Search results for: industrial wireless network (IWN)
6814 Replacing an Old PFN System with a Solid State Modulator without Changing the Klystron Transformer
Authors: Klas Elmquist, Anders Larsson
Abstract:
Until the year 2000, almost all short pulse modulators in the accelerator world were made with the pulse forming network (PFN) technique. The pulse forming network systems have since then been replaced with solid state modulators that have better efficiency, better stability, and lower cost of ownership, and they are much smaller. In this paper, it is shown that it is possible to replace a pulse forming network system with a solid-state system without changing the klystron tank and the klystron transformer. The solid-state modulator uses semiconductors switching at 1 kV level. A first pulse transformer transforms the voltage up to 10 kV. The 10 kV pulse is finally fed into the original transformer that is placed under the klystron. A flatness of 0.8 percent and stability of 100 PPM is achieved. The test is done with a CPI 8262 type of klystron. It is also shown that it is possible to run such a system with long cables between the transformers. When using this technique, it will be possible to keep original sub-systems like filament systems, vacuum systems, focusing solenoid systems, and cooling systems for the klystron. This will substantially reduce the cost of an upgrade and prolong the life of the klystron system.Keywords: modulator, solid-state, PFN-system, thyratron
Procedia PDF Downloads 1356813 Natural Gas Flow Optimization Using Pressure Profiling and Isolation Techniques
Authors: Syed Tahir Shah, Fazal Muhammad, Syed Kashif Shah, Maleeha Gul
Abstract:
In recent days, natural gas has become a relatively clean and quality source of energy, which is recovered from deep wells by expensive drilling activities. The recovered substance is purified by processing in multiple stages to remove the unwanted/containments like dust, dirt, crude oil and other particles. Mostly, gas utilities are concerned with essential objectives of quantity/quality of natural gas delivery, financial outcome and safe natural gas volumetric inventory in the transmission gas pipeline. Gas quantity and quality are primarily related to standards / advanced metering procedures in processing units/transmission systems, and the financial outcome is defined by purchasing and selling gas also the operational cost of the transmission pipeline. SNGPL (Sui Northern Gas Pipelines Limited) Pakistan has a wide range of diameters of natural gas transmission pipelines network of over 9125 km. This research results in answer a few of the issues in accuracy/metering procedures via multiple advanced gadgets for gas flow attributes after being utilized in the transmission system and research. The effects of good pressure management in transmission gas pipeline network in contemplation to boost the gas volume deposited in the existing network and finally curbing gas losses UFG (Unaccounted for gas) for financial benefits. Furthermore, depending on the results and their observation, it is directed to enhance the maximum allowable working/operating pressure (MAOP) of the system to 1235 PSIG from the current round about 900 PSIG, such that the capacity of the network could be entirely utilized. In gross, the results depict that the current model is very efficient and provides excellent results in the minimum possible time.Keywords: natural gas, pipeline network, UFG, transmission pack, AGA
Procedia PDF Downloads 956812 An Exploratory Sequential Design: A Mixed Methods Model for the Statistics Learning Assessment with a Bayesian Network Representation
Authors: Zhidong Zhang
Abstract:
This study established a mixed method model in assessing statistics learning with Bayesian network models. There are three variants in exploratory sequential designs. There are three linked steps in one of the designs: qualitative data collection and analysis, quantitative measure, instrument, intervention, and quantitative data collection analysis. The study used a scoring model of analysis of variance (ANOVA) as a content domain. The research study is to examine students’ learning in both semantic and performance aspects at fine grain level. The ANOVA score model, y = α+ βx1 + γx1+ ε, as a cognitive task to collect data during the student learning process. When the learning processes were decomposed into multiple steps in both semantic and performance aspects, a hierarchical Bayesian network was established. This is a theory-driven process. The hierarchical structure was gained based on qualitative cognitive analysis. The data from students’ ANOVA score model learning was used to give evidence to the hierarchical Bayesian network model from the evidential variables. Finally, the assessment results of students’ ANOVA score model learning were reported. Briefly, this was a mixed method research design applied to statistics learning assessment. The mixed methods designs expanded more possibilities for researchers to establish advanced quantitative models initially with a theory-driven qualitative mode.Keywords: exploratory sequential design, ANOVA score model, Bayesian network model, mixed methods research design, cognitive analysis
Procedia PDF Downloads 1846811 Tracing Back the Bot Master
Authors: Sneha Leslie
Abstract:
The current situation in the cyber world is that crimes performed by Botnets are increasing and the masterminds (botmaster) are not detectable easily. The botmaster in the botnet compromises the legitimate host machines in the network and make them bots or zombies to initiate the cyber-attacks. This paper will focus on the live detection of the botmaster in the network by using the strong framework 'metasploit', when distributed denial of service (DDOS) attack is performed by the botnet. The affected victim machine will be continuously monitoring its incoming packets. Once the victim machine gets to know about the excessive count of packets from any IP, that particular IP is noted and details of the noted systems are gathered. Using the vulnerabilities present in the zombie machines (already compromised by botmaster), the victim machine will compromise them. By gaining access to the compromised systems, applications are run remotely. By analyzing the incoming packets of the zombies, the victim comes to know the address of the botmaster. This is an effective and a simple system where no specific features of communication protocol are considered.Keywords: bonet, DDoS attack, network security, detection system, metasploit framework
Procedia PDF Downloads 2546810 Trend Detection Using Community Rank and Hawkes Process
Authors: Shashank Bhatnagar, W. Wilfred Godfrey
Abstract:
