Search results for: climate network
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7335

Search results for: climate network

5895 Proposing a Boundary Coverage Algorithm ‎for Underwater Sensor Network

Authors: Seyed Mohsen Jameii

Abstract:

Wireless underwater sensor networks are a type of sensor networks that are located in underwater environments and linked together by acoustic waves. The application of these kinds of network includes monitoring of pollutants (chemical, biological, and nuclear), oil fields detection, prediction of the likelihood of a tsunami in coastal areas, the use of wireless sensor nodes to monitor the passing submarines, and determination of appropriate locations for anchoring ships. This paper proposes a boundary coverage algorithm for intrusion detection in underwater sensor networks. In the first phase of the proposed algorithm, optimal deployment of nodes is done in the water. In the second phase, after the employment of nodes at the proper depth, clustering is executed to reduce the exchanges of messages between the sensors. In the third phase, the algorithm of "divide and conquer" is used to save energy and increase network efficiency. The simulation results demonstrate the efficiency of the proposed algorithm.

Keywords: boundary coverage, clustering, divide and ‎conquer, underwater sensor nodes

Procedia PDF Downloads 341
5894 Urbanization and Water Supply in Lagos State, Nigeria: The Challenges in a Climate Change Scenario

Authors: Amidu Owolabi Ayeni

Abstract:

Studies have shown that spatio-temporal distribution and variability of climatic variables, urban land use, and population have had substantial impact on water supply. It is based on these facts that the impacts of climate, urbanization, and population on water supply in Lagos State Nigeria remain the focus of this study. Population and water production data on Lagos State between 1963 and 2006 were collected, and used for time series and projection analyses. Multi-temporal land-sat images of 1975, 1995 and NigeriaSat-1 imagery of 2007 were used for land use change analysis. The population of Lagos State increased by about 557.1% between 1963 and 2006, correspondingly, safe water supply increased by 554%. Currently, 60% of domestic water use in urban areas of Lagos State is from groundwater while 75% of rural water is from unsafe surface water. Between 1975 and 2007, urban land use increased by about 235.9%. The 46years climatic records revealed that temperature and evaporation decreased slightly while rainfall and Relatively Humidity (RH) decreased consistently. Based on these trends, the Lagos State population and required water are expected to increase to about 19.8millions and 2418.9ML/D respectively by the year 2026. Rainfall is likely to decrease by -6.68mm while temperature will increase by 0.950C by 2026. Urban land use is expected to increase by 20% with expectation of serious congestion in the suburb areas. With these results, over 50% of the urban inhabitants will be highly water poor in future if the trends continue unabated.

Keywords: challenges, climate change, urbanization, water supply

Procedia PDF Downloads 430
5893 Differential Impacts of Whole-Growth-Duration Warming on the Grain Yield and Quality between Early and Late Rice

Authors: Shan Huang, Guanjun Huang, Yongjun Zeng, Haiyuan Wang

Abstract:

The impacts of whole-growth warming on grain yield and quality in double rice cropping systems still remain largely unknown. In this study, a two-year field whole-growth warming experiment was conducted with two inbred indica rice cultivars (Zhongjiazao 17 and Xiangzaoxian 45) for early season and two hybrid indica rice cultivars (Wanxiangyouhuazhan and Tianyouhuazhan) for late season. The results showed that whole-growth warming did not affect early rice yield but significantly decreased late rice yield, which was caused by the decreased grain weight that may be related to the increased plant respiration and reduced translocation of dry matter accumulated during the pre-heading phase under warming. Whole-growth warming improved the milling quality of late rice but decreased that of early rice; however, the chalky rice rate and chalkiness degree were increased by 20.7% and 33.9% for early rice and 37.6 % and 51.6% for late rice under warming, respectively. We found that the crude protein content of milled rice was significantly increased by warming in both early and late rice, which would result in deterioration of eating quality. Besides, compared with the control treatment, the setback of late rice was significantly reduced by 17.8 % under warming, while that of early rice was not significantly affected by warming. These results suggest that the negative impacts of whole-growth warming on grain quality may be more severe in early rice than in late rice. Therefore, adaptation in both rice breeding and agronomic practices is needed to alleviate climate warming on the production of a double rice cropping system. Climate-smart agricultural practices ought to be implemented to mitigate the detrimental effects of warming on rice grain quality. For instance, fine-tuning the application rate and timing of inorganic nitrogen fertilizers, along with the introduction of organic amendments and the cultivation of heat-tolerant rice varieties, can help reduce the negative impact of rising temperatures on rice quality. Furthermore, to comprehensively understand the influence of climate warming on rice grain quality, future research should encompass a wider range of rice cultivars and experimental sites.

Keywords: climate warming, double rice cropping, dry matter, grain quality, grain yield

Procedia PDF Downloads 40
5892 Research on Online Consumption of College Students in China with Stimulate-Organism-Reaction Driven Model

Authors: Wei Lu

Abstract:

With the development of information technology in China, network consumption is becoming more and more popular. As a special group, college students have a high degree of education and distinct opinions and personalities. In the future, the key groups of network consumption have gradually become the focus groups of network consumption. Studying college students’ online consumption behavior has important theoretical significance and practical value. Based on the Stimulus-Organism-Response (SOR) driving model and the structural equation model, this paper establishes the influencing factors model of College students’ online consumption behavior, evaluates and amends the model by using SPSS and AMOS software, analyses and determines the positive factors of marketing college students’ consumption, and provides an effective basis for guiding and promoting college student consumption.

