Search results for: computer- supported collaborative learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11283

Search results for: computer- supported collaborative learning

9843 Advantages and Disadvantages of Distance Learning in Comparison with Full-time Teaching from the Perspective of Chinese University Students

Authors: Daniel Ecler

Abstract:

The aim of this paper was to find out how Chinese university students perceive distance learning compared to full-time teaching, to reveal its advantages and disadvantages, and to try to find what elements could be implemented in regular full-time teaching in order to make it more effective. Recent events have shown that online teaching has a significant role to play in the field of education and needs to be given increased attention and scrutiny. For this purpose, a research survey was conducted using semi-structured questionnaires, which aimed to determine the attitudes of Chinese university students to the phenomenon of distance learning. The results of this survey revealed that most students prefer distance learning to full-time teaching, mainly because it gives them more freedom to participate in teaching, regardless of the environment in which they are currently located. In conclusion, it is necessary to mention that the possibility to participate virtually in teaching from anywhere is a huge advantage that could become part of regular teaching in the future. However, further research into this issue will be necessary.

Keywords: distance learning, full-time teaching, Chinese college students, cultural background

Procedia PDF Downloads 177
9842 A Qualitative Study About a Former Professional Baseball Player with Dyslexia

Authors: Matthias Grunke

Abstract:

In this qualitative study, we interviewed a young man with learning disabilities who played professional baseball for two years. Individuals with severe academic challenges constitute one of the most vulnerable groups of our society. Science has to find ways on how to arm them against life’s challenges and help them to cope with the many risk factors that they are usually confronted with. Team sports like baseball seem to be a suitable means for that purpose. In the interview, our participant talked about his life as a student with severe learning difficulties and related how his career in baseball made his academic challenges appear much less significant. He gave some meaningful insights into what helped him to build a happy and fulfilling life for himself, not only in spite of his challenges but also because of what he's learning disabilities taught him. Support from significant others, a sense of purpose, his fighting spirit ignited by sports, and the success that he experienced on the baseball field were among the most relevant factors. Overall, this study highlights the importance of finding an outlet for young people with learning disabilities where their academic difficulties retreat into the background and their talents are validated.

Keywords: baseball, inclusion, learning disabilities, resilience

Procedia PDF Downloads 98
9841 Melanoma and Non-Melanoma, Skin Lesion Classification, Using a Deep Learning Model

Authors: Shaira L. Kee, Michael Aaron G. Sy, Myles Joshua T. Tan, Hezerul Abdul Karim, Nouar AlDahoul

Abstract:

Skin diseases are considered the fourth most common disease, with melanoma and non-melanoma skin cancer as the most common type of cancer in Caucasians. The alarming increase in Skin Cancer cases shows an urgent need for further research to improve diagnostic methods, as early diagnosis can significantly improve the 5-year survival rate. Machine Learning algorithms for image pattern analysis in diagnosing skin lesions can dramatically increase the accuracy rate of detection and decrease possible human errors. Several studies have shown the diagnostic performance of computer algorithms outperformed dermatologists. However, existing methods still need improvements to reduce diagnostic errors and generate efficient and accurate results. Our paper proposes an ensemble method to classify dermoscopic images into benign and malignant skin lesions. The experiments were conducted using the International Skin Imaging Collaboration (ISIC) image samples. The dataset contains 3,297 dermoscopic images with benign and malignant categories. The results show improvement in performance with an accuracy of 88% and an F1 score of 87%, outperforming other existing models such as support vector machine (SVM), Residual network (ResNet50), EfficientNetB0, EfficientNetB4, and VGG16.

Keywords: deep learning - VGG16 - efficientNet - CNN – ensemble – dermoscopic images - melanoma

Procedia PDF Downloads 84
9840 Learning on the Go: Practicing Vocabulary with Mobile Apps

Authors: Shoba Bandi-Rao

Abstract:

The lack of college readiness is one of the major contributors to low graduation rates at community colleges, especially among educationally and financially disadvantaged students. About 45% of underprepared high school graduates are required to complete ‘remedial’ reading/writing courses before they can begin taking college-level courses. Mobile apps present ‘bite-size’ learning materials that can be useful for practicing certain literacy skills, such as vocabulary learning. The convenience of mobile phones is ideal for a majority of students at community colleges who hold full or part-time jobs. Mobile apps allow students to learn during small ‘chunks’ of time available to them outside of the class—during subway commute, between classes, etc. Learning with mobile apps is a relatively new area in research, and their effectiveness for learning new words has been inconclusive. Using Mishra & Koehler’s TPCK theoretical framework, this study explored the effectiveness of the mobile app (Quizlet) for learning one hundred common college-level words in ‘remedial’ writing class over one semester. Each week, before coming to class, students studied a list of 10-15 words presented in context within sentences. Students came across these words in the article they read in class making their learning more meaningful. A pre and post-test measured the number of words students knew, learned and remembered. Statistical analysis shows that students performed better by 41% on the post-test indicating that the mobile app was helpful for learning words. Students also completed a short survey each week that sought to determine the amount of time students spent on the vocabulary app. A positive correlation was found between the amount of time spent on the mobile app and the number of words learned. The goal of this research is to capitalize on the convenience of smartphones to (1) better prepare them for college-level course work, and (2) contribute to current literature on mobile learning.