We develop in this paper, an approach to find the trendy topic, which not only considers the user-topic interaction but also considers the community, in which user belongs. This method modifies the previous approach of user-topic interaction to user-community-topic interaction with better speed-up in the range of [1.1-3]. We assume that trend detection in a social network is dependent on two things. The one is, broadcast of messages in social network governed by self-exciting point process, namely called Hawkes process and the second is, Community Rank. The influencer node links to others in the community and decides the community rank based on its PageRank and the number of users links to that community. The community rank decides the influence of one community over the other. Hence, the Hawkes process with the kernel of user-community-topic decides the trendy topic disseminated into the social network.Keywords: community detection, community rank, Hawkes process, influencer node, pagerank, trend detection
Procedia PDF Downloads 3856809 Off-Policy Q-learning Technique for Intrusion Response in Network Security
Authors: Zheni S. Stefanova, Kandethody M. Ramachandran
Abstract:
With the increasing dependency on our computer devices, we face the necessity of adequate, efficient and effective mechanisms, for protecting our network. There are two main problems that Intrusion Detection Systems (IDS) attempt to solve. 1) To detect the attack, by analyzing the incoming traffic and inspect the network (intrusion detection). 2) To produce a prompt response when the attack occurs (intrusion prevention). It is critical creating an Intrusion detection model that will detect a breach in the system on time and also challenging making it provide an automatic and with an acceptable delay response at every single stage of the monitoring process. We cannot afford to adopt security measures with a high exploiting computational power, and we are not able to accept a mechanism that will react with a delay. In this paper, we will propose an intrusion response mechanism that is based on artificial intelligence, and more precisely, reinforcement learning techniques (RLT). The RLT will help us to create a decision agent, who will control the process of interacting with the undetermined environment. The goal is to find an optimal policy, which will represent the intrusion response, therefore, to solve the Reinforcement learning problem, using a Q-learning approach. Our agent will produce an optimal immediate response, in the process of evaluating the network traffic.This Q-learning approach will establish the balance between exploration and exploitation and provide a unique, self-learning and strategic artificial intelligence response mechanism for IDS.Keywords: cyber security, intrusion prevention, optimal policy, Q-learning
Procedia PDF Downloads 2396808 “Post-Industrial” Journalism as a Creative Industry
Authors: Lynette Sheridan Burns, Benjamin J. Matthews
Abstract:
The context of post-industrial journalism is one in which the material circumstances of mechanical publication have been displaced by digital technologies, increasing the distance between the orthodoxy of the newsroom and the culture of journalistic writing. Content is, with growing frequency, created for delivery via the internet, publication on web-based ‘platforms’ and consumption on screen media. In this environment, the question is not ‘who is a journalist?’ but ‘what is journalism?’ today. The changes bring into sharp relief new distinctions between journalistic work and journalistic labor, providing a key insight into the current transition between the industrial journalism of the 20th century, and the post-industrial journalism of the present. In the 20th century, the work of journalists and journalistic labor went hand-in-hand as most journalists were employees of news organizations, whilst in the 21st century evidence of a decoupling of ‘acts of journalism’ (work) and journalistic employment (labor) is beginning to appear. This 'decoupling' of the work and labor that underpins journalism practice is far reaching in its implications, not least for institutional structures. Under these conditions we are witnessing the emergence of expanded ‘entrepreneurial’ journalism, based on smaller, more independent and agile - if less stable - enterprise constructs that are a feature of creative industries. Entrepreneurial journalism is realized in a range of organizational forms from social enterprise, through to profit driven start-ups and hybrids of the two. In all instances, however, the primary motif of the organization is an ideological definition of journalism. An example is the Scoop Foundation for Public Interest Journalism in New Zealand, which owns and operates Scoop Publishing Limited, a not for profit company and social enterprise that publishes an independent news site that claims to have over 500,000 monthly users. Our paper demonstrates that this journalistic work meets the ideological definition of journalism; conducted within the creative industries using an innovative organizational structure that offers a new, viable post-industrial future for journalism.Keywords: creative industries, digital communication, journalism, post industrial
Procedia PDF Downloads 2816807 Prediction of Unsteady Heat Transfer over Square Cylinder in the Presence of Nanofluid by Using ANN
Authors: Ajoy Kumar Das, Prasenjit Dey
Abstract:
Heat transfer due to forced convection of copper water based nanofluid has been predicted by Artificial Neural network (ANN). The present nanofluid is formed by mixing copper nano particles in water and the volume fractions are considered here are 0% to 15% and the Reynolds number are kept constant at 100. The back propagation algorithm is used to train the network. The present ANN is trained by the input and output data which has been obtained from the numerical simulation, performed in finite volume based Computational Fluid Dynamics (CFD) commercial software Ansys Fluent. The numerical simulation based results are compared with the back propagation based ANN results. It is found that the forced convection heat transfer of water based nanofluid can be predicted correctly by ANN. It is also observed that the back propagation ANN can predict the heat transfer characteristics of nanofluid very quickly compared to standard CFD method.Keywords: forced convection, square cylinder, nanofluid, neural network
Procedia PDF Downloads 3216806 Would Intra-Individual Variability in Attention to Be the Indicator of Impending the Senior Adults at Risk of Cognitive Decline: Evidence from Attention Network Test(ANT)
Authors: Hanna Lu, Sandra S. M. Chan, Linda C. W. Lam
Abstract:
