Search results for: water treatment
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 15007

Search results for: water treatment

607 Fodder Production and Livestock Rearing in Relation to Climate Change and Possible Adaptation Measures in Manaslu Conservation Area, Nepal

Authors: Bhojan Dhakal, Naba Raj Devkota, Chet Raj Upreti, Maheshwar Sapkota

Abstract:

A study was conducted to find out the production potential, nutrient composition, and the variability of the most commonly available fodder trees along with the varying altitude to help optimize the dry matter requirement during winter lean period. The study was carried out from March to June, 2012 in Lho and Prok Village Development Committee of Manaslu Conservation Area (MCA), located in Gorkha district of Nepal. The other objective of the research was to learn the impact of climate change on livestock production linking it with feed availability. The study was conducted in two parts: social and biological. Accordingly, a households (HHs) survey was conducted to collect primary data from 70 HHs, focusing on the perception of respondents on impacts of climatic variability on the feeding management. The next part consisted of understanding yield potential and nutrient composition of the four most commonly available fodder trees (M. azedirach, M. alba, F. roxburghii, F. nemoralis), within two altitudes range: (1500-2000 masl and 2000-2500 masl) by using a RCB design in 2*4 factorial combination of treatments, each replicated four times. Results revealed that majority of the farmers perceived the change in climatic phenomenon more severely within the past five years. Farmers were using different adaptation technologies such as collection of forage from jungle, reducing unproductive animals, fodder trees utilization, and crop by product feeding at feed scarcity period. Ranking of the different fodder trees on the basis of indigenous knowledge and experiences revealed that F. roxburghii was the best-preferred fodder tree species (index value 0.72) in terms overall preferability whereas M. azedirach had highest growth and productivity (index value 0.77), F. roxburghii had highest adoptability (index value 0.69) and palatability (index value 0.69) as well. Similarly, fresh yield and dry matter yield of the each fodder trees was significant (P < 0.01) between the altitude and within species. Fodder trees yield analysis revealed that the highest dry matter (DM) yield (28 kg/tree) was obtained for F. roxburghii but that remained statistically similar (P > 0.05) to the other treatment. On the other hand, most of the parameters: ether extract (EE), acid detergent lignin (ADL), acid detergent fibre (ADF), cell wall digestibility (CWD), relative digestibility (RD), digestible nutrient (TDN), and Calcium (Ca) among the treatments were highly significant (P < 0.01). This indicates the scope of introducing productive and nutritive fodder trees species even at the high altitude to help reduce fodder scarcity problem during winter. The finding also revealed the scope of promoting all available local fodder trees species as crude protein content of these species were similar.

Keywords: fodder trees, yield potential, climate change, nutrient composition

Procedia PDF Downloads 302
606 Structure Conduct and Performance of Rice Milling Industry in Sri Lanka

Authors: W. A. Nalaka Wijesooriya

Abstract:

The increasing paddy production, stabilization of domestic rice consumption and the increasing dynamism of rice processing and domestic markets call for a rethinking of the general direction of the rice milling industry in Sri Lanka. The main purpose of the study was to explore levels of concentration in rice milling industry in Polonnaruwa and Hambanthota which are the major hubs of the country for rice milling. Concentration indices reveal that the rice milling industry in Polonnaruwa operates weak oligopsony and is highly competitive in Hambanthota. According to the actual quantity of paddy milling per day, 47 % is less than 8Mt/Day, while 34 % is 8-20 Mt/day, and the rest (19%) is greater than 20 Mt/day. In Hambanthota, nearly 50% of the mills belong to the range of 8-20 Mt/day. Lack of experience of the milling industry, poor knowledge on milling technology, lack of capital and finding an output market are the major entry barriers to the industry. Major problems faced by all the rice millers are the lack of a uniform electricity supply and low quality paddy. Many of the millers emphasized that the rice ceiling price is a constraint to produce quality rice. More than 80% of the millers in Polonnaruwa which is the major parboiling rice producing area have mechanical dryers. Nearly 22% millers have modern machineries like color sorters, water jet polishers. Major paddy purchasing method of large scale millers in Polonnaruwa is through brokers. In Hambanthota major channel is miller purchasing from paddy farmers. Millers in both districts have major rice selling markets in Colombo and suburbs. Huge variation can be observed in the amount of pledge (for paddy storage) loans. There is a strong relationship among the storage ability, credit affordability and the scale of operation of rice millers. The inter annual price fluctuation ranged 30%-35%. Analysis of market margins by using series of secondary data shows that farmers’ share on rice consumer price is stable or slightly increases in both districts. In Hambanthota a greater share goes to the farmer. Only four mills which have obtained the Good Manufacturing Practices (GMP) certification from Sri Lanka Standards Institution can be found. All those millers are small quantity rice exporters. Priority should be given for the Small and medium scale millers in distribution of storage paddy of PMB during the off season. The industry needs a proper rice grading system, and it is recommended to introduce a ceiling price based on graded rice according to the standards. Both husk and rice bran were underutilized. Encouraging investment for establishing rice oil manufacturing plant in Polonnaruwa area is highly recommended. The current taxation procedure needs to be restructured in order to ensure the sustainability of the industry.