Keywords: mobile learning, vocabulary learning, literacy skills, Quizlet

Procedia PDF Downloads 224
9839 Continual Learning Using Data Generation for Hyperspectral Remote Sensing Scene Classification

Authors: Samiah Alammari, Nassim Ammour

Abstract:

When providing a massive number of tasks successively to a deep learning process, a good performance of the model requires preserving the previous tasks data to retrain the model for each upcoming classification. Otherwise, the model performs poorly due to the catastrophic forgetting phenomenon. To overcome this shortcoming, we developed a successful continual learning deep model for remote sensing hyperspectral image regions classification. The proposed neural network architecture encapsulates two trainable subnetworks. The first module adapts its weights by minimizing the discrimination error between the land-cover classes during the new task learning, and the second module tries to learn how to replicate the data of the previous tasks by discovering the latent data structure of the new task dataset. We conduct experiments on HSI dataset Indian Pines. The results confirm the capability of the proposed method.

Keywords: continual learning, data reconstruction, remote sensing, hyperspectral image segmentation

Procedia PDF Downloads 269
9838 Study on Pd Catalyst Supported on Carbon Materials for C₂ Hydrogenation

Authors: Huanru Wang, Jianzhun Jiang

Abstract:

At present, the preparation of the catalyst by carbon carrier is one of the improvement directions of the C₂ pre-hydrogenation catalyst. Carbon materials can be prepared from coal direct liquefaction residues, coconut shells, biomass, etc., and the pore structure of carbon carrier materials can be adjusted through the preparation process; at high temperatures, the carbon carrier itself also shows certain catalytic activity. Therefore, this paper mainly selected typical activated carbon and coconut shell carbon as carbon carrier materials, studied their microstructure and surface properties, prepared a series of carbon-based catalysts loaded with Pd, and investigated the effects of the content of promoter Ag and the concentration of reductant on the structure and performance of the catalyst and its catalytic performance for the pre hydrogenation of C₂. In this paper, the carbon supports from two sources and the catalysts prepared by them were characterized in detail. The results showed that the morphology and structure of different supports and the performance of the catalysts prepared were also obviously different. The catalyst supported on coconut shell carbon has a small specific surface area and large pore diameter. The catalyst supported on activated carbon has a large specific surface area and rich pore structure. The active carbon support is mainly a mixture of amorphous graphite and microcrystalline graphite. For the catalyst prepared with coconut shell carbon as the carrier, the sample is very uneven, and its specific surface area and pore volume are irregular. Compared with coconut shell carbon, activated carbon is more suitable as the carrier of the C₂ hydrogenation catalyst. The conversion of acetylene, methyl acetylene, and butadiene decreased, and the ethylene selectivity increased after Ag was added to the supported Pd catalyst. When the amount of promoter Ag is 0.01-0.015%, the catalyst has relatively good catalytic performance. Ag and Pd form an alloying effect, thus reducing the effective demand for Ag. The Pd Ag ratio is the key factor affecting the catalytic performance. When the addition amount of Ag is 0.01-0.015%, the dispersion of Pd on the carbon support surface can be significantly improved, and the size of active particles can be reduced. The Pd Ag ratio is the main factor in improving the selectivity of the catalyst. When the additional amount of sodium formate is 1%, the catalyst prepared has both high acetylene conversion and high ethylene selectivity.

Keywords: C₂ hydrogenation, activated carbon, Ag promoter, Pd catalysts

Procedia PDF Downloads 122
9837 Assessment of the Readiness of Institutions and Undergraduates’ Attitude to Online Learning Mode in Nigerian Universities

Authors: Adedolapo Taiwo Adeyemi, Success Ayodeji Fasanmi

Abstract:

The emergence of the coronavirus pandemic and the rate of the spread affected a lot of activities across the world. This led to the introduction of online learning modes in several countries after institutions were shut down. Unfortunately, most public universities in Nigeria could not switch to the online mode because they were not prepared for it, as they do not have the technological capacity to support a full online learning mode. This study examines the readiness of university and the attitude of undergraduates towards online learning mode in Obafemi Awolowo University (OAU), Ile Ife. It investigated the skills and competencies of students for online learning as well as the university’s readiness towards online learning mode; the effort was made to identify challenges of online teaching and learning in the study area, and suggested solutions were advanced. OAU was selected because it is adjudged to be the leading Information and Communication Technology (ICT) driven institution in Nigeria. The descriptive survey research design was used for the study. A total of 256 academic staff and 1503 undergraduates were selected across six faculties out of the thirteen faculties in the University. Two set of questionnaires were used to get responses from the selected respondents. The result showed that students have the skills and competence to operate e-learning facilities but are faced with challenges such as high data cost, erratic power supply, and lack of gadgets, among others. The study found out that the university was not prepared for online learning mode as it lacks basic technological facilities to support it. The study equally showed that while lecturers possess certain skills in using some e-learning applications, they were limited by the unavailability of online support gadgets, poor internet connectivity, and unstable power supply. Furthermore, the assessment of student attitude towards online learning mode shows that the students found the online learning mode very challenging as they had to bear the huge cost of data. Lecturers also faced the same challenge as they had to pay a lot to buy data, and the networks were sometimes unstable. The study recommended that adequate funding needs to be provided to public universities by the government while the management of institutions must build technological capacities to support online learning mode in the hybrid form and on a full basis in case of future emergencies.