Keywords: college students, online consumption, stimulate-organism-reaction driving model, structural equation model

Procedia PDF Downloads 153
5891 Model and Algorithm for Dynamic Wireless Electric Vehicle Charging Network Design

Authors: Trung Hieu Tran, Jesse O'Hanley, Russell Fowler

Abstract:

When in-wheel wireless charging technology for electric vehicles becomes mature, a need for such integrated charging stations network development is essential. In this paper, we thus investigate the optimisation problem of in-wheel wireless electric vehicle charging network design. A mixed-integer linear programming model is formulated to solve into optimality the problem. In addition, a meta-heuristic algorithm is proposed for efficiently solving large-sized instances within a reasonable computation time. A parallel computing strategy is integrated into the algorithm to speed up its computation time. Experimental results carried out on the benchmark instances show that our model and algorithm can find the optimal solutions and their potential for practical applications.

Keywords: electric vehicle, wireless charging station, mathematical programming, meta-heuristic algorithm, parallel computing

Procedia PDF Downloads 79
5890 Effect of Mangrove Forests in Coastal Flood and Erosion

Authors: Majid Samiee Zenoozian

Abstract:

This paper studies the susceptibility of local settlements in the gulf of Oman mangrove forest zone to flooding and progressesconsiderate of acuities and reactions to historical and present coastal flooding.it is indirect thaterosionsproduced in coastal zones by the change of mangrove undergrowthsubsequent from the enduring influence of persons since the late 19th century. Confronted with the increasing impact of climate change on climate ambitiousalarms such as flooding and biodiversity damage, handling the relationship between mangroves and their atmosphere has become authoritative for their defense. Coastal flood dangers are increasing quickly. We offer high resolution approximations of the financial value of mangroves forests for flood risk discount. We progress a probabilistic, process-based estimate of the properties of mangroves on avoidanceharms to people and property. More significantly, it also establishes how the incessantsqualor of this significant ecosystem has the potential to unfavorably influence the future cyclone persuadeddangers in the area.

Keywords: mangrove forest, coastal, flood, erosion

Procedia PDF Downloads 116
5889 Investigating the Urban Heat Island Phenomenon in A Desert City Aiming at Sustainable Buildings

Authors: Afifa Mohammed, Gloria Pignatta, Mattheos Santamouris, Evangelia Topriska

Abstract:

Climate change is one of the global challenges that is exacerbated by the rapid growth of urbanizations. Urban Heat Island (UHI) phenomenon can be considered as an effect of the urbanization and it is responsible together with the Climate change of the overheating of urban cities and downtowns. The purpose of this paper is to quantify and perform analysis of UHI Intensity in Dubai, United Arab Emirates (UAE), through checking the relationship between the UHI and different meteorological parameters (e.g., temperature, winds speed, winds direction). Climate data were collected from three meteorological stations in Dubai (e.g., Dubai Airport - Station 1, Al-Maktoum Airport - Station 2 and Saih Al-Salem - Station 3) for a period of five years (e.g., 2014 – 2018) based upon hourly rates, and following clustering technique as one of the methodology tools of measurements. The collected data of each station were divided into six clusters upon the winds directions, either from the seaside or from the desert side, or from the coastal side which is in between both aforementioned winds sources, to investigate the relationship between temperature degrees and winds speed values through UHI measurements for Dubai Airport - Station 1 compared with the same of Al-Maktoum Airport - Station 2. In this case, the UHI value is determined by the temperature difference of both stations, where Station 1 is considered as located in an urban area and Station 2 is considered as located in a suburban area. The same UHI calculations has been applied for Al-Maktoum Airport - Station 2 and Saih Salem - Station 3 where Station 2 is considered as located in an urban area and Station 3 is considered as located in a suburban area. The performed analysis aims to investigate the relation between the two environmental parameters (e.g., Temperature and Winds Speed) and the Urban Heat Island (UHI) intensity when the wind comes from the seaside, from the desert, and the remaining directions. The analysis shows that the correlation between the temperatures with both UHI intensity (e.g., temperature difference between Dubai Airport - Station 1 and Saih Al-Salem - Station 3 and between Al-Maktoum Airport - Station 2 and Saih Al-Salem - Station 3 (through station 1 & 2) is strong and has a negative relationship when the wind is coming from the seaside comparing between the two stations 1 and 2, while the relationship is almost zero (no relation) when the wind is coming from the desert side. The relation is independent between the two parameters, e.g., temperature and UHI, on Station 2, during the same procedures, the correlation between the urban heat island UHI phenomenon and wind speed is weak for both stations when wind direction is coming from the seaside comparing the station 1 and 2, while it was found that there’s no relationship between urban heat island phenomenon and wind speed when wind direction is coming from desert side. The conclusion could be summarized saying that the wind coming from the seaside or from the desert side have a different effect on UHI, which is strongly affected by meteorological parameters. The output of this study will enable more determination of UHI phenomenon under desert climate, which will help to inform about the UHI phenomenon and intensity and extract recommendations in two main categories such as planning of new cities and designing of buildings.

