Search results for: Privacy Preserving Data Publication (PPDP)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 26027

Search results for: Privacy Preserving Data Publication (PPDP)

24587 Temporality, Place and Autobiography in J.M. Coetzee’s 'Summertime'

Authors: Barbara Janari

Abstract:

In this paper it is argued that the effect of the disjunctive temporality in Summertime (the third of J.M. Coetzee’s fictionalised memoirs) is two-fold: firstly, it reflects the memoir’s ambivalent, contradictory representations of place in order to emphasize the fractured sense of self growing up in South Africa during apartheid entailed for Coetzee. Secondly, it reconceives the autobiographical discourse as one that foregrounds the inherent fictionality of all texts. The memoir’s narrative is filtered through intricate textual strategies that disrupt the chronological movement of the narrative, evoking the labyrinthine ways in which the past and present intersect and interpenetrate each other. It is framed by entries from Coetzee’s Notebooks: it opens with entries that cover the years 1972–1975, and ends with a number of undated fragments from his Notebooks. Most of the entries include a short ‘memo’ at the end, added between 1999 and 2000. While the memos follow the Notebook entries in the text, they are separated by decades. Between the Notebook entries is a series of interviews conducted by Vincent, the text’s putative biographer, between 2007 and 2008, based on recollections from five people who had known Coetzee in the 1970s – a key period in John’s life as it marks both his return to South Africa after a failed emigration attempt to America, and the beginning of his writing career, with the publication of Dusklands in 1974. The relationship between the memoir’s various parts is a key feature of Coetzee’s representation of place in Summertime, which is constructed as a composite one in which the principle of reflexive referencing has to be adopted. In other words, readers have to suspend individual references temporarily until the relationships between the parts have been connected to each other. In order to apprehend meaning in the text, the disparate narrative elements have to first be tied together. In this text, then, the experience of time as ordered and chronological is ruptured. Instead, the memoir’s themes and patterns become apparent most clearly through reflexive referencing, by which relationships between disparate sections of the text are linked. The image of the fictional John that emerges from the text is a composite of this John and the author, J.M. Coetzee, and is one which embodies Coetzee’s often fraught relationship with his home country, South Africa.

Keywords: autobiography, place, reflexive referencing, temporality

Procedia PDF Downloads 83
24586 Develop a Conceptual Data Model of Geotechnical Risk Assessment in Underground Coal Mining Using a Cloud-Based Machine Learning Platform

Authors: Reza Mohammadzadeh

Abstract:

The major challenges in geotechnical engineering in underground spaces arise from uncertainties and different probabilities. The collection, collation, and collaboration of existing data to incorporate them in analysis and design for given prospect evaluation would be a reliable, practical problem solving method under uncertainty. Machine learning (ML) is a subfield of artificial intelligence in statistical science which applies different techniques (e.g., Regression, neural networks, support vector machines, decision trees, random forests, genetic programming, etc.) on data to automatically learn and improve from them without being explicitly programmed and make decisions and predictions. In this paper, a conceptual database schema of geotechnical risks in underground coal mining based on a cloud system architecture has been designed. A new approach of risk assessment using a three-dimensional risk matrix supported by the level of knowledge (LoK) has been proposed in this model. Subsequently, the model workflow methodology stages have been described. In order to train data and LoK models deployment, an ML platform has been implemented. IBM Watson Studio, as a leading data science tool and data-driven cloud integration ML platform, is employed in this study. As a Use case, a data set of geotechnical hazards and risk assessment in underground coal mining were prepared to demonstrate the performance of the model, and accordingly, the results have been outlined.

Keywords: data model, geotechnical risks, machine learning, underground coal mining

Procedia PDF Downloads 280
24585 Classification of Poverty Level Data in Indonesia Using the Naïve Bayes Method

Authors: Anung Style Bukhori, Ani Dijah Rahajoe

Abstract:

Poverty poses a significant challenge in Indonesia, requiring an effective analytical approach to understand and address this issue. In this research, we applied the Naïve Bayes classification method to examine and classify poverty data in Indonesia. The main focus is on classifying data using RapidMiner, a powerful data analysis platform. The analysis process involves data splitting to train and test the classification model. First, we collected and prepared a poverty dataset that includes various factors such as education, employment, and health..The experimental results indicate that the Naïve Bayes classification model can provide accurate predictions regarding the risk of poverty. The use of RapidMiner in the analysis process offers flexibility and efficiency in evaluating the model's performance. The classification produces several values to serve as the standard for classifying poverty data in Indonesia using Naive Bayes. The accuracy result obtained is 40.26%, with a moderate recall result of 35.94%, a high recall result of 63.16%, and a low recall result of 38.03%. The precision for the moderate class is 58.97%, for the high class is 17.39%, and for the low class is 58.70%. These results can be seen from the graph below.