Keywords: universities, online learning, undergraduates, attitude

Procedia PDF Downloads 98
9836 Learning Mathematics Online: Characterizing the Contribution of Online Learning Environment’s Components to the Development of Mathematical Knowledge and Learning Skills

Authors: Atara Shriki, Ilana Lavy

Abstract:

Teaching for the first time an online course dealing with the history of mathematics, we were struggling with questions related to the design of a proper learning environment (LE). Thirteen high school mathematics teachers, M.Ed. students, attended the course. The teachers were engaged in independent reading of mathematical texts, a task that is recognized as complex due to the unique characteristics of such texts. In order to support the learning processes and develop skills that are essential for succeeding in learning online (e.g. self-regulated learning skills, meta-cognitive skills, reflective ability, and self-assessment skills), the LE comprised of three components aimed at “scaffolding” the learning: (1) An online "self-feedback" questionnaires that included drill-and-practice questions. Subsequent to responding the questions the online system provided a grade and the teachers were entitled to correct their answers; (2) Open-ended questions aimed at stimulating critical thinking about the mathematical contents; (3) Reflective questionnaires designed to assist the teachers in steering their learning. Using a mixed-method methodology, an inquiry study examined the learning processes, the learners' difficulties in reading the mathematical texts and on the unique contribution of each component of the LE to the ability of teachers to comprehend the mathematical contents, and support the development of their learning skills. The results indicate that the teachers found the online feedback as most helpful in developing self-regulated learning skills and ability to reflect on deficiencies in knowledge. Lacking previous experience in expressing opinion on mathematical ideas, the teachers had troubles in responding open-ended questions; however, they perceived this assignment as nurturing cognitive and meta-cognitive skills. The teachers also attested that the reflective questionnaires were useful for steering the learning. Although in general the teachers found the LE as supportive, most of them indicated the need to strengthen instructor-learners and learners-learners interactions. They suggested to generate an online forum to enable them receive direct feedback from the instructor, share ideas with other learners, and consult with them about solutions. Apparently, within online LE, supporting learning merely with respect to cognitive aspects is not sufficient. Leaners also need an emotional support and sense a social presence.

Keywords: cognitive and meta-cognitive skills, independent reading of mathematical texts, online learning environment, self-regulated learning skills

Procedia PDF Downloads 621
9835 The Asymmetric Proximal Support Vector Machine Based on Multitask Learning for Classification

Authors: Qing Wu, Fei-Yan Li, Heng-Chang Zhang

Abstract:

Multitask learning support vector machines (SVMs) have recently attracted increasing research attention. Given several related tasks, the single-task learning methods trains each task separately and ignore the inner cross-relationship among tasks. However, multitask learning can capture the correlation information among tasks and achieve better performance by training all tasks simultaneously. In addition, the asymmetric squared loss function can better improve the generalization ability of the models on the most asymmetric distributed data. In this paper, we first make two assumptions on the relatedness among tasks and propose two multitask learning proximal support vector machine algorithms, named MTL-a-PSVM and EMTL-a-PSVM, respectively. MTL-a-PSVM seeks a trade-off between the maximum expectile distance for each task model and the closeness of each task model to the general model. As an extension of the MTL-a-PSVM, EMTL-a-PSVM can select appropriate kernel functions for shared information and private information. Besides, two corresponding special cases named MTL-PSVM and EMTLPSVM are proposed by analyzing the asymmetric squared loss function, which can be easily implemented by solving linear systems. Experimental analysis of three classification datasets demonstrates the effectiveness and superiority of our proposed multitask learning algorithms.

Keywords: multitask learning, asymmetric squared loss, EMTL-a-PSVM, classification

Procedia PDF Downloads 139
9834 The New Consumption of Sustainability for Green Capitalism

Authors: Ica Wulansari

Abstract:

Today, globalization encourages the global culture acceleration in the middle of accelerated industrialization that leads to the transformation of consumption pattern. Consumption is not only considered as a need but also lifestyle, moreover, plays a role as an ideology supported by global shopping system. This paper is aimed at analyzing how global society directed to support sustainability consumption, this is line with Sustainable Development Goals (SDGs) that prioritise sustainable program for environmental preservation to cope with economic growth impact. The paper applies qualitative method to analyze through literature studies. As a result, we attempt to discuss the relationship of various concepts among globalization, consumption, and risk society that produce green capitalism. There are three points related with green capitalism: Sustainable agenda, political ecology, and sustainable commodities that show sustainable consumption pattern supported by Capitalism. Sustainability consumption system is an ideal instrument to be implemented, nevertheless, this is not only solely a modernity of ecology politics to hidden Capitalist`s interest.