Keywords: meteorological data, subtropical desert climate, urban climate, urban heat island (UHI)

Procedia PDF Downloads 135
5888 Numerical Investigation of Wastewater ‎Rheological Characteristics on Flow Field ‎Inside a Sewage Network

Authors: Seyed-Mohammad-Kazem Emami, Behrang Saki, Majid Mohammadian

Abstract:

The wastewater flow field inside a sewage network including pipe and ‎manhole was investigated using a Computational Fluid Dynamics ‎‎(CFD) model. The numerical model is developed by incorporating a ‎rheological model to calculate the viscosity of wastewater fluid by ‎means of open source toolbox OpenFOAM. The rheological ‎properties of prepared wastewater fluid suspensions are first measured ‎using a BrookField LVDVII Pro+ viscometer with an enhanced UL ‎adapter and then correlated the suitable rheological viscosity model ‎values from the measured rheological properties. The results show the ‎significant effects of rheological characteristics of wastewater fluid on ‎the flow domain of sewer system. Results were compared and ‎discussed with the commonly used Newtonian model to evaluate the ‎differences for velocity profile, pressure and shear stress. ‎

Keywords: Non-Newtonian flows, Wastewater, Numerical simulation, Rheology, Sewage Network

Procedia PDF Downloads 131
5887 Assessment of Planet Image for Land Cover Mapping Using Soft and Hard Classifiers

Authors: Lamyaa Gamal El-Deen Taha, Ashraf Sharawi

Abstract:

Planet image is a new data source from planet lab. This research is concerned with the assessment of Planet image for land cover mapping. Two pixel based classifiers and one subpixel based classifier were compared. Firstly, rectification of Planet image was performed. Secondly, a comparison between minimum distance, maximum likelihood and neural network classifications for classification of Planet image was performed. Thirdly, the overall accuracy of classification and kappa coefficient were calculated. Results indicate that neural network classification is best followed by maximum likelihood classifier then minimum distance classification for land cover mapping.

Keywords: planet image, land cover mapping, rectification, neural network classification, multilayer perceptron, soft classifiers, hard classifiers

Procedia PDF Downloads 187
5886 An Inverse Optimal Control Approach for the Nonlinear System Design Using ANN

Authors: M. P. Nanda Kumar, K. Dheeraj

Abstract:

The design of a feedback controller, so as to minimize a given performance criterion, for a general non-linear dynamical system is difficult; if not impossible. But for a large class of non-linear dynamical systems, the open loop control that minimizes a performance criterion can be obtained using calculus of variations and Pontryagin’s minimum principle. In this paper, the open loop optimal trajectories, that minimizes a given performance measure, is used to train the neural network whose inputs are state variables of non-linear dynamical systems and the open loop optimal control as the desired output. This trained neural network is used as the feedback controller. In other words, attempts are made here to solve the “inverse optimal control problem” by using the state and control trajectories that are optimal in an open loop sense.

Keywords: inverse optimal control, radial basis function, neural network, controller design

Procedia PDF Downloads 553
5885 Creativity and Innovation in a Military Unit of South America: Decision Making Process, Socio-Emotional Climate, Shared Flow and Leadership

Authors: S. da Costa, D. Páez, E. Martínez, A. Torres, M. Beramendi, D. Hermosilla, M. Muratori

Abstract:

This study examined the association between creative performance, organizational climate and leadership, affectivity, shared flow, and group decision making. The sample consisted of 315 cadets of a military academic unit of South America. Satisfaction with the decision-making process during a creative task was associated with the usefulness and effectiveness of the ideas generated by the teams with a weighted average correlation of r = .18. Organizational emotional climate, positive and innovation leadership were associated with this group decision-making process r = .25, with shared flow, r = .29 and with positive affect felt during the performance of the creative task, r = .12. In a sequential mediational analysis positive organizational leadership styles were significantly associated with decision-making process and trough cohesion with utility and efficacy of the solution of a creative task. Satisfactory decision-making was related to shared flow during the creative task at collective or group level, and positive affect with flow at individual level.This study examined the association between creative performance, organizational climate and leadership, affectivity, shared flow, and group decision making. The sample consisted of 315 cadets of a military academic unit of South America. Satisfaction with the decision-making process during a creative task was associated with the usefulness and effectiveness of the ideas generated by the teams with a weighted average correlation of r = .18. Organizational emotional climate, positive and innovation leadership were associated with this group decision-making process r = .25, with shared flow, r = .29 and with positive affect felt during the performance of the creative task, r = .12. In a sequential mediational analysis positive organizational leadership styles were significantly associated with decision-making process and trough cohesion with utility and efficacy of the solution of a creative task. Satisfactory decision-making was related to shared flow during the creative task at collective or group level, and positive affect with flow at individual level.

Keywords: creativity, innovation, military, organization, teams

Procedia PDF Downloads 123
5884 Positive Bias and Length Bias in Deep Neural Networks for Premises Selection

Authors: Jiaqi Huang, Yuheng Wang

Abstract:

Premises selection, the task of selecting a set of axioms for proving a given conjecture, is a major bottleneck in automated theorem proving. An array of deep-learning-based methods has been established for premises selection, but a perfect performance remains challenging. Our study examines the inaccuracy of deep neural networks in premises selection. Through training network models using encoded conjecture and axiom pairs from the Mizar Mathematical Library, two potential biases are found: the network models classify more premises as necessary than unnecessary, referred to as the ‘positive bias’, and the network models perform better in proving conjectures that paired with more axioms, referred to as ‘length bias’. The ‘positive bias’ and ‘length bias’ discovered could inform the limitation of existing deep neural networks.