Keywords: poverty, classification, naïve bayes, Indonesia

Procedia PDF Downloads 65
24584 The Effectiveness of Probiotics in the Treatment of Minimal Hepatic Encephalopathy Among Patients with Cirrhosis: An Expanded Meta-Analysis

Authors: Erwin Geroleo, Higinio Mappala

Abstract:

Introduction Overt Hepatic Encephalopathy (OHE) is the most dreaded outcome of liver cirrhosis. Aside from the triggering factors which are already known to precipitate OHE, there is growing evidence that an altered gut microbiota profile (dysbiosis) can also trigger OHE. MHE is the mildest form of hepatic encephalopathy(HE), affecting about one-third of patients with cirrhosis, and close 80% of patients with cirrhosis and manifests as abnormalities in central nervous system function. Since these symptoms are subclinical most patients are not being treated to prevent OHE. The gut microbiota have been evaluated by several studies as a therapeutic option for MHE, especially in decreasing the levels of ammonia, thus preventing progression to OHE Objectives This study aims to evaluate the efficacy of probiotics in terms of reduction of ammonia levels in patient with minimal hepatic encephalopathies and to determine if Probiotics has role in the prevention of progression to overt hepatic encephalopathy in adult patients with minimal hepatic encephalopathy (MHE) Methods and Analysis The literature search strategy was restricted to human studies in adults subjects from 2004 to 2022. The Jadad Score Calculation was utilized in the assessment of the final studies included in this study. Eight (8) studies were included. Cochrane’s Revman Web, the Fixed Effects model and the Ztest were all used in the overall analysis of the outcomes. A p value of less than 0.0005 was statistically significant. Results. These results show that Probiotics significantly lowers the level of Ammonia in Cirrhotic patients with OHE. It also shows that the use of Probiotics significantly prevents the progression of MHE to OHE. The overall risk of bias graph indicates low risk of publication bias among the studies included in the meta-analysis. Main findings This research found that plasma ammonia concentration was lower among participants treated with probiotics (p<0.00001).) Ammonia level of the probiotics group is lower by 13.96 μmol/ on the average. Overall risk of developing overt hepatic encephalopathy in the probiotics group is shown to be decreased by 15% as compared to the placebo group Conclusion The analysis showed that compared with placebo, probiotics can decrease serum ammonia, may improve MHE and may prevent OHE.

Keywords: minimal hepatic encephalopathy, probiotics, liver cirrhosis, overt hepatic encephalopathy

Procedia PDF Downloads 54
24583 Web Search Engine Based Naming Procedure for Independent Topic

Authors: Takahiro Nishigaki, Takashi Onoda

Abstract:

In recent years, the number of document data has been increasing since the spread of the Internet. Many methods have been studied for extracting topics from large document data. We proposed Independent Topic Analysis (ITA) to extract topics independent of each other from large document data such as newspaper data. ITA is a method for extracting the independent topics from the document data by using the Independent Component Analysis. The topic represented by ITA is represented by a set of words. However, the set of words is quite different from the topics the user imagines. For example, the top five words with high independence of a topic are as follows. Topic1 = {"scor", "game", "lead", "quarter", "rebound"}. This Topic 1 is considered to represent the topic of "SPORTS". This topic name "SPORTS" has to be attached by the user. ITA cannot name topics. Therefore, in this research, we propose a method to obtain topics easy for people to understand by using the web search engine, topics given by the set of words given by independent topic analysis. In particular, we search a set of topical words, and the title of the homepage of the search result is taken as the topic name. And we also use the proposed method for some data and verify its effectiveness.

Keywords: independent topic analysis, topic extraction, topic naming, web search engine

Procedia PDF Downloads 124
24582 Extracting Terrain Points from Airborne Laser Scanning Data in Densely Forested Areas

Authors: Ziad Abdeldayem, Jakub Markiewicz, Kunal Kansara, Laura Edwards

Abstract:

Airborne Laser Scanning (ALS) is one of the main technologies for generating high-resolution digital terrain models (DTMs). DTMs are crucial to several applications, such as topographic mapping, flood zone delineation, geographic information systems (GIS), hydrological modelling, spatial analysis, etc. Laser scanning system generates irregularly spaced three-dimensional cloud of points. Raw ALS data are mainly ground points (that represent the bare earth) and non-ground points (that represent buildings, trees, cars, etc.). Removing all the non-ground points from the raw data is referred to as filtering. Filtering heavily forested areas is considered a difficult and challenging task as the canopy stops laser pulses from reaching the terrain surface. This research presents an approach for removing non-ground points from raw ALS data in densely forested areas. Smoothing splines are exploited to interpolate and fit the noisy ALS data. The presented filter utilizes a weight function to allocate weights for each point of the data. Furthermore, unlike most of the methods, the presented filtering algorithm is designed to be automatic. Three different forested areas in the United Kingdom are used to assess the performance of the algorithm. The results show that the generated DTMs from the filtered data are accurate (when compared against reference terrain data) and the performance of the method is stable for all the heavily forested data samples. The average root mean square error (RMSE) value is 0.35 m.