Objectives: Intra-individual variability (IIV) has been considered as a biomarker of healthy ageing. However, the composite role of IIV in attention, as an impending indicator for neurocognitive disorders warrants further exploration. This study aims to investigate the IIV, as well as their relationships with attention network functions in adults with neurocognitive disorders (NCD). Methods: 36adults with NCD due to Alzheimer’s disease(NCD-AD), 31adults with NCD due to vascular disease (NCD-vascular), and 137 healthy controls were recruited. Intraindividual standard deviations (iSD) and intraindividual coefficient of variation of reaction time (ICV-RT) were used to evaluate the IIV. Results: NCD groups showed greater IIV (iSD: F= 11.803, p < 0.001; ICV-RT:F= 9.07, p < 0.001). In ROC analyses, the indices of IIV could differentiateNCD-AD (iSD: AUC value = 0.687, p= 0.001; ICV-RT: AUC value = 0.677, p= 0.001) and NCD-vascular (iSD: AUC value = 0.631, p= 0.023;ICV-RT: AUC value = 0.615, p= 0.045) from healthy controls. Moreover, the processing speed could distinguish NCD-AD from NCD-vascular (AUC value = 0.647, p= 0.040). Discussion: Intra-individual variability in attention provides a stable measure of cognitive performance, and seems to help distinguish the senior adults with different cognitive status.Keywords: intra-individual variability, attention network, neurocognitive disorders, ageing
Procedia PDF Downloads 4766805 A Low-Power Two-Stage Seismic Sensor Scheme for Earthquake Early Warning System
Authors: Arvind Srivastav, Tarun Kanti Bhattacharyya
Abstract:
The north-eastern, Himalayan, and Eastern Ghats Belt of India comprise of earthquake-prone, remote, and hilly terrains. Earthquakes have caused enormous damages in these regions in the past. A wireless sensor network based earthquake early warning system (EEWS) is being developed to mitigate the damages caused by earthquakes. It consists of sensor nodes, distributed over the region, that perform majority voting of the output of the seismic sensors in the vicinity, and relay a message to a base station to alert the residents when an earthquake is detected. At the heart of the EEWS is a low-power two-stage seismic sensor that continuously tracks seismic events from incoming three-axis accelerometer signal at the first-stage, and, in the presence of a seismic event, triggers the second-stage P-wave detector that detects the onset of P-wave in an earthquake event. The parameters of the P-wave detector have been optimized for minimizing detection time and maximizing the accuracy of detection.Working of the sensor scheme has been verified with seven earthquakes data retrieved from IRIS. In all test cases, the scheme detected the onset of P-wave accurately. Also, it has been established that the P-wave onset detection time reduces linearly with the sampling rate. It has been verified with test data; the detection time for data sampled at 10Hz was around 2 seconds which reduced to 0.3 second for the data sampled at 100Hz.Keywords: earthquake early warning system, EEWS, STA/LTA, polarization, wavelet, event detector, P-wave detector
Procedia PDF Downloads 1776804 A Neurosymbolic Learning Method for Uplink LTE-A Channel Estimation
Authors: Lassaad Smirani
Abstract:
In this paper we propose a Neurosymbolic Learning System (NLS) as a channel estimator for Long Term Evolution Advanced (LTE-A) uplink. The proposed system main idea based on Neural Network has modules capable of performing bidirectional information transfer between symbolic module and connectionist module. We demonstrate various strengths of the NLS especially the ability to integrate theoretical knowledge (rules) and experiential knowledge (examples), and to make an initial knowledge base (rules) converted into a connectionist network. Also to use empirical knowledge witch by learning will have the ability to revise the theoretical knowledge and acquire new one and explain it, and finally the ability to improve the performance of symbolic or connectionist systems. Compared with conventional SC-FDMA channel estimation systems, The performance of NLS in terms of complexity and quality is confirmed by theoretical analysis and simulation and shows that this system can make the channel estimation accuracy improved and bit error rate decreased.Keywords: channel estimation, SC-FDMA, neural network, hybrid system, BER, LTE-A
Procedia PDF Downloads 3946803 Procedure Model for Data-Driven Decision Support Regarding the Integration of Renewable Energies into Industrial Energy Management
Authors: M. Graus, K. Westhoff, X. Xu
Abstract:
The climate change causes a change in all aspects of society. While the expansion of renewable energies proceeds, industry could not be convinced based on general studies about the potential of demand side management to reinforce smart grid considerations in their operational business. In this article, a procedure model for a case-specific data-driven decision support for industrial energy management based on a holistic data analytics approach is presented. The model is executed on the example of the strategic decision problem, to integrate the aspect of renewable energies into industrial energy management. This question is induced due to considerations of changing the electricity contract model from a standard rate to volatile energy prices corresponding to the energy spot market which is increasingly more affected by renewable energies. The procedure model corresponds to a data analytics process consisting on a data model, analysis, simulation and optimization step. This procedure will help to quantify the potentials of sustainable production concepts based on the data from a factory. The model is validated with data from a printer in analogy to a simple production machine. The overall goal is to establish smart grid principles for industry via the transformation from knowledge-driven to data-driven decisions within manufacturing companies.Keywords: data analytics, green production, industrial energy management, optimization, renewable energies, simulation
Procedia PDF Downloads 4366802 Emotion Detection in Twitter Messages Using Combination of Long Short-Term Memory and Convolutional Deep Neural Networks
Authors: Bahareh Golchin, Nooshin Riahi
Abstract:
One of the most significant issues as attended a lot in recent years is that of recognizing the sentiments and emotions in social media texts. The analysis of sentiments and emotions is intended to recognize the conceptual information such as the opinions, feelings, attitudes and emotions of people towards the products, services, organizations, people, topics, events and features in the written text. These indicate the greatness of the problem space. In the real world, businesses and organizations are always looking for tools to gather ideas, emotions, and directions of people about their products, services, or events related to their own. This article uses the Twitter social network, one of the most popular social networks with about 420 million active users, to extract data. Using this social network, users can share their information and opinions about personal issues, policies, products, events, etc. It can be used with appropriate classification of emotional states due to the availability of its data. In this study, supervised learning and deep neural network algorithms are used to classify the emotional states of Twitter users. The use of deep learning methods to increase the learning capacity of the model is an advantage due to the large amount of available data. Tweets collected on various topics are classified into four classes using a combination of two Bidirectional Long Short Term Memory network and a Convolutional network. The results obtained from this study with an average accuracy of 93%, show good results extracted from the proposed framework and improved accuracy compared to previous work.Keywords: emotion classification, sentiment analysis, social networks, deep neural networks