Keywords: consumption, sustainability, capitalist, environmental

Procedia PDF Downloads 300
9833 English and Information and Communication Technology: Zones of Exclusion in Education in Low-Income Countries

Authors: Ram A. Giri, Amna Bedri, Abdou Niane

Abstract:

Exclusion in education on the basis of language in multilingual contexts operates at multiple levels. Learners of diverse ethnolinguistic backgrounds are often expected to learn through English and are pushed further down the learning ladder if they also have to access education through Information and Communication Technology (ICT). The paper explores marginalized children’s lived experiences in accessing technology and English in four low-income countries in Africa and Asia. Based on the findings of the first phase of a multinational qualitative research study, we report on the factors or barriers that affect children’s access, opportunities and motivation for learning through technology and English. ICT and English - the language of ICT and education - can enhance learning and can even be essential. However, these two important keys to education can also function as barriers to accessing quality education, and therefore as zones of exclusion. This paper looks into how marginalized children (aged 13-15) engage in learning through ICT and English and to what extent the restrictive access and opportunities contribute to the widening of the already existing gap in education. By applying the conceptual frameworks of “access and accessibility of learning” and “zones of exclusion,” the paper elucidates how the barriers prevent children’s effective engagement with learning and addresses such questions as to how marginalized children access technology and English for learning; whether the children value English, and what their motivation and opportunity to learn it are. In addition, the paper will point out policy and pedagogic implications.

Keywords: exclusion, inclusion, inclusive education, marginalization

Procedia PDF Downloads 231
9832 Classification of Cochannel Signals Using Cyclostationary Signal Processing and Deep Learning

Authors: Bryan Crompton, Daniel Giger, Tanay Mehta, Apurva Mody

Abstract:

The task of classifying radio frequency (RF) signals has seen recent success in employing deep neural network models. In this work, we present a combined signal processing and machine learning approach to signal classification for cochannel anomalous signals. The power spectral density and cyclostationary signal processing features of a captured signal are computed and fed into a neural net to produce a classification decision. Our combined signal preprocessing and machine learning approach allows for simpler neural networks with fast training times and small computational resource requirements for inference with longer preprocessing time.

Keywords: signal processing, machine learning, cyclostationary signal processing, signal classification

Procedia PDF Downloads 109
9831 A Methodological Concept towards a Framework Development for Social Software Adoption in Higher Education System

Authors: Kenneth N. Ohei, Roelien Brink

Abstract:

For decades, teaching and learning processes have centered on the traditional approach (Web 1.0) that promoted teacher-directed pedagogical practices. Currently, there is a realization that the traditional approach is not adequate to effectively address and improve all student-learning outcomes. The subsequent incorporation of social software, Information, and Communication Technology (ICT) tools in universities may serve as complementary to support educational goals, offering students the affordability and opportunity to educational choices and learning platforms. Consequently, educators’ inability to incorporate these instructional ICT tools in their teaching and learning practices remains a challenge. This will signify that educators still lack the ICT skills required to administer lectures and bridging learning gaps. This study probes a methodological concept with the aim of developing a framework towards the adoption of social software in HES to help facilitate business processes and can build social presence among students. A mixed method will be appropriate to develop a comprehensive framework needed in Higher Educational System (HES). After research have been conducted, the adoption of social software will be based on the developed comprehensive framework which is supposed to impact positively on education and approach of delivery, improves learning experience, engagement and finally, increases educational opportunities and easy access to educational contents.

Keywords: blended and integrated learning, learning experience and engagement, higher educational system, HES, information and communication technology, ICT, social presence, Web 1.0, Web 2.0, Web 3.0

Procedia PDF Downloads 160
9830 The Holistic Nursing WebQuest: An Interactive Teaching/Learning Strategy

Authors: Laura M. Schwarz

Abstract:

WebQuests are an internet-based interactive teaching/learning tool and utilize a scaffolded methodology. WebQuests employ critical thinking, afford inquiry-based constructivist learning, and readily employ Bloom’s Taxonomy. WebQuests have generally been used as instructional technology tools in primary and secondary education and have more recently grown in popularity in higher education. The study of the efficacy of WebQuests as an instructional approach to learning, however, has been limited, particularly in the nursing education arena. The purpose of this mixed-methods study was to determine nursing students’ perceptions of the effectiveness of the Nursing WebQuest as a teaching/learning strategy for holistic nursing-related content. Quantitative findings (N=42) suggested that learners were active participants, used reflection, thought of new ideas, used analysis skills, discovered something new, and assessed the worth of something while taking part in the WebQuests. Qualitative findings indicated that participants found WebQuest positives as easy to understand and navigate; clear and organized; interactive; good alternative learning format, and used a variety of quality resources. Participants saw drawbacks as requiring additional time and work; and occasional failed link or link causing them to lose their location in the WebQuest. Recommendations include using larger sample size and more diverse populations from various programs and universities. In conclusion, WebQuests were found to be an effective teaching/learning tool as positively assessed by study participants.