Keywords: airborne laser scanning, digital terrain models, filtering, forested areas

Procedia PDF Downloads 142
24581 Estimating the Life-Distribution Parameters of Weibull-Life PV Systems Utilizing Non-Parametric Analysis

Authors: Saleem Z. Ramadan

Abstract:

In this paper, a model is proposed to determine the life distribution parameters of the useful life region for the PV system utilizing a combination of non-parametric and linear regression analysis for the failure data of these systems. Results showed that this method is dependable for analyzing failure time data for such reliable systems when the data is scarce.

Keywords: masking, bathtub model, reliability, non-parametric analysis, useful life

Procedia PDF Downloads 564
24580 Preliminary Design of Maritime Energy Management System: Naval Architectural Approach to Resolve Recent Limitations

Authors: Seyong Jeong, Jinmo Park, Jinhyoun Park, Boram Kim, Kyoungsoo Ahn

Abstract:

Energy management in the maritime industry is being required by economics and in conformity with new legislative actions taken by the International Maritime Organization (IMO) and the European Union (EU). In response, the various performance monitoring methodologies and data collection practices have been examined by different stakeholders. While many assorted advancements in operation and technology are applicable, their adoption in the shipping industry stays small. This slow uptake can be considered due to many different barriers such as data analysis problems, misreported data, and feedback problems, etc. This study presents a conceptual design of an energy management system (EMS) and proposes the methodology to resolve the limitations (e.g., data normalization using naval architectural evaluation, management of misrepresented data, and feedback from shore to ship through management of performance analysis history). We expect this system to make even short-term charterers assess the ship performance properly and implement sustainable fleet control.

Keywords: data normalization, energy management system, naval architectural evaluation, ship performance analysis

Procedia PDF Downloads 453
24579 Geospatial Data Complexity in Electronic Airport Layout Plan

Authors: Shyam Parhi

Abstract:

Airports GIS program collects Airports data, validate and verify it, and stores it in specific database. Airports GIS allows authorized users to submit changes to airport data. The verified data is used to develop several engineering applications. One of these applications is electronic Airport Layout Plan (eALP) whose primary aim is to move from paper to digital form of ALP. The first phase of development of eALP was completed recently and it was tested for a few pilot program airports across different regions. We conducted gap analysis and noticed that a lot of development work is needed to fine tune at least six mandatory sheets of eALP. It is important to note that significant amount of programming is needed to move from out-of-box ArcGIS to a much customized ArcGIS which will be discussed. The ArcGIS viewer capability to display essential features like runway or taxiway or the perpendicular distance between them will be discussed. An enterprise level workflow which incorporates coordination process among different lines of business will be highlighted.

Keywords: geospatial data, geology, geographic information systems, aviation

Procedia PDF Downloads 421
24578 NSBS: Design of a Network Storage Backup System

Authors: Xinyan Zhang, Zhipeng Tan, Shan Fan

Abstract:

The first layer of defense against data loss is the backup data. This paper implements an agent-based network backup system used the backup, server-storage and server-backup agent these tripartite construction, and we realize the snapshot and hierarchical index in the NSBS. It realizes the control command and data flow separation, balances the system load, thereby improving the efficiency of the system backup and recovery. The test results show the agent-based network backup system can effectively improve the task-based concurrency, reasonably allocate network bandwidth, the system backup performance loss costs smaller and improves data recovery efficiency by 20%.

Keywords: agent, network backup system, three architecture model, NSBS

Procedia PDF Downloads 464
24577 A t-SNE and UMAP Based Neural Network Image Classification Algorithm

Authors: Shelby Simpson, William Stanley, Namir Naba, Xiaodi Wang

Abstract:

Both t-SNE and UMAP are brand new state of art tools to predominantly preserve the local structure that is to group neighboring data points together, which indeed provides a very informative visualization of heterogeneity in our data. In this research, we develop a t-SNE and UMAP base neural network image classification algorithm to embed the original dataset to a corresponding low dimensional dataset as a preprocessing step, then use this embedded database as input to our specially designed neural network classifier for image classification. We use the fashion MNIST data set, which is a labeled data set of images of clothing objects in our experiments. t-SNE and UMAP are used for dimensionality reduction of the data set and thus produce low dimensional embeddings. Furthermore, we use the embeddings from t-SNE and UMAP to feed into two neural networks. The accuracy of the models from the two neural networks is then compared to a dense neural network that does not use embedding as an input to show which model can classify the images of clothing objects more accurately.