Keywords: automated theorem proving, premises selection, deep learning, interpreting deep learning

Procedia PDF Downloads 183
5883 Integrating Artificial Neural Network and Taguchi Method on Constructing the Real Estate Appraisal Model

Authors: Mu-Yen Chen, Min-Hsuan Fan, Chia-Chen Chen, Siang-Yu Jhong

Abstract:

In recent years, real estate prediction or valuation has been a topic of discussion in many developed countries. Improper hype created by investors leads to fluctuating prices of real estate, affecting many consumers to purchase their own homes. Therefore, scholars from various countries have conducted research in real estate valuation and prediction. With the back-propagation neural network that has been popular in recent years and the orthogonal array in the Taguchi method, this study aimed to find the optimal parameter combination at different levels of orthogonal array after the system presented different parameter combinations, so that the artificial neural network obtained the most accurate results. The experimental results also demonstrated that the method presented in the study had a better result than traditional machine learning. Finally, it also showed that the model proposed in this study had the optimal predictive effect, and could significantly reduce the cost of time in simulation operation. The best predictive results could be found with a fewer number of experiments more efficiently. Thus users could predict a real estate transaction price that is not far from the current actual prices.

Keywords: artificial neural network, Taguchi method, real estate valuation model, investors

Procedia PDF Downloads 489
5882 Halotolerant Phosphates Solubilizing Bacteria Isolated from Phosphate Solid Sludge and Their Efficiency in Potassium, Zinc Solubilization, and Promoting Wheat (Triticum Durum 'karim') Germination

Authors: F. Z. Aliyat, M. El Guilli, L. Nassiri, J. Ibijbijen

Abstract:

Climate change is becoming a crucial factor that can significantly impact all ecosystems. It has a negative impact on the environment in many parts of the planet. Agriculture is the main sector affected by climate change. Particularly, the salinity of agricultural soils is among the problems caused by climate change. The use of phosphate solubilizing bacteria (PSB) as a biofertilizer requires previous research on their tolerance to abiotic stress, specifically saline stress tolerance, before the formation of biofertilizers. In this context, the main goal of this research was to assess the salinity tolerance of four strains: Serratia rubidaea strain JCM1240, Enterobacter bugandensis strain 247BMC, Pantoea agglomerans strain ATCC 27155, Pseudomonas brassicacearum subsp. Neoaurantiaca strain CIP109457, which was isolated from solid phosphate sludge. Additionally, their capacity to solubilize potassium and zinc, as well as their effect on Wheat (Triticum Durum 'Karim') germination. The four PSB strains were tested for their ability to solubilize phosphate in NBRIP medium with tricalcium phosphate (TCP) as the sole source of phosphorus under salt stress. Five concentrations of NaCl were used (0%, 0.5%, 1%, 2.5%, 5%). Their phosphate solubilizing activity was estimated by the vanadate-molybdate method. The potassium and zinc solubilization has been tested qualitatively and separately on solid media with mica and zinc oxide as the only sources of potassium and zinc, respectively. The result showed that the solubilization decreases with the increase in the concentration of NaCl; all the strains solubilize the TCP even with 5% NaCl, with a significant difference among the four strains. The Serratia rubidaea strain was the most tolerant strain. In addition, the four strains solubilize the potassium and the zinc. The Serratia rubidaea strain was the most efficient. Therefore, biofertilization with PSB salt-tolerant strains could be a climate-change-preparedness strategy for agriculture in salt soil.

Keywords: bioavailability of mineral nutrients, phosphate solid sludge; phosphate solubilization, potassium solubilization, salt stress, zinc solubilization.

Procedia PDF Downloads 85
5881 Sea-Level Rise and Shoreline Retreat in Tainan Coast

Authors: Wen-Juinn Chen, Yi-Phei Chou, Jou-Han Wang

Abstract:

Tainan coast is suffering from beach erosion, wave overtopping, and lowland flooding; though most of the shoreline has been protected by seawalls, they still threatened by sea level rise. For coastal resources developing, coastal land utilization, and to draft an appropriate mitigate strategy. Firstly; we must assess the impact of beach erosion under a different scenario of climate change. Here, we have used the meteorological data since 1898 to 2012 to prove that the Tainan area did suffer the impact of climate change. The result shows the temperature has been raised to about 1.7 degrees since 1989. Also, we analyzed the tidal data near the Tainan coast (Anpin site and Junjunn site), it shows sea level rising with a rate about 4.1~4.8 mm/year, this phenomenon will have serious impacts on Tainan coastal area, especially it will worsen coastal erosion. So we have used Bruun rule to calculate the shoreline retreated rate at every two decade period since 2012. Wave data and bottom sand diameter D50 were used to calculate the closure depth that will be used in Bruun formula and the active length of the profile is computed by the beach slope and Dean's equilibrium concept. After analysis, we found that in 2020, the shoreline will be retreated about 3.0 to 12 meters. The maximum retreat is happening at Chigu coast. In 2060, average shoreline retreated distance is 22m, but at Chigu and Tsenwen, shoreline may be backward retreat about 70m and will be reached about 130m at 2100, this will cause a lot of coastal land loss to the sea, protect and mitigate project must be quickly performed.