Keywords: holistic nursing, nursing education, teaching/learning strategy, WebQuests

Procedia PDF Downloads 127
9829 Meta-Learning for Hierarchical Classification and Applications in Bioinformatics

Authors: Fabio Fabris, Alex A. Freitas

Abstract:

Hierarchical classification is a special type of classification task where the class labels are organised into a hierarchy, with more generic class labels being ancestors of more specific ones. Meta-learning for classification-algorithm recommendation consists of recommending to the user a classification algorithm, from a pool of candidate algorithms, for a dataset, based on the past performance of the candidate algorithms in other datasets. Meta-learning is normally used in conventional, non-hierarchical classification. By contrast, this paper proposes a meta-learning approach for more challenging task of hierarchical classification, and evaluates it in a large number of bioinformatics datasets. Hierarchical classification is especially relevant for bioinformatics problems, as protein and gene functions tend to be organised into a hierarchy of class labels. This work proposes meta-learning approach for recommending the best hierarchical classification algorithm to a hierarchical classification dataset. This work’s contributions are: 1) proposing an algorithm for splitting hierarchical datasets into new datasets to increase the number of meta-instances, 2) proposing meta-features for hierarchical classification, and 3) interpreting decision-tree meta-models for hierarchical classification algorithm recommendation.

Keywords: algorithm recommendation, meta-learning, bioinformatics, hierarchical classification

Procedia PDF Downloads 315
9828 Modelling of Composite Steel and Concrete Beam with the Lightweight Concrete Slab

Authors: Veronika Přivřelová

Abstract:

Well-designed composite steel and concrete structures highlight the good material properties and lower the deficiencies of steel and concrete, in particular they make use of high tensile strength of steel and high stiffness of concrete. The most common composite steel and concrete structure is a simply supported beam, which concrete slab transferring the slab load to a beam is connected to the steel cross-section. The aim of this paper is to find the most adequate numerical model of a simply supported composite beam with the cross-sectional and material parameters based on the results of a processed parametric study and numerical analysis. The paper also evaluates the suitability of using compact concrete with the lightweight aggregates for composite steel and concrete beams. The most adequate numerical model will be used in the resent future to compare the results of laboratory tests.

Keywords: composite beams, high-performance concrete, high-strength steel, lightweight concrete slab, modeling

Procedia PDF Downloads 410
9827 Principal Creative Leadership for Teacher Learning and School Culture

Authors: Yashi Ye

Abstract:

Principles play vital roles in shaping the school culture and promoting teachers' professional learning by exerting their leadership. In the changing time of the 21st century, the creative leadership of school leaders is increasingly important in cultivating the professional learning communities of teachers for eventually improving student performance in every continent. This study examines under what conditions and how principal creative leadership contributes to teachers’ professional learning and school culture. Data collected from 632 teachers in 30 primary and middle schools in the cities of Chengdu and Chongqing in mainland China are analyzed using structural equation modeling and bootstrapping tests. A moderated mediation model of principle creative leadership effects is used to analyze professional teacher learning and school culture in which the mediator will be school culture and the moderator will be power distance orientation. The results indicate that principal creative leadership has significant direct and indirect effects on teachers' professional learning. A positive correlation between principal creative leadership, professional teacher learning, and school culture is observed. Further model testing found that teacher power distance orientation moderated the significant effect of principal creative leadership on school culture. When teachers perceived higher power distance in teacher-principal relations, the effects of principal creative leadership were stronger than for those who perceived low power distance. The results indicate the “culture change” in the young generation of teachers in China, and further implications to understanding the cultural context in the field of educational leadership are discussed.

Keywords: power distance orientation, principal creative leadership, school culture, teacher professional learning

Procedia PDF Downloads 143
9826 Multi-Period Portfolio Optimization Using Predictive Machine Learning Models

Authors: Peng Liu, Chyng Wen Tee, Xiaofei Xu

Abstract:

This paper integrates machine learning forecasting techniques into the multi-period portfolio optimization framework, enabling dynamic asset allocation based on multiple future periods. We explore both theoretical foundations and practical applications, employing diverse machine learning models for return forecasting. This comprehensive guide demonstrates the superiority of multi-period optimization over single-period approaches, particularly in risk mitigation through strategic rebalancing and enhanced market trend forecasting. Our goal is to promote wider adoption of multi-period optimization, providing insights that can significantly enhance the decision-making capabilities of practitioners and researchers alike.

Keywords: multi-period portfolio optimization, look-ahead constrained optimization, machine learning, sequential decision making

Procedia PDF Downloads 50
9825 The Implementation of Social Responsibility with the Approach of Indonesian Realistic Mathematics Education in Teaching and Learning Mathematics on Students' Engagement and Learning

Authors: Nurwati Djaman, Suradi Tahmir, Nurdin Arsyad

Abstract:

The major objective of this study was to implement and evaluate the use of the implementation of social responsibility with the approach of Indonesian Realistic Mathematics Education (PMRI) in teaching and learning mathematics on students’ engagement and learning. The research problems investigated in this research: 1) What were the effects of the implementation of social responsibility with PMRI approach to learning mathematics? 2) What were the effects of the approach to students’ engagement? An action research and grounded theory methodology were adopted for the study. This study used mixed methods to collect, describe, and interpret the data. The data were collected through focus group discussion, classroom observations, questionnaire, interview, and students’ work. The participants in this study consisted of 45 students. The study revealed that the approach has given students the opportunity to develop their understanding of concepts and procedures, problem-solving ability, and communication ability. Also, students’ involvement in the approach improved their engagement in learning mathematics in the three domains of cognitive engagement, effective engagement, and behavioral engagement. In particular, the data collection from the focus group, classroom observations, and interviews suggest that, during this study, the students became more active participants in the mathematics lessons.