Keywords: t-SNE, UMAP, fashion MNIST, neural networks

Procedia PDF Downloads 204
24576 An Online Adaptive Thresholding Method to Classify Google Trends Data Anomalies for Investor Sentiment Analysis

Authors: Duygu Dere, Mert Ergeneci, Kaan Gokcesu

Abstract:

Google Trends data has gained increasing popularity in the applications of behavioral finance, decision science and risk management. Because of Google’s wide range of use, the Trends statistics provide significant information about the investor sentiment and intention, which can be used as decisive factors for corporate and risk management fields. However, an anomaly, a significant increase or decrease, in a certain query cannot be detected by the state of the art applications of computation due to the random baseline noise of the Trends data, which is modelled as an Additive white Gaussian noise (AWGN). Since through time, the baseline noise power shows a gradual change an adaptive thresholding method is required to track and learn the baseline noise for a correct classification. To this end, we introduce an online method to classify meaningful deviations in Google Trends data. Through extensive experiments, we demonstrate that our method can successfully classify various anomalies for plenty of different data.

Keywords: adaptive data processing, behavioral finance , convex optimization, online learning, soft minimum thresholding

Procedia PDF Downloads 174
24575 Military Role of Russia beyond Its National Boundary

Authors: Nipuli Gajanayake

Abstract:

The Russian military role beyond its national frontier has become a debatable hot topic in the international political arena. It’s advanced, and strategic responses in combating regional and international security problems have always been a factor to debate and criticize. Under such critical circumstances, Russia is attentive to play its military role according to the provisions of the Military Doctrine of the Russian Federation. Most importantly, the legal basis of the doctrine has also consisted with the generally recognized principles and norms of international law. Therefore, Russian international military assistances are pledged to accomplish international peace and security. The expansion of Russian military participation in the United Nations Peacekeeping operations, and military- political, and technical cooperation have largely evident the great effort of Russia in maintaining and restoring international peace and security. Moreover, the conflict management diplomacy and the development of dialogue with nation states to confront military risks and threats can also identify as a part of preserving international peace and security. In addition, Russia strives to strengthen the system of collective security with regional and international organizations through the legal framework of the Collective Security Treaty Organization (CSTO). Maintaining cooperative ties with the Commonwealth of Independent States (CIS), the Organization for Security and Cooperation in Europe (OSCE) and the Shanghai Cooperation Organization (SCO) have highlighted the Russian deliberation on maintaining regional peace and security. Nevertheless, the extension of cordial relations with nation states and providing of military assistances during tensions and conflicts on their territories can also underscore as Russians commitments on maintaining international peace and security. Observing and recognizing the disparity between the West portrayed terms like ‘illegal Russian interventions’ and the comprehensive reality behind the ‘Russian military assistances’ are important to understand. However, a lopsided vision or a perspective towards the Russian international military role would not present a clear understanding about its valued and also dedicated hard work on maintaining international peace and security.

Keywords: collective security, diplomacy, international military role of Russia, international peace and security

Procedia PDF Downloads 304
24574 Audit and Assurance Program for AI-Based Technologies

Authors: Beatrice Arthur

Abstract:

The rapid development of artificial intelligence (AI) has transformed various industries, enabling faster and more accurate decision-making processes. However, with these advancements come increased risks, including data privacy issues, systemic biases, and challenges related to transparency and accountability. As AI technologies become more integrated into business processes, there is a growing need for comprehensive auditing and assurance frameworks to manage these risks and ensure ethical use. This paper provides a literature review on AI auditing and assurance programs, highlighting the importance of adapting traditional audit methodologies to the complexities of AI-driven systems. Objective: The objective of this review is to explore current AI audit practices and their role in mitigating risks, ensuring accountability, and fostering trust in AI systems. The study aims to provide a structured framework for developing audit programs tailored to AI technologies while also investigating how AI impacts governance, risk management, and regulatory compliance in various sectors. Methodology: This research synthesizes findings from academic publications and industry reports from 2014 to 2024, focusing on the intersection of AI technologies and IT assurance practices. The study employs a qualitative review of existing audit methodologies and frameworks, particularly the COBIT 2019 framework, to understand how audit processes can be aligned with AI governance and compliance standards. The review also considers real-time auditing as an emerging necessity for influencing AI system design during early development stages. Outcomes: Preliminary findings indicate that while AI auditing is still in its infancy, it is rapidly gaining traction as both a risk management strategy and a potential driver of business innovation. Auditors are increasingly being called upon to develop controls that address the ethical and operational risks posed by AI systems. The study highlights the need for continuous monitoring and adaptable audit techniques to handle the dynamic nature of AI technologies. Future Directions: Future research will explore the development of AI-specific audit tools and real-time auditing capabilities that can keep pace with evolving technologies. There is also a need for cross-industry collaboration to establish universal standards for AI auditing, particularly in high-risk sectors like healthcare and finance. Further work will involve engaging with industry practitioners and policymakers to refine the proposed governance and audit frameworks. Funding/Support Acknowledgements: This research is supported by the Information Systems Assurance Management Program at Concordia University of Edmonton.