Keywords: sea level rise, shoreline, coastal erosion, climate change

Procedia PDF Downloads 407
5880 Climate Change and Food Security in Nigeria: The World Bank Assisted Third National Fadama Development Programme (Nfdp Iii) Approach in Rivers State, Niger Delta, Nigeria

Authors: Temple Probyne Abali

Abstract:

Port Harcourt, Rivers State in the Niger Delta region of Nigeria is bedeviled by the phenomenon of climatechange, posing threat to food security and livelihood. This study examined a 4 decadel (1980-2020) trend of climate change as well as its socio-economic impact on food security in the region. Furthermore, to achieve sustainable food security and livelihood amidst the phenomenon, the study adopted the World Bank Assisted Third National Fadama Development Programme approach. The data source for climate change involved secondary data from Nigeria Meteorological Agency (NIMET). Consequently, the results for climate change over the 4decade period were displayed in tables, charts and maps for the expected changes. Data sources on socio-economic impact of food security and livelihood were acquired through questionnairedesign. A purposive random sampling technique was used in selecting 5 coastal communities inthe region known for viable economic potentials for agricultural development and the resultswere analyzed using Analysis of Variance (ANOVA). The Participatory Rural Appraisal (PRA) technique of the World Bank for needs assessment wasadopted in selecting 5 agricultural sub-project proposals/activities based on groups’ commoneconomic interest from a total of 1,000 farmers each drawn from the 5 communities of differentage groups including men, women, youths and the vulnerable. Based on the farmers’ sub-projectinterests, the various groups’ Strength, Weakness, Opportunities and Threats (SWOT), Problem Listing Matrix, Skill Gap Analysis as well as EIAson their sub-project proposals/activities were analyzed with substantialMonitoring and Evaluation (M & E), using the Specific, Measurable, Attribute, Reliable and Time bound (SMART)approach. Based on the findings from the PRA technique, the farmers recorded considerableincreaseinincomeofover200%withinthe5yearprojectplan(2008-2013).Thestudyrecommends capacity building and advisory services on this PRA innovation. By so doing, there would be a sustainable increase in agricultural production and assured food security in an environmental friendly manner, in line with the United Nation’s Sustainable Development Goals(SDGs).

Keywords: climate change, food security, fadama, world bank, agriculture, sdgs

Procedia PDF Downloads 93
5879 Technical and Economic Evaluation of Harmonic Mitigation from Offshore Wind Power Plants by Transmission Owners

Authors: A. Prajapati, K. L. Koo, F. Ghassemi, M. Mulimakwenda

Abstract:

In the UK, as the volume of non-linear loads connected to transmission grid continues to rise steeply, the harmonic distortion levels on transmission network are becoming a serious concern for the network owners and system operators. This paper outlines the findings of the study conducted to verify the proposal that the harmonic mitigation could be optimized and can be managed economically and effectively at the transmission network level by the Transmission Owner (TO) instead of the individual polluter connected to the grid. Harmonic mitigation studies were conducted on selected regions of the transmission network in England for recently connected offshore wind power plants to strategize and optimize selected harmonic filter options. The results – filter volume and capacity – were then compared against the mitigation measures adopted by the individual connections. Estimation ratios were developed based on the actual installed and optimal proposed filters. These estimation ratios were then used to derive harmonic filter requirements for future contracted connections. The study has concluded that a saving of 37% in the filter volume/capacity could be achieved if the TO is to centrally manage the harmonic mitigation instead of individual polluter installing their own mitigation solution.

Keywords: C-type filter, harmonics, optimization, offshore wind farms, interconnectors, HVDC, renewable energy, transmission owner

Procedia PDF Downloads 157
5878 Water Resources Green Efficiency in China: Evaluation, Spatial Association Network Structure Analysis, and Influencing Factors

Authors: Tingyu Zhang

Abstract:

This paper utilizes the Super-SBM model to assess water resources green efficiency (WRGE) among provinces in China and investigate its spatial and temporal features, based on the characteristic framework of “economy-environment-society.” The social network analysis is employed to examine the network pattern and spatial interaction of WRGE. Further, the quadratic assignment procedure method is utilized for examining the influencing factors of the spatial association of WRGE regarding “relationship.” The study reveals that: (1) the spatial distribution of WRGE demonstrates a distribution pattern of Eastern>Western>Central; (2) a remarkable spatial association exists among provinces; however, no strict hierarchical structure is observed. The internal structure of the WRGE network is characterized by the feature of "Eastern strong and Western weak". The block model analysis discovers that the members of the “net spillover” and “two-way spillover” blocks are mostly in the eastern and central provinces; “broker” block, which plays an intermediary role, is mostly in the central provinces; and members of the “net beneficiary” block are mostly in the western region. (3) Differences in economic development, degree of urbanization, water use environment, and water management have significant impacts on the spatial connection of WRGE. This study is dedicated to the realization of regional linkages and synergistic enhancement of WRGE, which provides a meaningful basis for building a harmonious society of human and water coexistence.

Keywords: water resources green efficiency, super-SBM model, social network analysis, quadratic assignment procedure

Procedia PDF Downloads 61
5877 Research on Resilience-Oriented Disintegration in System-of-System

Authors: Hang Yang, Jiahao Liu, Jichao Li, Kewei Yang, Minghao Li, Bingfeng Ge

Abstract:

The system-of-systems (SoS) are utilized to characterize networks formed by integrating individual complex systems that demonstrate interdependence and interconnectedness. Research on the disintegration issue in SoS is significant in improving network survivability, maintaining network security, and optimizing SoS architecture. Accordingly, this study proposes an integrated framework called resilience-oriented disintegration in SoS (SoSRD), for modeling and solving the issue of SoS disintegration. Firstly, a SoS disintegration index (SoSDI) is presented to evaluate the disintegration effect of SoS. This index provides a practical description of the disintegration process and is the first integration of the network disintegration model and resilience models. Subsequently, we propose a resilience-oriented disintegration method based on reinforcement learning (RDRL) to enhance the efficiency of SoS disintegration. This method is not restricted by the problem scenario as well as considering the coexistence of disintegration (node/link removal) and recovery (node/link addition) during the process of SoS disintegration. Finally, the effectiveness and superiority of the proposed SoSRD are demonstrated through a case study. We demonstrate that our proposed framework outperforms existing indexes and methods in both node and link disintegration scenarios, providing a fresh perspective on network disintegration. The findings provide crucial insights into dismantling harmful SoS and designing a more resilient SoS.