Keywords: Indonesian Realistic Mathematics Education, PMRI, learning mathematics, social responsibility, students' engagement

Procedia PDF Downloads 146
9824 Effect of the Support Shape on Fischer-Tropsch Cobalt Catalyst Performance

Authors: Jian Huang, Weixin Qian, Hongfang Ma, Haitao Zhang, Weiyong Ying

Abstract:

Cobalt catalysts were supported on extruded silica carrier and different-type (SiO2, γ-Al2O3) commercial supports with different shapes and sizes to produce heavy hydrocarbons for Fischer-Tropsch synthesis. The catalysts were characterized by N2 physisorption and H2-TPR. The catalytic performance of the catalysts was tested in a fixed bed reactor. The results of Fischer-Tropsch synthesis performance showed that the cobalt catalyst supported on spherical silica supports displayed a higher activity and a higher selectivity to C5+ products, due to the fact that the active components were only distributed in the surface layer of spherical carrier, and the influence of gas diffusion restriction on catalytic performance was weakened. Therefore, it can be concluded that the eggshell cobalt catalyst was superior to precious metals modified catalysts in the synthesis of heavy hydrocarbons.

Keywords: fischer-tropsch synthesis, cobalt catalyst, support shape, heavy hydrocarbons

Procedia PDF Downloads 284
9823 Multimodal Deep Learning for Human Activity Recognition

Authors: Ons Slimene, Aroua Taamallah, Maha Khemaja

Abstract:

In recent years, human activity recognition (HAR) has been a key area of research due to its diverse applications. It has garnered increasing attention in the field of computer vision. HAR plays an important role in people’s daily lives as it has the ability to learn advanced knowledge about human activities from data. In HAR, activities are usually represented by exploiting different types of sensors, such as embedded sensors or visual sensors. However, these sensors have limitations, such as local obstacles, image-related obstacles, sensor unreliability, and consumer concerns. Recently, several deep learning-based approaches have been proposed for HAR and these approaches are classified into two categories based on the type of data used: vision-based approaches and sensor-based approaches. This research paper highlights the importance of multimodal data fusion from skeleton data obtained from videos and data generated by embedded sensors using deep neural networks for achieving HAR. We propose a deep multimodal fusion network based on a twostream architecture. These two streams use the Convolutional Neural Network combined with the Bidirectional LSTM (CNN BILSTM) to process skeleton data and data generated by embedded sensors and the fusion at the feature level is considered. The proposed model was evaluated on a public OPPORTUNITY++ dataset and produced a accuracy of 96.77%.

Keywords: human activity recognition, action recognition, sensors, vision, human-centric sensing, deep learning, context-awareness

Procedia PDF Downloads 102
9822 Distance Learning and Modern Challenges of Education Management in Georgia

Authors: Giorgi Gaganidze, Eter Kharaishvili

Abstract:

The atypical crisis has created new challenges in the education system. Globally, including in Georgia, traditional methods of managing the education system have appeared particularly vulnerable. In addition, new opportunities for the introduction of innovative management of learning processes have emerged. The aim of the research is to identify the main challenges in the field of education management in the distance learning process in Georgia and to develop recommendations on the opportunities for the introduction of innovative management. The paper substantiates the relevance of the research, in particular, it notes that in Georgia, as in many countries, distance learning in higher education institutions became particularly crucial during the Covid-19 pandemic. What is more, theoretical and practical aspects of distance learning are less proven, and a number of problems have been identified in the field of education management in Georgia. The article justifies the need to study the challenges of distance learning for the formation of a sustainable education management system. Within the bibliographic research, there are grouped the opinions of researchers on the modern problems of distance learning and education management in the article. Based on scientific papers, the expectations formed about distance learning are studied, and the main focus is on the existing problems of education management during the atypical crisis. The article discusses the forms and opportunities of distance learning in different countries, evaluates different approaches and challenges to distance learning, and justifies the role of education management in effective distance learning. The paper uses various theoretical-methodological tools of research, including desk research on the research topic; Data selection-grouping, problem identification is carried out by analysis, synthesis, sampling, induction, and other methods;SWOT analysis is used to assess the strengths, weaknesses, opportunities, and threats of distance education and management; The level of student satisfaction with distance learning is determined through the Population-based / Census-based approach; The results of the research are processed by SPSS program. Quantitative research and semi-structured interviews with relevant focus groups were conducted to identify working directions for innovative management of distance learning and education. Research has shown that the demand for distance education is growing in Georgia, but the need to introduce innovative education management remains a particular challenge. Conclusions have been made on the introduction of innovative education management, and the relevant recommendations have been developed.