Keywords: AI auditing, assurance, risk management, governance, COBIT 2019, transparency, accountability, machine learning, compliance

Procedia PDF Downloads 31
24573 Energy Efficient Assessment of Energy Internet Based on Data-Driven Fuzzy Integrated Cloud Evaluation Algorithm

Authors: Chuanbo Xu, Xinying Li, Gejirifu De, Yunna Wu

Abstract:

Energy Internet (EI) is a new form that deeply integrates the Internet and the entire energy process from production to consumption. The assessment of energy efficient performance is of vital importance for the long-term sustainable development of EI project. Although the newly proposed fuzzy integrated cloud evaluation algorithm considers the randomness of uncertainty, it relies too much on the experience and knowledge of experts. Fortunately, the enrichment of EI data has enabled the utilization of data-driven methods. Therefore, the main purpose of this work is to assess the energy efficient of park-level EI by using a combination of a data-driven method with the fuzzy integrated cloud evaluation algorithm. Firstly, the indicators for the energy efficient are identified through literature review. Secondly, the artificial neural network (ANN)-based data-driven method is employed to cluster the values of indicators. Thirdly, the energy efficient of EI project is calculated through the fuzzy integrated cloud evaluation algorithm. Finally, the applicability of the proposed method is demonstrated by a case study.

Keywords: energy efficient, energy internet, data-driven, fuzzy integrated evaluation, cloud model

Procedia PDF Downloads 207
24572 Graph Based Traffic Analysis and Delay Prediction Using a Custom Built Dataset

Authors: Gabriele Borg, Alexei Debono, Charlie Abela

Abstract:

There on a constant rise in the availability of high volumes of data gathered from multiple sources, resulting in an abundance of unprocessed information that can be used to monitor patterns and trends in user behaviour. Similarly, year after year, Malta is also constantly experiencing ongoing population growth and an increase in mobilization demand. This research takes advantage of data which is continuously being sourced and converting it into useful information related to the traffic problem on the Maltese roads. The scope of this paper is to provide a methodology to create a custom dataset (MalTra - Malta Traffic) compiled from multiple participants from various locations across the island to identify the most common routes taken to expose the main areas of activity. This use of big data is seen being used in various technologies and is referred to as ITSs (Intelligent Transportation Systems), which has been concluded that there is significant potential in utilising such sources of data on a nationwide scale. Furthermore, a series of traffic prediction graph neural network models are conducted to compare MalTra to large-scale traffic datasets.

Keywords: graph neural networks, traffic management, big data, mobile data patterns

Procedia PDF Downloads 138
24571 How Students Use WhatsApp to Access News

Authors: Emmanuel Habiyakare

Abstract:

The COVID-19 pandemic has highlighted the significance of educational technologies in teaching and learning. The global pandemic led to the closure of educational institutions worldwide, prompting the widespread implementation of online learning as a substitute method for delivering curricula. The communication platform is known as WhatsApp has gained widespread adoption and extensive utilisation within the realm of education. The primary aims of this literature review are to examine the utilisation patterns and obstacles linked to the implementation of WhatsApp in the realm of education, assess the advantages and possibilities that students and facilitators can derive from utilising this platform for educational purposes, and comprehend the hindrances and restrictions that arise when employing WhatsApp in an academic environment. The literature was acquired through the utilisation of keywords that are linked to both WhatsApp and education from diverse databases. Having a thorough comprehension of current trends, potential advantages, obstacles, and gains linked to the use of WhatsApp is imperative for lecturers and administrators. Scholarly investigations have revealed a noticeable trend of lecturers and students increasingly utilising WhatsApp as a means of communication and collaboration. The objective of this literature review is to make a noteworthy contribution to the domain of education and technology through an investigation of the potential of WhatsApp as a learning tool. Additionally, this review seeks to offer valuable insights on how to effectively incorporate WhatsApp into pedagogical practices. The article underscores the significance of taking into account privacy and security concerns while utilising WhatsApp for educational objectives and puts forth recommendations for additional investigation.

Keywords: tool, COVID-19, opportunities, challenges, learning, WhatsApp

Procedia PDF Downloads 38
24570 Learning Compression Techniques on Smart Phone

Authors: Farouk Lawan Gambo, Hamada Mohammad

Abstract:

Data compression shrinks files into fewer bits than their original presentation. It has more advantage on the internet because the smaller a file, the faster it can be transferred but learning most of the concepts in data compression are abstract in nature, therefore, making them difficult to digest by some students (engineers in particular). This paper studies the learning preference of engineering students who tend to have strong, active, sensing, visual and sequential learning preferences, the paper also studies the three shift of technology-aided that learning has experienced, which mobile learning has been considered to be the feature of learning that will integrate other form of the education process. Lastly, we propose a design and implementation of mobile learning application using software engineering methodology that will enhance the traditional teaching and learning of data compression techniques.