Keywords: system-of-systems, disintegration index, resilience, reinforcement learning

Procedia PDF Downloads 14
5876 A Gender-Based Assessment of Rural Livelihood Vulnerability: The Case of Ehiamenkyene in the Fanteakwa District of Eastern Ghana

Authors: Gideon Baffoe, Hirotaka Matsuda

Abstract:

Rural livelihood systems are known to be inherently vulnerable. Attempt to reduce vulnerability is linked to developing resilience to both internal and external shocks, thereby increasing the overall sustainability of livelihood systems. The shocks and stresses could be induced by natural processes such as the climate and/or by social dynamics such as institutional failure. In this wise, livelihood vulnerability is understood as a combined effect of biophysical, economic, and social processes. However, previous empirical studies on livelihood vulnerability in the context of rural areas across the globe have tended to focus more on climate-induced vulnerability assessment with few studies empirically partially considering the multiple dimensions of livelihood vulnerability. This has left a gap in our understanding of the subject. Using the Livelihood Vulnerability Index (LVI), this study aims to comprehensively assess the livelihood vulnerability level of rural households using Ehiamenkyene, a community in the forest zone of Eastern Ghana as a case study. Though the present study adopts the LVI approach, it differs from the original framework in two respects; (1) it introduces institutional influence into the framework and (2) it appreciates the gender differences in livelihood vulnerability. The study utilized empirical data collected from 110 households’ in the community. The overall study results show a high livelihood vulnerability situation in the community with male-headed households likely to be more vulnerable than their female counterparts. Out of the seven subcomponents assessed, only two (socio-demographic profile and livelihood strategies) recorded low vulnerability scores of less than 0.5 with the remaining five (health status, food security, water accessibility, institutional influence and natural disasters and climate variability) recording scores above 0.5, with institutional influence being the component with the highest impact score. The results suggest that to improve the livelihood conditions of the people; there is the need to prioritize issues related to the operations of both internal and external institutions, health status, food security, water and climate variability in the community.

Keywords: assessment, gender, livelihood, rural, vulnerability

Procedia PDF Downloads 490
5875 Local Image Features Emerging from Brain Inspired Multi-Layer Neural Network

Authors: Hui Wei, Zheng Dong

Abstract:

Object recognition has long been a challenging task in computer vision. Yet the human brain, with the ability to rapidly and accurately recognize visual stimuli, manages this task effortlessly. In the past decades, advances in neuroscience have revealed some neural mechanisms underlying visual processing. In this paper, we present a novel model inspired by the visual pathway in primate brains. This multi-layer neural network model imitates the hierarchical convergent processing mechanism in the visual pathway. We show that local image features generated by this model exhibit robust discrimination and even better generalization ability compared with some existing image descriptors. We also demonstrate the application of this model in an object recognition task on image data sets. The result provides strong support for the potential of this model.

Keywords: biological model, feature extraction, multi-layer neural network, object recognition

Procedia PDF Downloads 542
5874 Effect of Filler Size and Shape on Positive Temperature Coefficient Effect

Authors: Eric Asare, Jamie Evans, Mark Newton, Emiliano Bilotti

Abstract:

Two types of filler shapes (sphere and flakes) and three different sizes are employed to study the size effect on PTC. The composite is prepared using a mini-extruder with high-density polyethylene (HDPE) as the matrix. A computer modelling is used to fit the experimental results. The percolation threshold decreases with decreasing filler size and this was observed for both the spherical particles as well as the flakes. This was caused by the decrease in interparticle distance with decreasing filler size. The 100 µm particles showed a larger PTC intensity compared to the 5 µm particles for the metal coated glass sphere and flake. The small particles have a large surface area and agglomeration and this makes it difficult for the conductive network to e disturbed. Increasing the filler content decreased the PTC intensity and this is due to an increase in the conductive network within the polymer matrix hence more energy is needed to disrupt the network.

Keywords: positive temperature coefficient (PTC) effect, conductive polymer composite (CPC), electrical conductivity

Procedia PDF Downloads 427
5873 Resilience-Based Emergency Bridge Inspection Routing and Repair Scheduling under Uncertainty

Authors: Zhenyu Zhang, Hsi-Hsien Wei

Abstract:

