormal (attack) network traffic. The dataset used in our work contained simulated data from network simulation 2 (NS2). In each database, the Bayesian network meta.j48 classifier achieved the highest accuracy level among other classifiers, of 99.7% and 99.2% respectively.Keywords: IDS, Machine learning, WSN, ZigBee technology
Procedia PDF Downloads 54312746 An ANN Approach for Detection and Localization of Fatigue Damage in Aircraft Structures
Authors: Reza Rezaeipour Honarmandzad
Abstract:
In this paper we propose an ANN for detection and localization of fatigue damage in aircraft structures. We used network of piezoelectric transducers for Lamb-wave measurements in order to calculate damage indices. Data gathered by the sensors was given to neural network classifier. A set of neural network electors of different architecture cooperates to achieve consensus concerning the state of each monitored path. Sensed signal variations in the ROI, detected by the networks at each path, were used to assess the state of the structure as well as to localize detected damage and to filter out ambient changes. The classifier has been extensively tested on large data sets acquired in the tests of specimens with artificially introduced notches as well as the results of numerous fatigue experiments. Effect of the classifier structure and test data used for training on the results was evaluated.Keywords: ANN, fatigue damage, aircraft structures, piezoelectric transducers, lamb-wave measurements
Procedia PDF Downloads 41712745 Using Geospatial Analysis to Reconstruct the Thunderstorm Climatology for the Washington DC Metropolitan Region
Authors: Mace Bentley, Zhuojun Duan, Tobias Gerken, Dudley Bonsal, Henry Way, Endre Szakal, Mia Pham, Hunter Donaldson, Chelsea Lang, Hayden Abbott, Leah Wilcynzski
Abstract:
Air pollution has the potential to modify the lifespan and intensity of thunderstorms and the properties of lightning. Using data mining and geovisualization, we investigate how background climate and weather conditions shape variability in urban air pollution and how this, in turn, shapes thunderstorms as measured by the intensity, distribution, and frequency of cloud-to-ground lightning. A spatiotemporal analysis was conducted in order to identify thunderstorms using high-resolution lightning detection network data. Over seven million lightning flashes were used to identify more than 196,000 thunderstorms that occurred between 2006 - 2020 in the Washington, DC Metropolitan Region. Each lightning flash in the dataset was grouped into thunderstorm events by means of a temporal and spatial clustering algorithm. Once the thunderstorm event database was constructed, hourly wind direction, wind speed, and atmospheric thermodynamic data were added to the initiation and dissipation times and locations for the 196,000 identified thunderstorms. Hourly aerosol and air quality data for the thunderstorm initiation times and locations were also incorporated into the dataset. Developing thunderstorm climatologies using a lightning tracking algorithm and lightning detection network data was found to be useful for visualizing the spatial and temporal distribution of urban augmented thunderstorms in the region.Keywords: lightning, urbanization, thunderstorms, climatology
Procedia PDF Downloads 7512744 Using Machine Learning to Build a Real-Time COVID-19 Mask Safety Monitor
Authors: Yash Jain
Abstract:
The US Center for Disease Control has recommended wearing masks to slow the spread of the virus. The research uses a video feed from a camera to conduct real-time classifications of whether or not a human is correctly wearing a mask, incorrectly wearing a mask, or not wearing a mask at all. Utilizing two distinct datasets from the open-source website Kaggle, a mask detection network had been trained. The first dataset that was used to train the model was titled 'Face Mask Detection' on Kaggle, where the dataset was retrieved from and the second dataset was titled 'Face Mask Dataset, which provided the data in a (YOLO Format)' so that the TinyYoloV3 model could be trained. Based on the data from Kaggle, two machine learning models were implemented and trained: a Tiny YoloV3 Real-time model and a two-stage neural network classifier. The two-stage neural network classifier had a first step of identifying distinct faces within the image, and the second step was a classifier to detect the state of the mask on the face and whether it was worn correctly, incorrectly, or no mask at all. The TinyYoloV3 was used for the live feed as well as for a comparison standpoint against the previous two-stage classifier and was trained using the darknet neural network framework. The two-stage classifier attained a mean average precision (MAP) of 80%, while the model trained using TinyYoloV3 real-time detection had a mean average precision (MAP) of 59%. Overall, both models were able to correctly classify stages/scenarios of no mask, mask, and incorrectly worn masks.Keywords: datasets, classifier, mask-detection, real-time, TinyYoloV3, two-stage neural network classifier
Procedia PDF Downloads 16212743 Detecting and Thwarting Interest Flooding Attack in Information Centric Network
Authors: Vimala Rani P, Narasimha Malikarjunan, Mercy Shalinie S
Abstract:
Data Networking was brought forth as an instantiation of information-centric networking. The attackers can send a colossal number of spoofs to take hold of the Pending Interest Table (PIT) named an Interest Flooding attack (IFA) since the in- interests are recorded in the PITs of the intermediate routers until they receive corresponding Data Packets are go beyond the time limit. These attacks can be detrimental to network performance. PIT expiration rate or the Interest satisfaction rate, which cannot differentiate the IFA from attacks, is the criterion Traditional IFA detection techniques are concerned with. Threshold values can casually affect Threshold-based traditional methods. This article proposes an accurate IFA detection mechanism based on a Multiple Feature-based Extreme Learning Machine (MF-ELM). Accuracy of the attack detection can be increased by presenting the entropy of Internet names, Interest satisfaction rate and PIT usage as features extracted in the MF-ELM classifier. Furthermore, we deploy a queue-based hostile Interest prefix mitigation mechanism. The inference of this real-time test bed is that the mechanism can help the network to resist IFA with higher accuracy and efficiency.Keywords: information-centric network, pending interest table, interest flooding attack, MF-ELM classifier, queue-based mitigation strategy
Procedia PDF Downloads 20512742 A Study on Relationships between Authenticity of Transactions, Quality of Relationships, and Transaction Performances
Authors: Chan Kwon Park, Chae-Bogk Kim, Sung-Min Park
Abstract:
This study is a research on the authenticity of transactions between corporations and quality of their relationships and transaction performances. As the factors of authenticity of transactions, honesty, transparency, customer orientation and consistency were selected; as the factors of quality of relationships, trust and commitment were selected, and as the factors of transactions performances, intention of repeat transactions and switching intention were selected, and on these relationships a hypothesis was established, and verification was conducted. First, the factors of the authenticity of transactions positively influenced the factors of quality of relationships. Thus, a higher level of authenticity of transactions can lead to higher level of trust and commitment. Second, the factors of quality of relationships made a positive influence on the intention of repeat transactions, while a negative influence in the switching intention. Third, it showed that trust and commitment as the factors of quality of relationships functioned partly as the parameter between the authenticity of transactions and transaction performances. Finally, it proved that the factors of the authenticity of transactions improved trust and commitment in transactions between corporations and further improved the intention of repeat transactions while they decreased the switching intention.Keywords: authenticity of transactions, trust, commitment, intention of repeat transactions, switching intention
Procedia PDF Downloads 373