Keywords: data compression, learning preference, mobile learning, multimedia

Procedia PDF Downloads 455
24569 Investigation of Delivery of Triple Play Services

Authors: Paramjit Mahey, Monica Sharma, Jasbinder Singh

Abstract:

Fiber based access networks can deliver performance that can support the increasing demands for high speed connections. One of the new technologies that have emerged in recent years is Passive Optical Networks. This paper is targeted to show the simultaneous delivery of triple play service (data, voice and video). The comparative investigation and suitability of various data rates is presented. It is demonstrated that as we increase the data rate, number of users to be accommodated decreases due to increase in bit error rate.

Keywords: BER, PON, TDMPON, GPON, CWDM, OLT, ONT

Procedia PDF Downloads 544
24568 Nazca: A Context-Based Matching Method for Searching Heterogeneous Structures

Authors: Karine B. de Oliveira, Carina F. Dorneles

Abstract:

The structure level matching is the problem of combining elements of a structure, which can be represented as entities, classes, XML elements, web forms, and so on. This is a challenge due to large number of distinct representations of semantically similar structures. This paper describes a structure-based matching method applied to search for different representations in data sources, considering the similarity between elements of two structures and the data source context. Using real data sources, we have conducted an experimental study comparing our approach with our baseline implementation and with another important schema matching approach. We demonstrate that our proposal reaches higher precision than the baseline.

Keywords: context, data source, index, matching, search, similarity, structure

Procedia PDF Downloads 367
24567 Spatially Random Sampling for Retail Food Risk Factors Study

Authors: Guilan Huang

Abstract:

In 2013 and 2014, the U.S. Food and Drug Administration (FDA) collected data from selected fast food restaurants and full service restaurants for tracking changes in the occurrence of foodborne illness risk factors. This paper discussed how we customized spatial random sampling method by considering financial position and availability of FDA resources, and how we enriched restaurants data with location. Location information of restaurants provides opportunity for quantitatively determining random sampling within non-government units (e.g.: 240 kilometers around each data-collector). Spatial analysis also could optimize data-collectors’ work plans and resource allocation. Spatial analytic and processing platform helped us handling the spatial random sampling challenges. Our method fits in FDA’s ability to pinpoint features of foodservice establishments, and reduced both time and expense on data collection.

Keywords: geospatial technology, restaurant, retail food risk factor study, spatially random sampling

Procedia PDF Downloads 352
24566 Automatic MC/DC Test Data Generation from Software Module Description

Authors: Sekou Kangoye, Alexis Todoskoff, Mihaela Barreau

Abstract:

Modified Condition/Decision Coverage (MC/DC) is a structural coverage criterion that is highly recommended or required for safety-critical software coverage. Therefore, many testing standards include this criterion and require it to be satisfied at a particular level of testing (e.g. validation and unit levels). However, an important amount of time is needed to meet those requirements. In this paper we propose to automate MC/DC test data generation. Thus, we present an approach to automatically generate MC/DC test data, from software module description written over a dedicated language. We introduce a new merging approach that provides high MC/DC coverage for the description, with only a little number of test cases.

Keywords: domain-specific language, MC/DC, test data generation, safety-critical software coverage

Procedia PDF Downloads 449
24565 Demographic Factors Influencing Employees’ Salary Expectations and Labor Turnover

Authors: M. Osipova

Abstract:

Thanks to informational technologies development every sphere of economics is becoming more and more data-centralized as people are generating huge datasets containing information on any aspect of their life. Applying research of such data to human resources management allows getting scarce statistics on labor market state including salary expectations and potential employees’ typical career behavior, and this information can become a reliable basis for management decisions. The following article presents results of career behavior research based on freely accessible resume data. Information used for study is much wider than one usually uses in human resources surveys. That is why there is enough data for statistically significant results even for subgroups analysis.

Keywords: human resources management, salary expectations, statistics, turnover

Procedia PDF Downloads 357
24564 Exploring Electroactive Polymers for Dynamic Data Physicalization

Authors: Joanna Dauner, Jan Friedrich, Linda Elsner, Kora Kimpel

Abstract:

Active materials such as Electroactive Polymers (EAPs) are promising for the development of novel shape-changing interfaces. This paper explores the potential of EAPs in a multilayer unimorph structure from a design perspective to investigate the visual qualities of the material for dynamic data visualization and data physicalization. We discuss various concepts of how the material can be used for this purpose. Multilayer unimorph EAPs are of particular interest to designers because they can be easily prototyped using everyday materials and tools. By changing the structure and geometry of the EAPs, their movement and behavior can be modified. We present the results of our preliminary user testing, where we evaluated different movement patterns. As a result, we introduce a prototype display built with EAPs for dynamic data physicalization. Finally, we discuss the potentials and drawbacks and identify further open research questions for the design discipline.