Highway network systems play a vital role in disaster response for disaster-damaged areas. Damaged bridges in such network systems can impede disaster response by disrupting transportation of rescue teams or humanitarian supplies. Therefore, emergency inspection and repair of bridges to quickly collect damage information of bridges and recover the functionality of highway networks is of paramount importance to disaster response. A widely used measure of a network’s capability to recover from disasters is resilience. To enhance highway network resilience, plenty of studies have developed various repair scheduling methods for the prioritization of bridge-repair tasks. These methods assume that repair activities are performed after the damage to a highway network is fully understood via inspection, although inspecting all bridges in a regional highway network may take days, leading to the significant delay in repairing bridges. In reality, emergency repair activities can be commenced as soon as the damage data of some bridges that are crucial to emergency response are obtained. Given that emergency bridge inspection and repair (EBIR) activities are executed simultaneously in the response phase, the real-time interactions between these activities can occur – the blockage of highways due to repair activities can affect inspection routes which in turn have an impact on emergency repair scheduling by providing real-time information on bridge damages. However, the impact of such interactions on the optimal emergency inspection routes (EIR) and emergency repair schedules (ERS) has not been discussed in prior studies. To overcome the aforementioned deficiencies, this study develops a routing and scheduling model for EBIR while accounting for real-time inspection-repair interactions to maximize highway network resilience. A stochastic, time-dependent integer program is proposed for the complex and real-time interacting EBIR problem given multiple inspection and repair teams at locations as set post-disaster. A hybrid genetic algorithm that integrates a heuristic approach into a traditional genetic algorithm to accelerate the evolution process is developed. Computational tests are performed using data from the 2008 Wenchuan earthquake, based on a regional highway network in Sichuan, China, consisting of 168 highway bridges on 36 highways connecting 25 cities/towns. The results show that the simultaneous implementation of bridge inspection and repair activities can significantly improve the highway network resilience. Moreover, the deployment of inspection and repair teams should match each other, and the network resilience will not be improved once the unilateral increase in inspection teams or repair teams exceeds a certain level. This study contributes to both knowledge and practice. First, the developed mathematical model makes it possible for capturing the impact of real-time inspection-repair interactions on inspection routing and repair scheduling and efficiently deriving optimal EIR and ERS on a large and complex highway network. Moreover, this study contributes to the organizational dimension of highway network resilience by providing optimal strategies for highway bridge management. With the decision support tool, disaster managers are able to identify the most critical bridges for disaster management and make decisions on proper inspection and repair strategies to improve highway network resilience.

Keywords: disaster management, emergency bridge inspection and repair, highway network, resilience, uncertainty

Procedia PDF Downloads 109
5872 Integrating Circular Economy Framework into Life Cycle Analysis: An Exploratory Study Applied to Geothermal Power Generation Technologies

Authors: Jingyi Li, Laurence Stamford, Alejandro Gallego-Schmid

Abstract:

Renewable electricity has become an indispensable contributor to achieving net-zero by the mid-century to tackle climate change. Unlike solar, wind, or hydro, geothermal was stagnant in its electricity production development for decades. However, with the significant breakthrough made in recent years, especially the implementation of enhanced geothermal systems (EGS) in various regions globally, geothermal electricity could play a pivotal role in alleviating greenhouse gas emissions. Life cycle assessment has been applied to analyze specific geothermal power generation technologies, which proposed suggestions to optimize its environmental performance. For instance, selecting a high heat gradient region enables a higher flow rate from the production well and extends the technical lifespan. Although such process-level improvements have been made, the significance of geothermal power generation technologies so far has not explicitly displayed its competitiveness on a broader horizon. Therefore, this review-based study integrates a circular economy framework into life cycle assessment, clarifying the underlying added values for geothermal power plants to complete the sustainability profile. The derived results have provided an enlarged platform to discuss geothermal power generation technologies: (i) recover the heat and electricity from the process to reduce the fossil fuel requirements; (ii) recycle the construction materials, such as copper, steel, and aluminum for future projects; (iii) extract the lithium ions from geothermal brine and make geothermal reservoir become a potential supplier of the lithium battery industry; (iv) repurpose the abandoned oil and gas wells to build geothermal power plants; (v) integrate geothermal energy with other available renewable energies (e.g., solar and wind) to provide heat and electricity as a hybrid system at different weather; (vi) rethink the fluids used in stimulation process (EGS only), replace water with CO2 to achieve negative emissions from the system. These results provided a new perspective to the researchers, investors, and policymakers to rethink the role of geothermal in the energy supply network.

Keywords: climate, renewable energy, R strategies, sustainability

Procedia PDF Downloads 137
5871 Relevance in the Water-Energy-Food nexus: an Opportunity for Promoting Socio Economic Development in Algeria

Authors: Nadjib Drouiche

Abstract:

Water resources in Algeria are scarce, often low quality, fragile, and unevenly distributed in space and time. The pressure on water resources can be associated with industrial development, a steady population growth, and demanding land irrigation measures. These conditions createa tense competitionfor managing waterresourcesand sharing thembetween agricultural development, drinking water supply, industrial activities, etc. Moreover, the impact of climate change has placed in the forefront national policies focused on the water-energy-food nexus (WEF). In this context, desalination membrane technologies could play an increasing rolefor supporting segments of the Algerian economy that are heavily water-dependent. By implementing water reuse and desalination strategies together in the agricultural sector, there is an opportunity to expand the access to healthy food and clean water, thereby keeping the WEF nexus effects under control.

Keywords: desalination, mitigation, climate change, sustainable development goals

Procedia PDF Downloads 97
5870 A Framework for Security Risk Level Measures Using CVSS for Vulnerability Categories

Authors: Umesh Kumar Singh, Chanchala Joshi

Abstract:

With increasing dependency on IT infrastructure, the main objective of a system administrator is to maintain a stable and secure network, with ensuring that the network is robust enough against malicious network users like attackers and intruders. Security risk management provides a way to manage the growing threats to infrastructures or system. This paper proposes a framework for risk level estimation which uses vulnerability database National Institute of Standards and Technology (NIST) National Vulnerability Database (NVD) and the Common Vulnerability Scoring System (CVSS). The proposed framework measures the frequency of vulnerability exploitation; converges this measured frequency with standard CVSS score and estimates the security risk level which helps in automated and reasonable security management. In this paper equation for the Temporal score calculation with respect to availability of remediation plan is derived and further, frequency of exploitation is calculated with determined temporal score. The frequency of exploitation along with CVSS score is used to calculate the security risk level of the system. The proposed framework uses the CVSS vectors for risk level estimation and measures the security level of specific network environment, which assists system administrator for assessment of security risks and making decision related to mitigation of security risks.