Keywords: conduct, performance, structure (SCP), rice millers

Procedia PDF Downloads 319
605 The Potential of Edaphic Algae for Bioremediation of the Diesel-Contaminated Soil

Authors: C. J. Tien, C. S. Chen, S. F. Huang, Z. X. Wang

Abstract:

Algae in soil ecosystems can produce organic matters and oxygen by photosynthesis. Heterocyst-forming cyanobacteria can fix nitrogen to increase soil nitrogen contents. Secretion of mucilage by some algae increases the soil water content and soil aggregation. These actions will improve soil quality and fertility, and further increase abundance and diversity of soil microorganisms. In addition, some mixotrophic and heterotrophic algae are able to degrade petroleum hydrocarbons. Therefore, the objectives of this study were to analyze the effects of algal addition on the degradation of total petroleum hydrocarbons (TPH), diversity and activity of bacteria and algae in the diesel-contaminated soil under different nutrient contents and frequency of plowing and irrigation in order to assess the potential bioremediation technique using edaphic algae. The known amount of diesel was added into the farmland soil. This diesel-contaminated soil was subject to five settings, experiment-1 with algal addition by plowing and irrigation every two weeks, experiment-2 with algal addition by plowing and irrigation every four weeks, experiment-3 with algal and nutrient addition by plowing and irrigation every two weeks, experiment-4 with algal and nutrient addition by plowing and irrigation every four weeks, and the control without algal addition. Soil samples were taken every two weeks to analyze TPH concentrations, diversity of bacteria and algae, and catabolic genes encoding functional degrading enzymes. The results show that the TPH removal rates of five settings after the two-month experimental period were in the order: experiment-2 > expermient-4 > experiment-3 > experiment-1 > control. It indicated that algal addition enhanced the degradation of TPH in the diesel-contaminated soil, but not for nutrient addition. Plowing and irrigation every four weeks resulted in more TPH removal than that every two weeks. The banding patterns of denaturing gradient gel electrophoresis (DGGE) revealed an increase in diversity of bacteria and algae after algal addition. Three petroleum hydrocarbon-degrading algae (Anabaena sp., Oscillatoria sp. and Nostoc sp.) and two added algal strains (Leptolyngbya sp. and Synechococcus sp.) were sequenced from DGGE prominent bands. The four hydrocarbon-degrading bacteria Gordonia sp., Mycobacterium sp., Rodococcus sp. and Alcanivorax sp. were abundant in the treated soils. These results suggested that growth of indigenous bacteria and algae were improved after adding edaphic algae. Real-time polymerase chain reaction results showed that relative amounts of four catabolic genes encoding catechol 2, 3-dioxygenase, toluene monooxygenase, xylene monooxygenase and phenol monooxygenase were appeared and expressed in the treated soil. The addition of algae increased the expression of these genes at the end of experiments to biodegrade petroleum hydrocarbons. This study demonstrated that edaphic algae were suitable biomaterials for bioremediating diesel-contaminated soils with plowing and irrigation every four weeks.

Keywords: catabolic gene, diesel, diversity, edaphic algae

Procedia PDF Downloads 267
604 Design, Construction, Validation And Use Of A Novel Portable Fire Effluent Sampling Analyser

Authors: Gabrielle Peck, Ryan Hayes

Abstract:

Current large scale fire tests focus on flammability and heat release measurements. Smoke toxicity isn’t considered despite it being a leading cause of death and injury in unwanted fires. A key reason could be that the practical difficulties associated with quantifying individual toxic components present in a fire effluent often require specialist equipment and expertise. Fire effluent contains a mixture of unreactive and reactive gases, water, organic vapours and particulate matter, which interact with each other. This interferes with the operation of the analytical instrumentation and must be removed without changing the concentration of the target analyte. To mitigate the need for expensive equipment and time-consuming analysis, a portable gas analysis system was designed, constructed and tested for use in large-scale fire tests as a simpler and more robust alternative to online FTIR measurements. The novel equipment aimed to be easily portable and able to run on battery or mains electricity; be able to be calibrated at the test site; be capable of quantifying CO, CO2, O2, HCN, HBr, HCl, NOx and SO2 accurately and reliably; be capable of independent data logging; be capable of automated switchover of 7 bubblers; be able to withstand fire effluents; be simple to operate; allow individual bubbler times to be pre-set; be capable of being controlled remotely. To test the analysers functionality, it was used alongside the ISO/TS 19700 Steady State Tube Furnace (SSTF). A series of tests were conducted to assess the validity of the box analyser measurements and the data logging abilities of the apparatus. PMMA and PA 6.6 were used to assess the validity of the box analyser measurements. The data obtained from the bench-scale assessments showed excellent agreement. Following this, the portable analyser was used to monitor gas concentrations during large-scale testing using the ISO 9705 room corner test. The analyser was set up, calibrated and set to record smoke toxicity measurements in the doorway of the test room. The analyser was successful in operating without manual interference and successfully recorded data for 12 of the 12 tests conducted in the ISO room tests. At the end of each test, the analyser created a data file (formatted as .csv) containing the measured gas concentrations throughout the test, which do not require specialist knowledge to interpret. This validated the portable analyser’s ability to monitor fire effluent without operator intervention on both a bench and large-scale. The portable analyser is a validated and significantly more practical alternative to FTIR, proven to work for large-scale fire testing for quantification of smoke toxicity. The analyser is a cheaper, more accessible option to assess smoke toxicity, mitigating the need for expensive equipment and specialist operators.