Procedia PDF Downloads 1396801 Intelligent Cooperative Integrated System for Road Safety and Road Infrastructure Maintenance
Authors: Panagiotis Gkekas, Christos Sougles, Dionysios Kehagias, Dimitrios Tzovaras
Abstract:
This paper presents the architecture of the “Intelligent cooperative integrated system for road safety and road infrastructure maintenance towards 2020” (ODOS2020) advanced infrastructure, which implements a number of cooperative ITS applications based on Internet of Things and Infrastructure-to-Vehicle (V2I) technologies with the purpose to enhance the active road safety level of vehicles through the provision of a fully automated V2I environment. The primary objective of the ODOS2020 project is to contribute to increased road safety but also to the optimization of time for maintenance of road infrastructure. The integrated technological solution presented in this paper addresses all types of vehicles and requires minimum vehicle equipment. Thus, the ODOS2020 comprises a low-cost solution, which is one of its main benefits. The system architecture includes an integrated notification system to transmit personalized information on road, traffic, and environmental conditions, in order for the drivers to receive real-time and reliable alerts concerning upcoming critical situations. The latter include potential dangers on the road, such as obstacles or road works ahead, extreme environmental conditions, etc., but also informative messages, such as information on upcoming tolls and their charging policies. At the core of the system architecture lies an integrated sensorial network embedded in special road infrastructures (strips) that constantly collect and transmit wirelessly information about passing vehicles’ identification, type, speed, moving direction and other traffic information in combination with environmental conditions and road wear monitoring and predictive maintenance data. Data collected from sensors is transmitted by roadside infrastructure, which supports a variety of communication technologies such as ITS-G5 (IEEE-802.11p) wireless network and Internet connectivity through cellular networks (3G, LTE). All information could be forwarded to both vehicles and Traffic Management Centers (TMC) operators, either directly through the ITS-G5 network, or to smart devices with Internet connectivity, through cloud-based services. Therefore, through its functionality, the system could send personalized notifications/information/warnings and recommendations for upcoming events to both road users and TMC operators. In the course of the ODOS2020 project pilot operation has been conducted to allow drivers of both C-ITS equipped and non-equipped vehicles to experience the provided added value services. For non-equipped vehicles, the provided information is transmitted to a smartphone application. Finally, the ODOS2020 system and infrastructure is appropriate for installation on both urban, rural, and highway environments. The paper presents the various parts of the system architecture and concludes by outlining the various challenges that had to be overcome during its design, development, and deployment in a real operational environment. Acknowledgments: Work presented in this paper was co-financed by the European Regional Development Fund of the European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship and Innovation (call RESEARCH–CREATE–INNOVATE) under contract no. Τ1EDK-03081 (project ODOS2020).Keywords: infrastructure to vehicle, intelligent transportation systems, internet of things, road safety
Procedia PDF Downloads 1256800 Neural Network Based Decision Trees Using Machine Learning for Alzheimer's Diagnosis
Authors: P. S. Jagadeesh Kumar, Tracy Lin Huan, S. Meenakshi Sundaram
Abstract:
Alzheimer’s disease is one of the prevalent kind of ailment, expected for impudent reconciliation or an effectual therapy is to be accredited hitherto. Probable detonation of patients in the upcoming years, and consequently an enormous deal of apprehension in early discovery of the disorder, this will conceivably chaperon to enhanced healing outcomes. Complex impetuosity of the brain is an observant symbolic of the disease and a unique recognition of genetic sign of the disease. Machine learning alongside deep learning and decision tree reinforces the aptitude to absorb characteristics from multi-dimensional data’s and thus simplifies automatic classification of Alzheimer’s disease. Susceptible testing was prophesied and realized in training the prospect of Alzheimer’s disease classification built on machine learning advances. It was shrewd that the decision trees trained with deep neural network fashioned the excellent results parallel to related pattern classification.Keywords: Alzheimer's diagnosis, decision trees, deep neural network, machine learning, pattern classification
Procedia PDF Downloads 2986799 Dynamic Cellular Remanufacturing System (DCRS) Design
Authors: Tariq Aljuneidi, Akif Asil Bulgak
Abstract:
Remanufacturing may be defined as the process of bringing used products to “like-new” functional state with warranty to match, and it is one of the most popular product end-of-life scenarios. An efficient remanufacturing network lead to an efficient design of sustainable manufacturing enterprise. In remanufacturing network, products are collected from the customer zone, disassembled and remanufactured at a suitable remanufacturing facility. In this respect, another issue to consider is how the returned product to be remanufactured, in other words, what is the best layout for such facility. In order to achieve a sustainable manufacturing system, Cellular Manufacturing System (CMS) designs are highly recommended, CMSs combine high throughput rates of line layouts with the flexibility offered by functional layouts (job shop). Introducing the CMS while designing a remanufacturing network will benefit the utilization of such a network. This paper presents and analyzes a comprehensive mathematical model for the design of Dynamic Cellular Remanufacturing Systems (DCRSs). In this paper, the proposed model is the first one to date that consider CMS and remanufacturing system simultaneously. The proposed DCRS model considers several manufacturing attributes such as multi-period production planning, dynamic system reconfiguration, duplicate machines, machine capacity, available time for workers, worker assignments, and machine procurement, where the demand is totally satisfied from a returned product. A numerical example is presented to illustrate the proposed model.Keywords: cellular manufacturing system, remanufacturing, mathematical programming, sustainability