Keywords: distance learning, management challenges, education management, innovative management

Procedia PDF Downloads 126
9821 Undergraduates' Development of Interpersonal and Cooperative Competence in Service-Learning

Authors: Huixuan Xu

Abstract:

The present study was set out to investigate the extent to which and how service-learning fostered a sample of 138 Hong Kong undergraduates’ interpersonal competence and cooperative orientation development. Interpersonal competence is presented when an individual shows empathy with others, provides intelligent advice to others and has practical judgment. Cooperative orientation reflects individuals’ willingness to work with others to achieve common goals. A quality service-learning programme may exhibit the features of provision of meaningful service, close link to curriculum, continuous reflection, youth voice, and diversity. Mixed methods were employed in the present study. Pre-posttest survey was administered to capture individual undergraduates’ development of interpersonal competence and cooperative orientation over a period of four months. The respondents’ evaluation of service-learning elements was administered in the post-test survey. Focus groups were conducted after the end of the service-learning to further explore how the certain service-learning elements promoted individual undergraduates’ development of interpersonal competence and cooperative orientation. Three main findings were reported from the study. (1) The scores of interpersonal competence increased significantly from the pretest to the posttest, while the change of cooperative orientation was not significant. (2) Cooperative orientation and interpersonal competence were correlated positively with the overall course quality respectively, which suggested that the more a service-learning course complied with quality practice, the students became more competent in interpersonal competence and cooperative orientation. (3) The following service-learning elements showed higher impacts: (a) direct contact with service recipients, which engaged students in practicing interpersonal skills; (b) individual participants’ being exposed to a situation that required communication and dialogue with people from diverse backgrounds with different views; (c) experiencing interpersonal conflicts among team members and having the conflicts solved; (d) students’ taking a leading role in a project-based service. The present study provides compelling evidence about what elements in a service-learning program may foster undergraduates’ development of cooperative orientation and interpersonal competence. Implications for the design of service-learning programmes are provided.

Keywords: undergraduates, interpersonal competence, cooperation orientation, service-learning

Procedia PDF Downloads 257
9820 Teaching for Knowledge Transfer: Best Practices from a Graduate-Level Educational Psychology Distance Learning Program

Authors: Bobby Hoffman

Abstract:

One measure of effective instruction is the ability to solve authentic, real-world problems by effectively transferring and applying classroom and textbook knowledge. While many students can productively earn high grades and learn course content, they are not always able to apply the knowledge they gain. As such, this quasi-experimental study compared the comprehensive exit exam results of learners across instructional modalities who completed a prominent graduate-level educational psychology program. ANCOVA revealed superior knowledge transfer for blended-learning students compared to those who completed distance education and significantly greater transfer of declarative, procedural, and self-regulatory knowledge by the blended-learning students. This paper briefly summarizes the study results while highlighting evidence-based programmatic and course level modifications that were implemented to specifically address the transfer of learning and practical application of educational psychology knowledge.

Keywords: assessment, distance learning, educational psychology, knowledge transfer

Procedia PDF Downloads 179
9819 Design Off-Campus Interactive Cloud-Based Learning Model

Authors: Osamah Al Qadoori

Abstract:

Using cloud computing in educational sectors grow rapidly in UAE. Initially, within Cloud-Learning Environment Students whenever and wherever can remotely join the online-classroom, on the other hand, Cloud-Based Learning is greatly decreasing the infrastructure and the maintenance cost. Nowadays in many schools (K-12), institutes, colleges as well as universities in UAE Cloud-Based Teaching and Learning environments gain a higher demand and concern. Many students don’t use the available online-educational resources effectively. The challenging question is to which extend these educational resources which are installed in the cloud environment are valuable and constructive? In this paper the researcher is seeking to design an expert agent prototype where the huge information being accommodated inside the cloud environment will go through expert filtration before going to be utilized by other clients (students). To achieve this goal, the focus of the present research would be on two different directions the educational human expertise and the automated-educational expert systems.

Keywords: cloud computing, cloud-learning environment, online-classroom, the educational human expertise, the automated-educational expert systems

Procedia PDF Downloads 542
9818 Genetic Algorithms for Feature Generation in the Context of Audio Classification

Authors: José A. Menezes, Giordano Cabral, Bruno T. Gomes

Abstract:

Choosing good features is an essential part of machine learning. Recent techniques aim to automate this process. For instance, feature learning intends to learn the transformation of raw data into a useful representation to machine learning tasks. In automatic audio classification tasks, this is interesting since the audio, usually complex information, needs to be transformed into a computationally convenient input to process. Another technique tries to generate features by searching a feature space. Genetic algorithms, for instance, have being used to generate audio features by combining or modifying them. We find this approach particularly interesting and, despite the undeniable advances of feature learning approaches, we wanted to take a step forward in the use of genetic algorithms to find audio features, combining them with more conventional methods, like PCA, and inserting search control mechanisms, such as constraints over a confusion matrix. This work presents the results obtained on particular audio classification problems.