Keywords: smoke toxicity, large-scale tests, iso 9705, analyser, novel equipment

Procedia PDF Downloads 61
603 Regional Analysis of Freight Movement by Vehicle Classification

Authors: Katerina Koliou, Scott Parr, Evangelos Kaisar

Abstract:

The surface transportation of freight is particularly vulnerable to storm and hurricane disasters, while at the same time, it is the primary transportation mode for delivering medical supplies, fuel, water, and other essential goods. To better plan for commercial vehicles during an evacuation, it is necessary to understand how these vehicles travel during an evacuation and determine if this travel is different from the general public. The research investigation used Florida's statewide continuous-count station traffic volumes, where then compared between years, to identify locations where traffic was moving differently during the evacuation. The data was then used to identify days on which traffic was significantly different between years. While the literature on auto-based evacuations is extensive, the consideration of freight travel is lacking. To better plan for commercial vehicles during an evacuation, it is necessary to understand how these vehicles travel during an evacuation and determine if this travel is different from the general public. The goal of this research was to investigate the movement of vehicles by classification, with an emphasis on freight during two major evacuation events: hurricanes Irma (2017) and Michael (2018). The methodology of the research was divided into three phases: data collection and management, spatial analysis, and temporal comparisons. Data collection and management obtained continuous-co station data from the state of Florida for both 2017 and 2018 by vehicle classification. The data was then processed into a manageable format. The second phase used geographic information systems (GIS) to display where and when traffic varied across the state. The third and final phase was a quantitative investigation into which vehicle classifications were statistically different and on which dates statewide. This phase used a two-sample, two-tailed t-test to compare sensor volume by classification on similar days between years. Overall, increases in freight movement between years prevented a more precise paired analysis. This research sought to identify where and when different classes of vehicles were traveling leading up to hurricane landfall and post-storm reentry. Of the more significant findings, the research results showed that commercial-use vehicles may have underutilized rest areas during the evacuation, or perhaps these rest areas were closed. This may suggest that truckers are driving longer distances and possibly longer hours before hurricanes. Another significant finding of this research was that changes in traffic patterns for commercial-use vehicles occurred earlier and lasted longer than changes for personal-use vehicles. This finding suggests that commercial vehicles are perhaps evacuating in a fashion different from personal use vehicles. This paper may serve as the foundation for future research into commercial travel during evacuations and explore additional factors that may influence freight movements during evacuations.

Keywords: evacuation, freight, travel time, evacuation

Procedia PDF Downloads 57
602 Community Perception towards the Major Drivers for Deforestation and Land Degradation of Choke Afro-alpine and Sub-afro alpine Ecosystem, Northwest Ethiopia

Authors: Zelalem Teshager

Abstract:

The Choke Mountains have several endangered and endemic wildlife species and provide important ecosystem services. Despite their environmental importance, the Choke Mountains are found in dangerous conditions. This raised the need for an evaluation of the community's perception of deforestation and its major drivers and suggested possible solutions in the Choke Mountains of northwestern Ethiopia. For this purpose, household surveys, key informant interviews, and focus group discussions were used. A total sample of 102 informants was used for this survey. A purposive sampling technique was applied to select the participants for in-depth interviews and focus group discussions. Both qualitative and quantitative data analyses were used. Computation of descriptive statistics such as mean, percentages, frequency, tables, figures, and graphs was applied to organize, analyze, and interpret the study. This study assessed smallholder agricultural land expansion, Fuel wood collection, population growth; encroachment, free grazing, high demand of construction wood, unplanned resettlement, unemployment, border conflict, lack of a strong forest protecting system, and drought were the serious causes of forest depletion reported by local communities. Loss of land productivity, Soil erosion, soil fertility decline, increasing wind velocity, rising temperature, and frequency of drought were the most perceived impacts of deforestation. Most of the farmers have a holistic understanding of forest cover change. Strengthening forest protection, improving soil and water conservation, enrichment planting, awareness creation, payment for ecosystem services, and zero grazing campaigns were mentioned as possible solutions to the current state of deforestation. Applications of Intervention measures, such as animal fattening, beekeeping, and fruit production can contribute to decreasing the deforestation causes and improve communities’ livelihood. In addition, concerted efforts of conservation will ensure that the forests’ ecosystems contribute to increased ecosystem services. The major drivers of deforestation should be addressed with government intervention to change dependency on forest resources, income sources of the people, and institutional set-up of the forestry sector. Overall, further reduction in anthropogenic pressure is urgent and crucial for the recovery of the afro-alpine vegetation and the interrelated endangered wildlife in the Choke Mountains.

Keywords: choke afro-alpine, deforestation, drivers, intervention measures, perceptions

Procedia PDF Downloads 47
601 Mesoporous BiVO4 Thin Films as Efficient Visible Light Driven Photocatalyst

Authors: Karolina Ordon, Sandrine Coste, Malgorzata Makowska-Janusik, Abdelhadi Kassiba

Abstract:

Photocatalytic processes play key role in the production of a new source of energy (as hydrogen), design of self-cleaning surfaces or for the environment preservation. The most challenging task deals with the purification of water distinguished by high efficiency. In the mentioned process, organic pollutants in solutions are decomposed to the simple, non-toxic compounds as H2O and CO2. The most known photocatalytic materials are ZnO, CdS and TiO2 semiconductors with a particular involvement of TiO2 as an efficient photocatalysts even with a high band gap equal to 3.2 eV which exploit only UV radiation from solar emitted spectrum. However, promising material with visible light induced photoactivity was searched through the monoclinic polytype of BiVO4 which has energy gap about 2.4 eV. As required in heterogeneous photocatalysis, the high contact surface is required. Also, BiVO4 as photocatalyst can be optimized by increasing its surface area by achieving the mesoporous structure synthesize. The main goal of the present work consists in the synthesis and characterization of BiVO4 mesoporous thin film. The synthesis method based on sol-gel was carried out using a standard surfactants such as P123 and F127. The thin film was deposited by spin and dip coating method. Then, the structural analysis of the obtained material was performed thanks to X-ray diffraction (XRD) and Raman spectroscopy. The surface of resulting structure was investigated using a scanning electron microscopy (SEM). The computer simulations based on modeling the optical and electronic properties of bulk BiVO4 by using DFT (density functional theory) methodology were carried out. The semiempirical parameterized method PM6 was used to compute the physical properties of BiVO4 nanostructures. The Raman and IR absorption spectra were also measured for synthesized mesoporous material, and the results were compared with the theoretical predictions. The simulations of nanostructured BiVO4 have pointed out the occurrence of quantum confinement for nanosized clusters leading to widening of the band gap. This result overcame the relevance of nanosized objects to harvest wide part of the solar spectrum. Also, a balance was searched experimentally through the mesoporous nature of the films devoted to enhancing the contact surface as required for heterogeneous catalysis without to lower the nanocrystallite size under some critical sizes inducing an increased band gap. The present contribution will discuss the relevant features of the mesoporous films with respect to their photocatalytic responses.