Procedia PDF Downloads 3796798 Router 1X3 - RTL Design and Verification
Authors: Nidhi Gopal
Abstract:
Routing is the process of moving a packet of data from source to destination and enables messages to pass from one computer to another and eventually reach the target machine. A router is a networking device that forwards data packets between computer networks. It is connected to two or more data lines from different networks (as opposed to a network switch, which connects data lines from one single network). This paper mainly emphasizes upon the study of router device, its top level architecture, and how various sub-modules of router i.e. Register, FIFO, FSM and Synchronizer are synthesized, and simulated and finally connected to its top module.Keywords: data packets, networking, router, routing
Procedia PDF Downloads 8156797 Social Media, Networks and Related Technology: Business and Governance Perspectives
Authors: M. A. T. AlSudairi, T. G. K. Vasista
Abstract:
The concept of social media is becoming the top of the agenda for many business executives and public sector executives today. Decision makers as well as consultants, try to identify ways in which firms and enterprises can make profitable use of social media and network related applications such as Wikipedia, Face book, YouTube, Google+, Twitter. While it is fun and useful to participating in this media and network for achieving the communication effectively and efficiently, semantic and sentiment analysis and interpretation becomes a crucial issue. So, the objective of this paper is to provide literature review on social media, network and related technology related to semantics and sentiment or opinion analysis covering business and governance perspectives. In this regard, a case study on the use and adoption of Social media in Saudi Arabia has been discussed. It is concluded that semantic web technology play a significant role in analyzing the social networks and social media content for extracting the interpretational knowledge towards strategic decision support.Keywords: CRASP methodology, formative assessment, literature review, semantic web services, social media, social networks
Procedia PDF Downloads 4526796 Selecting a Foreign Country to Build a Naval Base Using a Fuzzy Hybrid Decision Support System
Authors: Latif Yanar, Muammer Kaçan
Abstract:
Decision support systems are getting more important in many fields of science and technology and used effectively especially when the problems to be solved are complicated with many criteria. In this kind of problems one of the main challenges for the decision makers are that sometimes they cannot produce a countable data for evaluating the criteria but the knowledge and sense of experts. In recent years, fuzzy set theory and fuzzy logic based decision models gaining more place in literature. In this study, a decision support model to determine a country to build naval base is proposed and the application of the model is performed, considering Turkish Navy by the evaluations of Turkish Navy officers and academicians of international relations departments of various Universities located in Istanbul. The results achieved from the evaluations made by the experts in our model are calculated by a decision support tool named DESTEC 1.0, which is developed by the authors using C Sharp programming language. The tool gives advices to the decision maker using Analytic Hierarchy Process, Analytic Network Process, Fuzzy Analytic Hierarchy Process and Fuzzy Analytic Network Process all at once. The calculated results for five foreign countries are shown in the conclusion.Keywords: decision support system, analytic hierarchy process, fuzzy analytic hierarchy process, analytic network process, fuzzy analytic network process, naval base, country selection, international relations
Procedia PDF Downloads 5936795 The Fundamental Research and Industrial Application on CO₂+O₂ in-situ Leaching Process in China
Authors: Lixin Zhao, Genmao Zhou
Abstract:
Traditional acid in-situ leaching (ISL) is not suitable for the sandstone uranium deposit with low permeability and high content of carbonate minerals, because of the blocking of calcium sulfate precipitates. Another factor influences the uranium acid in-situ leaching is that the pyrite in ore rocks will react with oxidation reagent and produce lots of sulfate ions which may speed up the precipitation process of calcium sulphate and consume lots of oxidation reagent. Due to the advantages such as less chemical reagent consumption and groundwater pollution, CO₂+O₂ in-situ leaching method has become one of the important research areas in uranium mining. China is the second country where CO₂+O₂ ISL has been adopted in industrial uranium production of the world. It is shown that the CO₂+O₂ ISL in China has been successfully developed. The reaction principle, technical process, well field design and drilling engineering, uranium-bearing solution processing, etc. have been fully studied. At current stage, several uranium mines use CO₂+O₂ ISL method to extract uranium from the ore-bearing aquifers. The industrial application and development potential of CO₂+O₂ ISL method in China are summarized. By using CO₂+O₂ neutral leaching technology, the problem of calcium carbonate and calcium sulfate precipitation have been solved during uranium mining. By reasonably regulating the amount of CO₂ and O₂, related ions and hydro-chemical conditions can be controlled within the limited extent for avoiding the occurrence of calcium sulfate and calcium carbonate precipitation. Based on this premise, the demand of CO₂+O₂ uranium leaching has been met to the maximum extent, which not only realizes the effective leaching of uranium, but also avoids the occurrence and precipitation of calcium carbonate and calcium sulfate, realizing the industrial development of the sandstone type uranium deposit.Keywords: CO₂+O₂ ISL, industrial production, well field layout, uranium processing
Procedia PDF Downloads 1776794 Tabu Search to Draw Evacuation Plans in Emergency Situations
Authors: S. Nasri, H. Bouziri
Abstract:
Disasters are quite experienced in our days. They are caused by floods, landslides, and building fires that is the main objective of this study. To cope with these unexpected events, precautions must be taken to protect human lives. The emphasis on disposal work focuses on the resolution of the evacuation problem in case of no-notice disaster. The problem of evacuation is listed as a dynamic network flow problem. Particularly, we model the evacuation problem as an earliest arrival flow problem with load dependent transit time. This problem is classified as NP-Hard. Our challenge here is to propose a metaheuristic solution for solving the evacuation problem. We define our objective as the maximization of evacuees during earliest periods of a time horizon T. The objective provides the evacuation of persons as soon as possible. We performed an experimental study on emergency evacuation from the tunisian children’s hospital. This work prompts us to look for evacuation plans corresponding to several situations where the network dynamically changes.Keywords: dynamic network flow, load dependent transit time, evacuation strategy, earliest arrival flow problem, tabu search metaheuristic
Procedia PDF Downloads 3726793 Centrality and Patent Impact: Coupled Network Analysis of Artificial Intelligence Patents Based on Co-Cited Scientific Papers
Authors: Xingyu Gao, Qiang Wu, Yuanyuan Liu, Yue Yang
Abstract:
In the era of the knowledge economy, the relationship between scientific knowledge and patents has garnered significant attention. Understanding the intricate interplay between the foundations of science and technological innovation has emerged as a pivotal challenge for both researchers and policymakers. This study establishes a coupled network of artificial intelligence patents based on co-cited scientific papers. Leveraging centrality metrics from network analysis offers a fresh perspective on understanding the influence of information flow and knowledge sharing within the network on patent impact. The study initially obtained patent numbers for 446,890 granted US AI patents from the United States Patent and Trademark Office’s artificial intelligence patent database for the years 2002-2020. Subsequently, specific information regarding these patents was acquired using the Lens patent retrieval platform. Additionally, a search and deduplication process was performed on scientific non-patent references (SNPRs) using the Web of Science database, resulting in the selection of 184,603 patents that cited 37,467 unique SNPRs. Finally, this study constructs a coupled network comprising 59,379 artificial intelligence patents by utilizing scientific papers co-cited in patent backward citations. In this network, nodes represent patents, and if patents reference the same scientific papers, connections are established between them, serving as edges within the network. Nodes and edges collectively constitute the patent coupling network. Structural characteristics such as node degree centrality, betweenness centrality, and closeness centrality are employed to assess the scientific connections between patents, while citation count is utilized as a quantitative metric for patent influence. Finally, a negative binomial model is employed to test the nonlinear relationship between these network structural features and patent influence. The research findings indicate that network structural features such as node degree centrality, betweenness centrality, and closeness centrality exhibit inverted U-shaped relationships with patent influence. Specifically, as these centrality metrics increase, patent influence initially shows an upward trend, but once these features reach a certain threshold, patent influence starts to decline. This discovery suggests that moderate network centrality is beneficial for enhancing patent influence, while excessively high centrality may have a detrimental effect on patent influence. This finding offers crucial insights for policymakers, emphasizing the importance of encouraging moderate knowledge flow and sharing to promote innovation when formulating technology policies. It suggests that in certain situations, data sharing and integration can contribute to innovation. Consequently, policymakers can take measures to promote data-sharing policies, such as open data initiatives, to facilitate the flow of knowledge and the generation of innovation. Additionally, governments and relevant agencies can achieve broader knowledge dissemination by supporting collaborative research projects, adjusting intellectual property policies to enhance flexibility, or nurturing technology entrepreneurship ecosystems.Keywords: centrality, patent coupling network, patent influence, social network analysis
Procedia PDF Downloads 546792 Cluster Based Ant Colony Routing Algorithm for Mobile Ad-Hoc Networks
Authors: Alaa Eddien Abdallah, Bajes Yousef Alskarnah
Abstract:
Ant colony based routing algorithms are known to grantee the packet delivery, but they suffer from the huge overhead of control messages which are needed to discover the route. In this paper we utilize the network nodes positions to group the nodes in connected clusters. We use clusters-heads only on forwarding the route discovery control messages. Our simulations proved that the new algorithm has decreased the overhead dramatically without affecting the delivery rate.Keywords: ad-hoc network, MANET, ant colony routing, position based routing
Procedia PDF Downloads 4266791 Characteristics of Business Models of Industrial-Internet-of-Things Platforms
Authors: Peter Kress, Alexander Pflaum, Ulrich Loewen
Abstract:
The number of Internet-of-Things (IoT) platforms is steadily increasing across various industries, especially for smart factories, smart homes and smart mobility. Also in the manufacturing industry, the number of Industrial-IoT platforms is growing. Both IT players, start-ups and increasingly also established industry players and small-and-medium-enterprises introduce offerings for the connection of industrial equipment on platforms, enabled by advanced information and communication technology. Beside the offered functionalities, the established ecosystem of partners around a platform is one of the key differentiators to generate a competitive advantage. The key question is how platform operators design the business model around their platform to attract a high number of customers and partners to co-create value for the entire ecosystem. The present research tries to answer this question by determining the key characteristics of business models of successful platforms in the manufacturing industry. To achieve that, the authors selected an explorative qualitative research approach and created an inductive comparative case study. The authors generated valuable descriptive insights of the business model elements (e.g., value proposition, pricing model or partnering model) of various established platforms. Furthermore, patterns across the various cases were identified to derive propositions for the successful design of business models of platforms in the manufacturing industry.Keywords: industrial-internet-of-things, business models, platforms, ecosystems, case study