Keywords: feature generation, feature learning, genetic algorithm, music information retrieval

Procedia PDF Downloads 437
9817 The Effect of Problem-Based Mobile-Assisted Tasks on Spoken Intelligibility of English as a Foreign Language Learners

Authors: Loghman Ansarian, Teoh Mei Lin

Abstract:

In an attempt to increase oral proficiency of Iranian EFL learners, the researchers compared the effect of problem-based mobile-assisted language learning with the conventional language learning approach (Communicative Language Teaching) in Iran. The experimental group (n=37) went through PBL instruction and the control group (n=33) went through conventional instruction. The results of quantitative data analysis after 26 sessions of treatment revealed that PBL could positively affect participants' knowledge of grammar, vocabulary, spoken fluency, and pronunciation; however, in terms of task achievement, no significant effect was found. This study can have pedagogical implications for language teachers, and material developers.

Keywords: problem-based learning, spoken intelligibility, Iranian EFL context, cognitive learning

Procedia PDF Downloads 176
9816 The Effect of Using Augmented Reality Technique in a Computer Course Unit on the Academic Achievement and Attitudes of High School Female Students

Authors: Maha A. Al-Hsayni

Abstract:

Title of the Study: The Effect of Using Augmented Reality Technique in a Computer Course Unit on the Academic Achievement and Attitudes of High School Female Students. This study aimed at identifying the effect of using the Augmented Reality technique on the academic achievement of computer course at the cognitive domains (Knowledge, comprehension and analysis) with third high school female students in Holy Makkah. The researcher used: The quasi-experimental approach. The sample of the study was comprised of (55) female students in the third high school level in Holy Makkah in the second semester of the academic year 1434/1435 H. These students were assigned to two groups: The experimental group of (28) students who were taught by using the Augmented Reality technology, and the control group of (27) students, who were taught by using the traditional method. The researcher prepared a set of tools and materials, which are represented in achievement test consisted of (30) clauses, direction instrument consisted of (25) clauses and the design of augmented reality for computer study unit. The study used the following statistical methods for data analysis: Cronbach's alpha coefficient, Pearson correlation coefficient, means, standard deviations, t-test and analysis of covariance test ANCOVA. The study reached the following results: 1- There are statistically significance difference at ( 0.05) among the adjusted means of the experimental and control groups in the posttest at the domains of (Knowledge, comprehension and analysis) of third high school graders after adjusting the pretest 2- There are statistically significance difference at ( 0.05) among the means of pre and post-test for female students of the experimental group in the scale of attitude towards using Augmented Reality Technique. In the light of the study results, the researcher recommends the followings: The necessity of using Augmented Reality Technique in teaching computer courses for high school students. Furthermore, emphasizing the need to provide schools with educational halls equipped with instruments and screens that enable teachers to use the Augmented Reality in teaching the other courses. Also, the researcher suggested conducting more studies in order to improve the process of teaching and learning.

Keywords: augmented reality technique, computer course unit, academic achievement, attitudes, high school female students

Procedia PDF Downloads 411
9815 Deep Learning and Accurate Performance Measure Processes for Cyber Attack Detection among Web Logs

Authors: Noureddine Mohtaram, Jeremy Patrix, Jerome Verny

Abstract:

As an enormous number of online services have been developed into web applications, security problems based on web applications are becoming more serious now. Most intrusion detection systems rely on each request to find the cyber-attack rather than on user behavior, and these systems can only protect web applications against known vulnerabilities rather than certain zero-day attacks. In order to detect new attacks, we analyze the HTTP protocols of web servers to divide them into two categories: normal attacks and malicious attacks. On the other hand, the quality of the results obtained by deep learning (DL) in various areas of big data has given an important motivation to apply it to cybersecurity. Deep learning for attack detection in cybersecurity has the potential to be a robust tool from small transformations to new attacks due to its capability to extract more high-level features. This research aims to take a new approach, deep learning to cybersecurity, to classify these two categories to eliminate attacks and protect web servers of the defense sector which encounters different web traffic compared to other sectors (such as e-commerce, web app, etc.). The result shows that by using a machine learning method, a higher accuracy rate, and a lower false alarm detection rate can be achieved.

Keywords: anomaly detection, HTTP protocol, logs, cyber attack, deep learning

Procedia PDF Downloads 214
9814 The Creative Unfolding of “Reduced Descriptive Structures” in Musical Cognition: Technical and Theoretical Insights Based on the OpenMusic and PWGL Long-Term Feedback

Authors: Jacopo Baboni Schilingi

Abstract:

We here describe the theoretical and philosophical understanding of a long term use and development of algorithmic computer-based tools applied to music composition. The findings of our research lead us to interrogate some specific processes and systems of communication engaged in the discovery of specific cultural artworks: artistic creation in the sono-musical domain. Our hypothesis is that the patterns of auditory learning cannot be only understood in terms of social transmission but would gain to be questioned in the way they rely on various ranges of acoustic stimuli modes of consciousness and how the different types of memories engaged in the percept-action expressive systems of our cultural communities also relies on these shadowy conscious entities we named “Reduced Descriptive Structures”.

Keywords: algorithmic sonic computation, corrected and self-correcting learning patterns in acoustic perception, morphological derivations in sensorial patterns, social unconscious modes of communication

Procedia PDF Downloads 157