Keywords: bismuth vanadate, photocatalysis, thin film, quantum-chemical calculations

Procedia PDF Downloads 314
600 Sustainable Mining Fulfilling Constitutional Responsibilities: A Case Study of NMDC Limited Bacheli in India

Authors: Bagam Venkateswarlu

Abstract:

NMDC Limited, Indian multinational mining company operates under administrative control of Ministry of Steel, Government of India. This study is undertaken to evaluate how sustainable mining practiced by the company fulfils the provisions of Indian Constitution to secure to its citizen – justice, equality of status and opportunity, promoting social, economic, political, and religious wellbeing. The Constitution of India lays down a road map as to how the goal of being a “Welfare State” shall be achieved. The vision of sustainable mining being practiced is oriented along the constitutional responsibilities on Indian Citizens and the Corporate World. This qualitative study shall be backed by quantitative studies of National Mineral Development Corporation performances in various domains of sustainable mining and ESG, that is, environment, social and governance parameters. For example, Five Star Rating of mine is a comprehensive evaluation system introduced by Ministry of Mines, Govt. of India is one of the methodologies. Corporate Social Responsibilities is one of the thrust areas for securing social well-being. Green energy initiatives in and around the mines has given the title of “Eco-Friendly Miner” to NMDC Limited. While operating fully mechanized large scale iron ore mine (18.8 million tonne per annum capacity) in Bacheli, Chhattisgarh, M/s NMDC Limited caters to the needs of mineral security of State of Chhattisgarh and Indian Union. It preserves forest, wild-life, and environment heritage of richly endowed State of Chhattisgarh. In the remote and far-flung interiors of Chhattisgarh, NMDC empowers the local population by providing world class educational & medical facilities, transportation network, drinking water facilities, irrigational agricultural supports, employment opportunities, establishing religious harmony. All this ultimately results in empowered, educated, and improved awareness in population. Thus, the basic tenets of constitution of India- secularism, democracy, welfare for all, socialism, humanism, decentralization, liberalism, mixed economy, and non-violence is fulfilled. Constitution declares India as a welfare state – for the people, of the people and by the people. The sustainable mining practices by NMDC are in line with the objective. Thus, the purpose of study is fully met with. The potential benefit of the study includes replicating this model in existing or new establishments in various parts of country – especially in the under-privileged interiors and far-flung areas which are yet to see the lights of development.

Keywords: ESG values, Indian constitution, NMDC limited, sustainable mining, CSR, green energy

Procedia PDF Downloads 62
599 The Scenario Analysis of Shale Gas Development in China by Applying Natural Gas Pipeline Optimization Model

Authors: Meng Xu, Alexis K. H. Lau, Ming Xu, Bill Barron, Narges Shahraki

Abstract:

As an emerging unconventional energy, shale gas has been an economically viable step towards a cleaner energy future in U.S. China also has shale resources that are estimated to be potentially the largest in the world. In addition, China has enormous unmet for a clean alternative to substitute coal. Nonetheless, the geological complexity of China’s shale basins and issues of water scarcity potentially impose serious constraints on shale gas development in China. Further, even if China could replicate to a significant degree the U.S. shale gas boom, China faces the problem of transporting the gas efficiently overland with its limited pipeline network throughput capacity and coverage. The aim of this study is to identify the potential bottlenecks in China’s gas transmission network, as well as to examine the shale gas development affecting particular supply locations and demand centers. We examine this through application of three scenarios with projecting domestic shale gas supply by 2020: optimistic, medium and conservative shale gas supply, taking references from the International Energy Agency’s (IEA’s) projections and China’s shale gas development plans. Separately we project the gas demand at provincial level, since shale gas will have more significant impact regionally than nationally. To quantitatively assess each shale gas development scenario, we formulated a gas pipeline optimization model. We used ArcGIS to generate the connectivity parameters and pipeline segment length. Other parameters are collected from provincial “twelfth-five year” plans and “China Oil and Gas Pipeline Atlas”. The multi-objective optimization model uses GAMs and Matlab. It aims to minimize the demands that are unable to be met, while simultaneously seeking to minimize total gas supply and transmission costs. The results indicate that, even if the primary objective is to meet the projected gas demand rather than cost minimization, there’s a shortfall of 9% in meeting total demand under the medium scenario. Comparing the results between the optimistic and medium supply of shale gas scenarios, almost half of the shale gas produced in Sichuan province and Chongqing won’t be able to be transmitted out by pipeline. On the demand side, the Henan province and Shanghai gas demand gap could be filled as much as 82% and 39% respectively, with increased shale gas supply. To conclude, the pipeline network in China is currently not sufficient in meeting the projected natural gas demand in 2020 under medium and optimistic scenarios, indicating the need for substantial pipeline capacity expansion for some of the existing network, and the importance of constructing new pipelines from particular supply to demand sites. If the pipeline constraint is overcame, Beijing, Shanghai, Jiangsu and Henan’s gas demand gap could potentially be filled, and China could thereby reduce almost 25% its dependency on LNG imports under the optimistic scenario.