Keywords: electroactive polymer, shape-changing interfaces, smart material interfaces, data physicalization

Procedia PDF Downloads 104
24563 Non-Invasive Data Extraction from Machine Display Units Using Video Analytics

Authors: Ravneet Kaur, Joydeep Acharya, Sudhanshu Gaur

Abstract:

Artificial Intelligence (AI) has the potential to transform manufacturing by improving shop floor processes such as production, maintenance and quality. However, industrial datasets are notoriously difficult to extract in a real-time, streaming fashion thus, negating potential AI benefits. The main example is some specialized industrial controllers that are operated by custom software which complicates the process of connecting them to an Information Technology (IT) based data acquisition network. Security concerns may also limit direct physical access to these controllers for data acquisition. To connect the Operational Technology (OT) data stored in these controllers to an AI application in a secure, reliable and available way, we propose a novel Industrial IoT (IIoT) solution in this paper. In this solution, we demonstrate how video cameras can be installed in a factory shop floor to continuously obtain images of the controller HMIs. We propose image pre-processing to segment the HMI into regions of streaming data and regions of fixed meta-data. We then evaluate the performance of multiple Optical Character Recognition (OCR) technologies such as Tesseract and Google vision to recognize the streaming data and test it for typical factory HMIs and realistic lighting conditions. Finally, we use the meta-data to match the OCR output with the temporal, domain-dependent context of the data to improve the accuracy of the output. Our IIoT solution enables reliable and efficient data extraction which will improve the performance of subsequent AI applications.

Keywords: human machine interface, industrial internet of things, internet of things, optical character recognition, video analytics

Procedia PDF Downloads 113
24562 Research and Implementation of Cross-domain Data Sharing System in Net-centric Environment

Authors: Xiaoqing Wang, Jianjian Zong, Li Li, Yanxing Zheng, Jinrong Tong, Mao Zhan

Abstract:

With the rapid development of network and communication technology, a great deal of data has been generated in different domains of a network. These data show a trend of increasing scale and more complex structure. Therefore, an effective and flexible cross-domain data-sharing system is needed. The Cross-domain Data Sharing System(CDSS) in a net-centric environment is composed of three sub-systems. The data distribution sub-system provides data exchange service through publish-subscribe technology that supports asynchronism and multi-to-multi communication, which adapts to the needs of the dynamic and large-scale distributed computing environment. The access control sub-system adopts Attribute-Based Access Control(ABAC) technology to uniformly model various data attributes such as subject, object, permission and environment, which effectively monitors the activities of users accessing resources and ensures that legitimate users get effective access control rights within a legal time. The cross-domain access security negotiation subsystem automatically determines the access rights between different security domains in the process of interactive disclosure of digital certificates and access control policies through trust policy management and negotiation algorithms, which provides an effective means for cross-domain trust relationship establishment and access control in a distributed environment. The CDSS’s asynchronous,multi-to-multi and loosely-coupled communication features can adapt well to data exchange and sharing in dynamic, distributed and large-scale network environments. Next, we will give CDSS new features to support the mobile computing environment.

Keywords: data sharing, cross-domain, data exchange, publish-subscribe

Procedia PDF Downloads 128
24561 Technological and Economic Investigation of Concentrated Photovoltaic and Thermal Systems: A Case Study of Iran

Authors: Moloud Torkandam

Abstract:

Any cities must be designed and built in a way that minimizes their need for fossil fuel. Undoubtedly, the necessity of accepting this principle in the previous eras is undeniable with respect to the mode of constructions. Perhaps only due to the great diversity of materials and new technologies in the contemporary era, such a principle in buildings has been forgotten. The question of optimizing energy consumption in buildings has attracted a great deal of attention in many countries and, in this way, they have been able to cut down the consumption of energy up to 30 percent. The energy consumption is remarkably higher than global standards in our country, and the most important reason is the undesirable state of buildings from the standpoint of energy consumption. In addition to providing the means to protect the natural and fuel resources for the future generations, reducing the use of fossil energies may also bring about desirable outcomes such as the decrease in greenhouse gases (whose emissions cause global warming, the melting of polar ice, the rise in sea level and the climatic changes of the planet earth), the decrease in the destructive effects of contamination in residential complexes and especially urban environments and preparation for national self-sufficiency and the country’s independence and preserving national capitals. This research realize that in this modern day and age, living sustainably is a pre-requisite for ensuring a bright future and high quality of life. In acquiring this living standard, we will maintain the functions and ability of our environment to serve and sustain our livelihoods. Electricity is now an integral part of modern life, a basic necessity. In the provision of electricity, we are committed to respecting the environment by reducing the use of fossil fuels through the use of proven technologies that use local renewable and natural resources as its energy source. As far as this research concerned it is completely necessary to work on different type of energy producing such as solar and CPVT system.