Keywords: CVSS score, risk level, security measurement, vulnerability category

Procedia PDF Downloads 321
5869 A Distributed Mobile Agent Based on Intrusion Detection System for MANET

Authors: Maad Kamal Al-Anni

Abstract:

This study is about an algorithmic dependence of Artificial Neural Network on Multilayer Perceptron (MPL) pertaining to the classification and clustering presentations for Mobile Adhoc Network vulnerabilities. Moreover, mobile ad hoc network (MANET) is ubiquitous intelligent internetworking devices in which it has the ability to detect their environment using an autonomous system of mobile nodes that are connected via wireless links. Security affairs are the most important subject in MANET due to the easy penetrative scenarios occurred in such an auto configuration network. One of the powerful techniques used for inspecting the network packets is Intrusion Detection System (IDS); in this article, we are going to show the effectiveness of artificial neural networks used as a machine learning along with stochastic approach (information gain) to classify the malicious behaviors in simulated network with respect to different IDS techniques. The monitoring agent is responsible for detection inference engine, the audit data is collected from collecting agent by simulating the node attack and contrasted outputs with normal behaviors of the framework, whenever. In the event that there is any deviation from the ordinary behaviors then the monitoring agent is considered this event as an attack , in this article we are going to demonstrate the  signature-based IDS approach in a MANET by implementing the back propagation algorithm over ensemble-based Traffic Table (TT), thus the signature of malicious behaviors or undesirable activities are often significantly prognosticated and efficiently figured out, by increasing the parametric set-up of Back propagation algorithm during the experimental results which empirically shown its effectiveness  for the ratio of detection index up to 98.6 percentage. Consequently it is proved in empirical results in this article, the performance matrices are also being included in this article with Xgraph screen show by different through puts like Packet Delivery Ratio (PDR), Through Put(TP), and Average Delay(AD).

Keywords: Intrusion Detection System (IDS), Mobile Adhoc Networks (MANET), Back Propagation Algorithm (BPA), Neural Networks (NN)

Procedia PDF Downloads 194
5868 Maximizing Coverage with Mobile Crime Cameras in a Stochastic Spatiotemporal Bipartite Network

Authors: (Ted) Edward Holmberg, Mahdi Abdelguerfi, Elias Ioup

Abstract:

This research details a coverage measure for evaluating the effectiveness of observer node placements in a spatial bipartite network. This coverage measure can be used to optimize the configuration of stationary or mobile spatially oriented observer nodes, or a hybrid of the two, over time in order to fully utilize their capabilities. To demonstrate the practical application of this approach, we construct a SpatioTemporal Bipartite Network (STBN) using real-time crime center (RTCC) camera nodes and NOPD calls for service (CFS) event nodes from New Orleans, La (NOLA). We use the coverage measure to identify optimal placements for moving mobile RTCC camera vans to improve coverage of vulnerable areas based on temporal patterns.

Keywords: coverage measure, mobile node dynamics, Monte Carlo simulation, observer nodes, observable nodes, spatiotemporal bipartite knowledge graph, temporal spatial analysis

Procedia PDF Downloads 114
5867 Review on Application of DVR in Compensation of Voltage Harmonics in Power Systems

Authors: S. Sudhharani

Abstract:

Energy distribution networks are the main link between the energy industry and consumers and are subject to the most scrutiny and testing of any category. As a result, it is important to monitor energy levels during the distribution phase. Power distribution networks, on the other hand, remain subject to common problems, including voltage breakdown, power outages, harmonics, and capacitor switching, all of which disrupt sinusoidal waveforms and reduce the quality and power of the network. Using power appliances in the form of custom power appliances is one way to deal with energy quality issues. Dynamic Voltage Restorer (DVR), integrated with network and distribution networks, is one of these devices. At the same time, by injecting voltage into the system, it can adjust the voltage amplitude and phase in the network. In the form of injections and three-phase syncing, it is used to compensate for the difficulty of energy quality. This article examines the recent use of DVR for power compensation and provides data on the control of each DVR in distribution networks.

Keywords: dynamic voltage restorer (DVR), power quality, distribution networks, control systems(PWM)

Procedia PDF Downloads 136
5866 A Mechanical Diagnosis Method Based on Vibration Fault Signal down-Sampling and the Improved One-Dimensional Convolutional Neural Network

Authors: Bowei Yuan, Shi Li, Liuyang Song, Huaqing Wang, Lingli Cui

Abstract:

Convolutional neural networks (CNN) have received extensive attention in the field of fault diagnosis. Many fault diagnosis methods use CNN for fault type identification. However, when the amount of raw data collected by sensors is massive, the neural network needs to perform a time-consuming classification task. In this paper, a mechanical fault diagnosis method based on vibration signal down-sampling and the improved one-dimensional convolutional neural network is proposed. Through the robust principal component analysis, the low-rank feature matrix of a large amount of raw data can be separated, and then down-sampling is realized to reduce the subsequent calculation amount. In the improved one-dimensional CNN, a smaller convolution kernel is used to reduce the number of parameters and computational complexity, and regularization is introduced before the fully connected layer to prevent overfitting. In addition, the multi-connected layers can better generalize classification results without cumbersome parameter adjustments. The effectiveness of the method is verified by monitoring the signal of the centrifugal pump test bench, and the average test accuracy is above 98%. When compared with the traditional deep belief network (DBN) and support vector machine (SVM) methods, this method has better performance.

Keywords: fault diagnosis, vibration signal down-sampling, 1D-CNN

Procedia PDF Downloads 131