Keywords: energy policy, energy systematic analysis, scenario analysis, shale gas in China

Procedia PDF Downloads 272
598 Human Dental Pulp Stem Cells Attenuate Streptozotocin-Induced Parotid Gland Injury in Rats

Authors: Gehan ElAkabawy

Abstract:

Background: Diabetes mellitus causes severe deteriorations of almost all the organs and systems of the body, as well as significant damage to the oral cavity. The oral changes are mainly related to salivary glands dysfunction characterized by hyposalivation and xerostomia, which significantly reduce diabetic patients’ quality of life. Human dental pulp stem cells represent a promising source for cell-based therapies, owing to their easy, minimally invasive surgical access, and high proliferative capacity. It was reported that the trophic support mediated by dental pulp stem cells can rescue the functional and structural alterations of damaged salivary glands. However, potential differentiation and paracrine effects of human dental pulp stem cells in diabetic-induced parotid gland damage have not been previously investigated. Our study aimed to investigate the therapeutic effects of intravenous transplantation of human dental pulp stem cells (hDPSCs) on parotid gland injury in a rat model of streptozotocin (STZ)-induced type 1 diabetes. Methods: Thirty Sprague-Dawley male rats were randomly categorised into three groups: control, diabetic (STZ), and transplanted (STZ+hDPSCs). hDPSCs or vehicle was injected into the tail vein 7 days after STZ injection. The fasting blood glucose levels were monitored weekly. A glucose tolerance test was performed, and the parotid gland weight, salivary flow rate, oxidative stress indices, parotid gland histology, and caspase-3, vascular endothelial growth factor (VEGF), and proliferating cell nuclear antigen (PCNA) expression in parotid tissues were assessed 28 days post-transplantation. Results: Transplantation of hDPSCs downregulated blood glucose, improved the salivary flow rate, and reduced oxidative stress. The cells migrated to, survived, and differentiated into acinar, ductal, and myoepithelial cells in the STZ-injured parotid gland. Moreover, they downregulated the expression of caspase-3 and upregulated the expression of VEGF and PCNA, likely exerting pro-angiogenetic and antiapoptotic effects and promoting endogenous regeneration. In addition, the transplanted cells enhanced the parotid nitric oxide (NO) -tetrahydrobiopterin (BH4) pathway. Conclusions: Our results show that hDPSCs can migrate to and survive within the STZ-injured parotid gland, where they prevent its functional and morphological damage by restoring normal glucose levels, differentiating into parotid cell populations, and stimulating paracrine-mediated regeneration. Thus, hDPSCs may have therapeutic potential in the treatment of diabetes-induced parotid gland injury.

Keywords: dental pulp stem cells, diabetes, streptozotocin, parotid gland

Procedia PDF Downloads 179
597 Influence of Torrefied Biomass on Co-Combustion Behaviors of Biomass/Lignite Blends

Authors: Aysen Caliskan, Hanzade Haykiri-Acma, Serdar Yaman

Abstract:

Co-firing of coal and biomass blends is an effective method to reduce carbon dioxide emissions released by burning coals, thanks to the carbon-neutral nature of biomass. Besides, usage of biomass that is renewable and sustainable energy resource mitigates the dependency on fossil fuels for power generation. However, most of the biomass species has negative aspects such as low calorific value, high moisture and volatile matter contents compared to coal. Torrefaction is a promising technique in order to upgrade the fuel properties of biomass through thermal treatment. That is, this technique improves the calorific value of biomass along with serious reductions in the moisture and volatile matter contents. In this context, several woody biomass materials including Rhododendron, hybrid poplar, and ash-tree were subjected to torrefaction process in a horizontal tube furnace at 200°C under nitrogen flow. In this way, the solid residue obtained from torrefaction that is also called as 'biochar' was obtained and analyzed to monitor the variations taking place in biomass properties. On the other hand, some Turkish lignites from Elbistan, Adıyaman-Gölbaşı and Çorum-Dodurga deposits were chosen as coal samples since these lignites are of great importance in lignite-fired power stations in Turkey. These lignites were blended with the obtained biochars for which the blending ratio of biochars was kept at 10 wt% and the lignites were the dominant constituents in the fuel blends. Burning tests of the lignites, biomasses, biochars, and blends were performed using a thermogravimetric analyzer up to 900°C with a heating rate of 40°C/min under dry air atmosphere. Based on these burning tests, properties relevant to burning characteristics such as the burning reactivity and burnout yields etc. could be compared to justify the effects of torrefaction and blending. Besides, some characterization techniques including X-Ray Diffraction (XRD), Fourier Transform Infrared (FTIR) spectroscopy and Scanning Electron Microscopy (SEM) were also conducted for the untreated biomass and torrefied biomass (biochar) samples, lignites and their blends to examine the co-combustion characteristics elaborately. Results of this study revealed the fact that blending of lignite with 10 wt% biochar created synergistic behaviors during co-combustion in comparison to the individual burning of the ingredient fuels in the blends. Burnout and ignition performances of each blend were compared by taking into account the lignite and biomass structures and characteristics. The blend that has the best co-combustion profile and ignition properties was selected. Even though final burnouts of the lignites were decreased due to the addition of biomass, co-combustion process acts as a reasonable and sustainable solution due to its environmentally friendly benefits such as reductions in net carbon dioxide (CO2), SOx and hazardous organic chemicals derived from volatiles.