Keywords: energy, photovoltaic, termal system, solar energy, CPVT

Procedia PDF Downloads 85
24560 Routing Protocol in Ship Dynamic Positioning Based on WSN Clustering Data Fusion System

Authors: Zhou Mo, Dennis Chow

Abstract:

In the dynamic positioning system (DPS) for vessels, the reliable information transmission between each note basically relies on the wireless protocols. From the perspective of cluster-based routing protocols for wireless sensor networks, the data fusion technology based on the sleep scheduling mechanism and remaining energy in network layer is proposed, which applies the sleep scheduling mechanism to the routing protocols, considering the remaining energy of node and location information when selecting cluster-head. The problem of uneven distribution of nodes in each cluster is solved by the Equilibrium. At the same time, Classified Forwarding Mechanism as well as Redelivery Policy strategy is adopted to avoid congestion in the transmission of huge amount of data, reduce the delay in data delivery and enhance the real-time response. In this paper, a simulation test is conducted to improve the routing protocols, which turn out to reduce the energy consumption of nodes and increase the efficiency of data delivery.

Keywords: DPS for vessel, wireless sensor network, data fusion, routing protocols

Procedia PDF Downloads 530
24559 Advanced Data Visualization Techniques for Effective Decision-making in Oil and Gas Exploration and Production

Authors: Deepak Singh, Rail Kuliev

Abstract:

This research article explores the significance of advanced data visualization techniques in enhancing decision-making processes within the oil and gas exploration and production domain. With the oil and gas industry facing numerous challenges, effective interpretation and analysis of vast and diverse datasets are crucial for optimizing exploration strategies, production operations, and risk assessment. The article highlights the importance of data visualization in managing big data, aiding the decision-making process, and facilitating communication with stakeholders. Various advanced data visualization techniques, including 3D visualization, augmented reality (AR), virtual reality (VR), interactive dashboards, and geospatial visualization, are discussed in detail, showcasing their applications and benefits in the oil and gas sector. The article presents case studies demonstrating the successful use of these techniques in optimizing well placement, real-time operations monitoring, and virtual reality training. Additionally, the article addresses the challenges of data integration and scalability, emphasizing the need for future developments in AI-driven visualization. In conclusion, this research emphasizes the immense potential of advanced data visualization in revolutionizing decision-making processes, fostering data-driven strategies, and promoting sustainable growth and improved operational efficiency within the oil and gas exploration and production industry.

Keywords: augmented reality (AR), virtual reality (VR), interactive dashboards, real-time operations monitoring

Procedia PDF Downloads 93
24558 The Data Quality Model for the IoT based Real-time Water Quality Monitoring Sensors

Authors: Rabbia Idrees, Ananda Maiti, Saurabh Garg, Muhammad Bilal Amin

Abstract:

IoT devices are the basic building blocks of IoT network that generate enormous volume of real-time and high-speed data to help organizations and companies to take intelligent decisions. To integrate this enormous data from multisource and transfer it to the appropriate client is the fundamental of IoT development. The handling of this huge quantity of devices along with the huge volume of data is very challenging. The IoT devices are battery-powered and resource-constrained and to provide energy efficient communication, these IoT devices go sleep or online/wakeup periodically and a-periodically depending on the traffic loads to reduce energy consumption. Sometime these devices get disconnected due to device battery depletion. If the node is not available in the network, then the IoT network provides incomplete, missing, and inaccurate data. Moreover, many IoT applications, like vehicle tracking and patient tracking require the IoT devices to be mobile. Due to this mobility, If the distance of the device from the sink node become greater than required, the connection is lost. Due to this disconnection other devices join the network for replacing the broken-down and left devices. This make IoT devices dynamic in nature which brings uncertainty and unreliability in the IoT network and hence produce bad quality of data. Due to this dynamic nature of IoT devices we do not know the actual reason of abnormal data. If data are of poor-quality decisions are likely to be unsound. It is highly important to process data and estimate data quality before bringing it to use in IoT applications. In the past many researchers tried to estimate data quality and provided several Machine Learning (ML), stochastic and statistical methods to perform analysis on stored data in the data processing layer, without focusing the challenges and issues arises from the dynamic nature of IoT devices and how it is impacting data quality. A comprehensive review on determining the impact of dynamic nature of IoT devices on data quality is done in this research and presented a data quality model that can deal with this challenge and produce good quality of data. This research presents the data quality model for the sensors monitoring water quality. DBSCAN clustering and weather sensors are used in this research to make data quality model for the sensors monitoring water quality. An extensive study has been done in this research on finding the relationship between the data of weather sensors and sensors monitoring water quality of the lakes and beaches. The detailed theoretical analysis has been presented in this research mentioning correlation between independent data streams of the two sets of sensors. With the help of the analysis and DBSCAN, a data quality model is prepared. This model encompasses five dimensions of data quality: outliers’ detection and removal, completeness, patterns of missing values and checks the accuracy of the data with the help of cluster’s position. At the end, the statistical analysis has been done on the clusters formed as the result of DBSCAN, and consistency is evaluated through Coefficient of Variation (CoV).

Keywords: clustering, data quality, DBSCAN, and Internet of things (IoT)

Procedia PDF Downloads 144