Procedia PDF Downloads 2446790 Three-Stage Least Squared Models of a Station-Level Subway Ridership: Incorporating an Analysis on Integrated Transit Network Topology Measures
Authors: Jungyeol Hong, Dongjoo Park
Abstract:
The urban transit system is a critical part of a solution to the economic, energy, and environmental challenges. Furthermore, it ultimately contributes the improvement of people’s quality of lives. For taking these kinds of advantages, the city of Seoul has tried to construct an integrated transit system including both subway and buses. The effort led to the fact that approximately 6.9 million citizens use the integrated transit system every day for their trips. Diagnosing the current transit network is a significant task to provide more convenient and pleasant transit environment. Therefore, the critical objective of this study is to establish a methodological framework for the analysis of an integrated bus-subway network and to examine the relationship between subway ridership and parameters such as network topology measures, bus demand, and a variety of commercial business facilities. Regarding a statistical approach to estimate subway ridership at a station level, many previous studies relied on Ordinary Least Square regression, but there was lack of studies considering the endogeneity issues which might show in the subway ridership prediction model. This study focused on both discovering the impacts of integrated transit network topology measures and endogenous effect of bus demand on subway ridership. It could ultimately contribute to developing more accurate subway ridership estimation accounting for its statistical bias. The spatial scope of the study covers Seoul city in South Korea, and it includes 243 subway stations and 10,120 bus stops with the temporal scope set during twenty-four hours with one-hour interval time panels each. The subway and bus ridership information in detail was collected from the Seoul Smart Card data in 2015 and 2016. First, integrated subway-bus network topology measures which have characteristics regarding connectivity, centrality, transitivity, and reciprocity were estimated based on the complex network theory. The results of integrated transit network topology analysis were compared to subway-only network topology. Also, the non-recursive approach which is Three-Stage Least Square was applied to develop the daily subway ridership model as capturing the endogeneity between bus and subway demands. Independent variables included roadway geometry, commercial business characteristics, social-economic characteristics, safety index, transit facility attributes, and dummies for seasons and time zone. Consequently, it was found that network topology measures were significant size effect. Especially, centrality measures showed that the elasticity was a change of 4.88% for closeness centrality, 24.48% for betweenness centrality while the elasticity of bus ridership was 8.85%. Moreover, it was proved that bus demand and subway ridership were endogenous in a non-recursive manner as showing that predicted bus ridership and predicted subway ridership is statistically significant in OLS regression models. Therefore, it shows that three-stage least square model appears to be a plausible model for efficient subway ridership estimation. It is expected that the proposed approach provides a reliable guideline that can be used as part of the spectrum of tools for evaluating a city-wide integrated transit network.Keywords: integrated transit system, network topology measures, three-stage least squared, endogeneity, subway ridership
Procedia PDF Downloads 1796789 String as a Design Element: The Work of Students for International Architecture Biennale, Antalya and Lohberg Coal Mine, Germany
Authors: Ayşe Duygu Kaçar
Abstract:
Industrial regions and buildings that have stopped their primary functions are in the interest of the discipline of architecture in the last decades. The renewal of these spaces of production for different functions is a common aspect for contemporary world countries. Totally different functions can be added to the existing as well, which can help improving the social, cultural and aesthetic character of these beings and sustaining their uniqueness. Therefore, these sites linking the past and future can be used as museums, exhibition centers, art ateliers, city parks, recreational centers, botanic gardens, sculpture parks, theatres, etc. in order to continue their place in the collective memory of the cities. The present paper depicts a way of shedding light on the Cotton Textile Industry (İplik ve Dokuma Fabrikası A.Ş), a local industrial site in Antalya, the most popular tourism center of Turkey, as a part of International Architecture Biennale, 2011 and on Lohberg coal mine, a local industrial site in the Ruhr region of Germany. As a transparent, fragile, temporary and economical material, the string was used as a design element in both experiential architecture works with architecture students and the outcomes will be discussed and presented through the theme 'rejecting / reversing architecture'.Keywords: industrial sites, the Cotton Textile Industry Antalya, Lohberg coal mine, architectural design, identity
Procedia PDF Downloads 3106788 Innovating Electronics Engineering for Smart Materials Marketing
Authors: Muhammad Awais Kiani
Abstract:
The field of electronics engineering plays a vital role in the marketing of smart materials. Smart materials are innovative, adaptive materials that can respond to external stimuli, such as temperature, light, or pressure, in order to enhance performance or functionality. As the demand for smart materials continues to grow, it is crucial to understand how electronics engineering can contribute to their marketing strategies. This abstract presents an overview of the role of electronics engineering in the marketing of smart materials. It explores the various ways in which electronics engineering enables the development and integration of smart features within materials, enhancing their marketability. Firstly, electronics engineering facilitates the design and development of sensing and actuating systems for smart materials. These systems enable the detection and response to external stimuli, providing valuable data and feedback to users. By integrating sensors and actuators into materials, their functionality and performance can be significantly enhanced, making them more appealing to potential customers. Secondly, electronics engineering enables the creation of smart materials with wireless communication capabilities. By incorporating wireless technologies such as Bluetooth or Wi-Fi, smart materials can seamlessly interact with other devices, providing real-time data and enabling remote control and monitoring. This connectivity enhances the marketability of smart materials by offering convenience, efficiency, and improved user experience. Furthermore, electronics engineering plays a crucial role in power