Keywords: burnout performance, co-combustion, thermal analysis, torrefaction pretreatment

Procedia PDF Downloads 330
596 Mental Well-Being and Quality of Life: A Comparative Study of Male Leather Tannery and Non-Tannery Workers of Kanpur City, India

Authors: Gyan Kashyap, Shri Kant Singh

Abstract:

Improved mental health can be articulated as a good physical health and quality of life. Mental health plays an important role in survival of any one’s life. In today’s time people living with stress in life due to their personal matters, health problems, unemployment, work environment, living environment, substance use, life style and many more important reasons. Many studies confirmed that the significant proportion of mental health people increasing in India. This study is focused on mental well-being of male leather tannery workers in Kanpur city, India. Environment at work place as well as living environment plays an important health risk factors among leather tannery workers. Leather tannery workers are more susceptible to many chemicals and physical hazards, just because they are liable to be affected by their exposure to lots of hazardous materials and processes during tanning work in very hazardous work environment. The aim of this study to determine the level of mental health disorder and quality of life among male leather tannery and non-tannery workers in Kanpur city, India. This study utilized the primary data from the cross- sectional household study which was conducted from January to June, 2015 on tannery and non-tannery workers as a part of PhD program from the Jajmau area of Kanpur city, India. The sample of 286 tannery and 295 non-tannery workers has been collected from the study area. We have collected information from the workers of age group 15-70 those who were working at the time of survey for at least one year. This study utilized the general health questionnaire (GHQ-12) and work related stress scale to test the mental wellbeing of male tannery and non-tannery workers. By using GHQ-12 and work related stress scale, Polychoric factor analysis method has been used for best threshold and scoring. Some of important question like ‘How would you rate your overall quality of life’ on Likert scale to measure the quality of life, their earnings, education, family size, living condition, household assets, media exposure, health expenditure, treatment seeking behavior and food habits etc. Results from the study revealed that around one third of tannery workers had severe mental health problems then non-tannery workers. Mental health problem shown the statistically significant association with wealth quintile, 56 percent tannery workers had severe mental health problem those belong to medium wealth quintile. And 42 percent tannery workers had moderate mental health problem among those from the low wealth quintile. Work related stress scale found the statistically significant results for tannery workers. Large proportion of tannery and non-tannery workers reported they are unable to meet their basic needs from their earnings and living in worst condition. Important result from the study, tannery workers who were involved in beam house work in tannery (58%) had severe mental health problem. This study found the statistically significant association with tannery work and mental health problem among tannery workers.

Keywords: GHQ-12, mental well-being, factor analysis, quality of life, tannery workers

Procedia PDF Downloads 376
595 Effects of Macro and Micro Nutrients on Growth and Yield Performances of Tomato (Lycopersicon esculentum MILL.)

Authors: K. M. S. Weerasinghe, A. H. K. Balasooriya, S. L. Ransingha, G. D. Krishantha, R. S. Brhakamanagae, L. C. Wijethilke

Abstract:

Tomato (Lycopersicon esculentum Mill.) is a major horticultural crop with an estimated global production of over 120 million metric tons and ranks first as a processing crop. The average tomato productivity in Sri Lanka (11 metric tons/ha) is much lower than the world average (24 metric tons/ha).To meet the tomato demand for the increasing population the productivity has to be intensified through the agronomic-techniques. Nutrition is one of the main factors which govern the growth and yield of tomato and the main nutrient source soil affect the plant growth and quality of the produce. Continuous cropping, improper fertilizer usage etc., cause widespread nutrient deficiencies. Therefore synthetic fertilizers and organic manures were introduced to enhance plant growth and maximize the crop yields. In this study, effects of macro and micronutrient supplementations on improvement of growth and yield of tomato were investigated. Selected tomato variety is Maheshi and plants were grown in Regional Agricultural and Research Centre Makadura under the Department of Agriculture recommended (DOA) macro nutrients and various combination of Ontario recommended dosages of secondary and micro fertilizer supplementations. There were six treatments in this experiment and each treatment was replicated in three times and each replicate consisted of six plants. Other than the DOA recommendation, five combinations of Ontario recommended dosage of secondary and micronutrients for tomato were also used as treatments. The treatments were arranged in a Randomized Complete Block Design. All cultural practices were carried out according to the DOA recommendations. The mean data was subjected to the statistical analysis using SAS package and mean separation (Duncan’s Multiple Range test at 5% probability level) procedures. Secondary and micronutrients containing treatments significantly increased most of the growth parameters. Plant height, plant girth, number of leaves, leaf area index etc. Fruits harvested from pots amended with macro, secondary and micronutrients performed best in terms of total yield; yield quality; to pots amended with DOA recommended dosage of fertilizer for tomato. It could be due to the application of all essential macro and micro nutrients that rise in photosynthetic activity, efficient translocation and utilization of photosynthates causing rapid cell elongation and cell division in actively growing region of the plant leading to stimulation of growth and yield were caused. The experiment revealed and highlighted the requirements of essential macro, secondary and micro nutrient fertilizer supplementations for tomato farming. The study indicated that, macro and micro nutrient supplementation practices can influence growth and yield performances of tomato fruits and it is a promising approach to get potential tomato yields.

Keywords: macro and micronutrients, tomato, SAS package, photosynthates

Procedia PDF Downloads 451
594 Mapping the Urban Catalytic Trajectory for 'Convention and Exhibition' Projects: A Case of India International Convention and Expo Centre, New Delhi

Authors: Bhavana Gulaty, Arshia Chaudhri

Abstract:

Great civic projects contribute integrally to a city, and every city undergoes a recurring cycle of urban transformations and regeneration by their insertion. The M.I.C.E. (Meetings, Incentives, Convention and Exhibitions) industry is the forbearer of one category of such catalytic civic projects. Through a specific focus on M.I.C.E. destinations, this paper illustrates the multifarious dimensions that urban catalysts impact the city on S.P.U.R. (Seed. Profile. Urbane. Reflections), the theoretical framework of this paper aims to unearth these dimensions in the realm of the COEX (Convention & Exhibition) biosphere. The ‘COEX Biosphere’ is the filter of such catalysts being ecosystems unto themselves. Like a ripple in water, the impact of these strategic interventions focusing on art, culture, trade, and promotion expands right from the trigger; the immediate context to the region and subsequently impacts the global scale. These ripples are known to bring about significant economic, social, and political and network changes. The COEX inventory in the Asian context has one such prominent addition; the proposed India International Convention and Exhibition Centre (IICC) at New Delhi. It is envisioned to be the largest facility in Asia currently and would position India on the global M.I.C.E map. With the first phase of the project scheduled to open for use in the end of 2019, this flagship project of the Government of India is projected to cater to a peak daily footfall of 3,20,000 visitors and estimated to generate 5,00,000 jobs. While the economic benefits are yet to manifest in real time and ‘Good design is good business’ holds true, for the urban transformation to be meaningful, the benefits have to go beyond just a balance sheet for the city’s exchequer. This aspect has been found relatively unexplored in research on these developments. The methodology for investigation will comprise of two steps. The first will be establishing an inventory of the global success stories and associated benefits of COEX projects over the past decade. The rationale for capping the timeframe is the significant paradigm shift that has been observed in their recent conceptualization; for instance ‘Innovation Districts’ conceptualised in the city of Albuquerque that converges into the global economy. The second step would entail a comparative benchmarking of the projected transformations by IICC through a toolkit of parameters. This is posited to yield a matrix that can form the test bed for mapping the catalytic trajectory for projects in the pipeline globally. As a ready reckoner, it purports to be a catalyst to substantiate decision making in the planning stage itself for future projects in similar contexts.

Keywords: catalysts, COEX, M.I.C.E., urban transformations

Procedia PDF Downloads 148
593 Interfacial Reactions between Aromatic Polyamide Fibers and Epoxy Matrix

Authors: Khodzhaberdi Allaberdiev

Abstract:

In order to understand the interactions on the interface polyamide fibers and epoxy matrix in fiber- reinforced composites were investigated industrial aramid fibers: armos, svm, terlon using individual epoxy matrix components, epoxies: diglycidyl ether of bisphenol A (DGEBA), three- and diglycidyl derivatives of m, p-amino-, m, p-oxy-, o, m,p-carboxybenzoic acids, the models: curing agent, aniline and the compound, that depict of the structure the primary addition reaction the amine to the epoxy resin, N-di (oxyethylphenoxy) aniline. The chemical structure of the surface of untreated and treated polyamide fibers analyzed using Fourier transform infrared spectroscopy (FTIR). The impregnation of fibers with epoxy matrix components and N-di (oxyethylphenoxy) aniline has been carried out by heating 150˚C (6h). The optimum fiber loading is at 65%.The result a thermal treatment is the covalent bonds formation , derived from a combined of homopolymerization and crosslinking mechanisms in the interfacial region between the epoxy resin and the surface of fibers. The reactivity of epoxy resins on interface in microcomposites (MC) also depends from processing aids treated on surface of fiber and the absorbance moisture. The influences these factors as evidenced by the conversion of epoxy groups values in impregnated with DGEBA of the terlons: industrial, dried (in vacuum) and purified samples: 5.20 %, 4.65% and 14.10%, respectively. The same tendency for svm and armos fibers is observed. The changes in surface composition of these MC were monitored by X-ray photoelectron spectroscopy (XPS). In the case of the purified fibers, functional groups of fibers act as well as a catalyst and curing agent of epoxy resin. It is found that the value of the epoxy groups conversion for reinforced formulations depends on aromatic polyamides nature and decreases in the order: armos >svm> terlon. This difference is due of the structural characteristics of fibers. The interfacial interactions also examined between polyglycidyl esters substituted benzoic acids and polyamide fibers in the MC. It is found that on interfacial interactions these systems influences as well as the structure and the isomerism of epoxides. The IR-spectrum impregnated fibers with aniline showed that the polyamide fibers appreciably with aniline do not react. FTIR results of treated fibers with N-di (oxyethylphenoxy) aniline fibers revealed dramatically changes IR-characteristic of the OH groups of the amino alcohol. These observations indicated hydrogen bondings and covalent interactions between amino alcohol and functional groups of fibers. This result also confirms appearance of the exo peak on Differential Scanning Calorimetry (DSC) curve of the MC. Finally, the theoretical evaluation non-covalent interactions between individual epoxy matrix components and fibers has been performed using the benzanilide and its derivative contaning the benzimidazole moiety as a models of terlon and svm,armos, respectively. Quantum-topological analysis also demonstrated the existence hydrogen bond between amide group of models and epoxy matrix components.All the results indicated that on the interface polyamide fibers and epoxy matrix exist not only covalent, but and non-covalent the interactions during the preparation of MC.