management for smart materials. Implementing energy-efficient systems and power harvesting techniques ensures that smart materials can operate autonomously for extended periods. This aspect not only increases their market appeal but also reduces the need for constant maintenance or battery replacements, thus enhancing customer satisfaction. Lastly, electronics engineering contributes to the marketing of smart materials through innovative user interfaces and intuitive control mechanisms. By designing user-friendly interfaces and integrating advanced control systems, smart materials become more accessible to a broader range of users. Clear and intuitive controls enhance the user experience and encourage wider adoption of smart materials in various industries. In conclusion, electronics engineering significantly influences the marketing of smart materials by enabling the design of sensing and actuating systems, wireless connectivity, efficient power management, and user-friendly interfaces. The integration of electronics engineering principles enhances the functionality, performance, and marketability of smart materials, making them more adaptable to the growing demand for innovative and connected materials in diverse industries.Keywords: electronics engineering, smart materials, marketing, power management
Procedia PDF Downloads 596787 A Three-modal Authentication Method for Industrial Robots
Authors: Luo Jiaoyang, Yu Hongyang
Abstract:
In this paper, we explore a method that can be used in the working scene of intelligent industrial robots to confirm the identity information of operators to ensure that the robot executes instructions in a sufficiently safe environment. This approach uses three information modalities, namely visible light, depth, and sound. We explored a variety of fusion modes for the three modalities and finally used the joint feature learning method to improve the performance of the model in the case of noise compared with the single-modal case, making the maximum noise in the experiment. It can also maintain an accuracy rate of more than 90%.Keywords: multimodal, kinect, machine learning, distance image
Procedia PDF Downloads 796786 Coupling Random Demand and Route Selection in the Transportation Network Design Problem
Authors: Shabnam Najafi, Metin Turkay
Abstract:
Network design problem (NDP) is used to determine the set of optimal values for certain pre-specified decision variables such as capacity expansion of nodes and links by optimizing various system performance measures including safety, congestion, and accessibility. The designed transportation network should improve objective functions defined for the system by considering the route choice behaviors of network users at the same time. The NDP studies mostly investigated the random demand and route selection constraints separately due to computational challenges. In this work, we consider both random demand and route selection constraints simultaneously. This work presents a nonlinear stochastic model for land use and road network design problem to address the development of different functional zones in urban areas by considering both cost function and air pollution. This model minimizes cost function and air pollution simultaneously with random demand and stochastic route selection constraint that aims to optimize network performance via road capacity expansion. The Bureau of Public Roads (BPR) link impedance function is used to determine the travel time function in each link. We consider a city with origin and destination nodes which can be residential or employment or both. There are set of existing paths between origin-destination (O-D) pairs. Case of increasing employed population is analyzed to determine amount of roads and origin zones simultaneously. Minimizing travel and expansion cost of routes and origin zones in one side and minimizing CO emission in the other side is considered in this analysis at the same time. In this work demand between O-D pairs is random and also the network flow pattern is subject to stochastic user equilibrium, specifically logit route choice model. Considering both demand and route choice, random is more applicable to design urban network programs. Epsilon-constraint is one of the methods to solve both linear and nonlinear multi-objective problems. In this work epsilon-constraint method is used to solve the problem. The problem was solved by keeping first objective (cost function) as the objective function of the problem and second objective as a constraint that should be less than an epsilon, where epsilon is an upper bound of the emission function. The value of epsilon should change from the worst to the best value of the emission function to generate the family of solutions representing Pareto set. A numerical example with 2 origin zones and 2 destination zones and 7 links is solved by GAMS and the set of Pareto points is obtained. There are 15 efficient solutions. According to these solutions as cost function value increases, emission function value decreases and vice versa.Keywords: epsilon-constraint, multi-objective, network design, stochastic
Procedia PDF Downloads 6486785 Evolution of Approaches to Cost Calculation in the Conditions of the Modern Russian Economy
Authors: Elena Tkachenko, Vladimir Kokh, Alina Osipenko, Vladislav Surkov
Abstract:
The modern period of development of Russian economy is fraught with a number of problems related to limitations in the use of traditional planning and financial management tools. Restrictions in the use of foreign software when performing an order of the Russian Government, on the one hand, and sanctions limiting the support of the major ERP and MRP II systems in the Russian Federation, on the other hand, entail the necessity to appeal to the basics of developing budgeting and analysis systems for industrial enterprises. Thus, cost calculation theory becomes the theoretical foundation for the development of industrial cost management systems. Based on the foregoing, it would be fair to make an assumption that the development of a working managerial accounting model on an industrial enterprise using an automated enterprise resource management system should rest upon the concept of the inevitability of alterations of business processes. On the other hand, optimized business processes make the architecture of financial analytics more transparent and permit the use of all the benefits of data cubes. The metrics and indicator slices provide online assessment of the state of key business processes at a given moment of time, which improves the quality of managerial decisions considerably. Therefore, the bilateral sanctions situation boosted the development of corporate business analytics and took industrial companies to the next level of understanding of business processes.Keywords: cost culculation, ERP, OLAP, modern Russian economy
Procedia PDF Downloads 223