Keywords: epoxies, interface, modeling, polyamide fibers

Procedia PDF Downloads 259
592 Natural Monopolies and Their Regulation in Georgia

Authors: Marina Chavleishvili

Abstract:

Introduction: Today, the study of monopolies, including natural monopolies, is topical. In real life, pure monopolies are natural monopolies. Natural monopolies are used widely and are regulated by the state. In particular, the prices and rates are regulated. The paper considers the problems associated with the operation of natural monopolies in Georgia, in particular, their microeconomic analysis, pricing mechanisms, and legal mechanisms of their operation. The analysis was carried out on the example of the power industry. The rates of natural monopolies in Georgia are controlled by the Georgian National Energy and Water Supply Regulation Commission. The paper analyzes the positive role and importance of the regulatory body and the issues of improving the legislative base that will support the efficient operation of the branch. Methodology: In order to highlight natural monopolies market tendencies, the domestic and international markets are studied. An analysis of monopolies is carried out based on the endogenous and exogenous factors that determine the condition of companies, as well as the strategies chosen by firms to increase the market share. According to the productivity-based competitiveness assessment scheme, the segmentation opportunities, business environment, resources, and geographical location of monopolist companies are revealed. Main Findings: As a result of the analysis, certain assessments and conclusions were made. Natural monopolies are quite a complex and versatile economic element, and it is important to specify and duly control their frame conditions. It is important to determine the pricing policy of natural monopolies. The rates should be transparent, should show the level of life in the country, and should correspond to the incomes. The analysis confirmed the significance of the role of the Antimonopoly Service in the efficient management of natural monopolies. The law should adapt to reality and should be applied only to regulate the market. The present-day differential electricity tariffs varying depending on the consumed electrical power need revision. The effects of the electricity price discrimination are important, segmentation in different seasons in particular. Consumers use more electricity in winter than in summer, which is associated with extra capacities and maintenance costs. If the price of electricity in winter is higher than in summer, the electricity consumption will decrease in winter. The consumers will start to consume the electricity more economically, what will allow reducing extra capacities. Conclusion: Thus, the practical realization of the views given in the paper will contribute to the efficient operation of natural monopolies. Consequently, their activity will be oriented not on the reduction but on the increase of increments of the consumers or producers. Overall, the optimal management of the given fields will allow for improving the well-being throughout the country. In the article, conclusions are made, and the recommendations are developed to deliver effective policies and regulations toward the natural monopolies in Georgia.

Keywords: monopolies, natural monopolies, regulation, antimonopoly service

Procedia PDF Downloads 77
591 Seismic Reinforcement of Existing Japanese Wooden Houses Using Folded Exterior Thin Steel Plates

Authors: Jiro Takagi

Abstract:

Approximately 90 percent of the casualties in the near-fault-type Kobe earthquake in 1995 resulted from the collapse of wooden houses, although a limited number of collapses of this type of building were reported in the more recent off-shore-type Tohoku Earthquake in 2011 (excluding direct damage by the Tsunami). Kumamoto earthquake in 2016 also revealed the vulnerability of old wooden houses in Japan. There are approximately 24.5 million wooden houses in Japan and roughly 40 percent of them are considered to have the inadequate seismic-resisting capacity. Therefore, seismic strengthening of these wooden houses is an urgent task. However, it has not been quickly done for various reasons, including cost and inconvenience during the reinforcing work. Residents typically spend their money on improvements that more directly affect their daily housing environment (such as interior renovation, equipment renewal, and placement of thermal insulation) rather than on strengthening against extremely rare events such as large earthquakes. Considering this tendency of residents, a new approach to developing a seismic strengthening method for wooden houses is needed. The seismic reinforcement method developed in this research uses folded galvanized thin steel plates as both shear walls and the new exterior architectural finish. The existing finish is not removed. Because galvanized steel plates are aesthetic and durable, they are commonly used in modern Japanese buildings on roofs and walls. Residents could feel a physical change through the reinforcement, covering existing exterior walls with steel plates. Also, this exterior reinforcement can be installed with only outdoor work, thereby reducing inconvenience for residents since they would not be required to move out temporarily during construction. The Durability of the exterior is enhanced, and the reinforcing work can be done efficiently since perfect water protection is not required for the new finish. In this method, the entire exterior surface would function as shear walls and thus the pull-out force induced by seismic lateral load would be significantly reduced as compared with a typical reinforcement scheme of adding braces in selected frames. Consequently, reinforcing details of anchors to the foundations would be less difficult. In order to attach the exterior galvanized thin steel plates to the houses, new wooden beams are placed next to the existing beams. In this research, steel connections between the existing and new beams are developed, which contain a gap for the existing finish between the two beams. The thin steel plates are screwed to the new beams and the connecting vertical members. The seismic-resisting performance of the shear walls with thin steel plates is experimentally verified both for the frames and connections. It is confirmed that the performance is high enough for bracing general wooden houses.

Keywords: experiment, seismic reinforcement, thin steel plates, wooden houses

Procedia PDF Downloads 218
590 Brazilian Brown Propolis as a Natural Source against Leishmania amazonensis

Authors: Victor Pena Ribeiro, Caroline Arruda, Jennyfer Andrea Aldana Mejia, Jairo Kenupp Bastos

Abstract:

Leishmaniasis is a serious health problem around the world. The treatment of infected individuals with pentavalent antimonial drugs is the main therapeutic strategy. However, they present high toxicity and persistence side effects. Therefore, the discovery of new and safe natural-derived therapeutic agents against leishmaniasis is important. Propolis is a resin of viscous consistency produced by Apis mellifera bees from parts of plants. The main types of Brazilian propolis are green, red, yellow and brown. Thus, the aim of this work was to investigate the chemical composition and leishmanicidal properties of a brown propolis (BP). For this purpose, the hydroalcoholic crude extract of BP was obtained and was fractionated by liquid-liquid chromatography. The chemical profile of the extract and its fractions were obtained by HPLC-UV-DAD. The fractions were submitted to preparative HPLC chromatography for isolation of the major compounds of each fraction. They were analyzed by NMR for structural determination. The volatile compounds were obtained by hydrodistillation and identified by GC/MS. Promastigote forms of Leishmania amazonensis were cultivated in M199 medium and then 2×106 parasites.mL-1 were incubated in 96-well microtiter plates with the samples. The BP was dissolved in dimethyl sulfoxide (DMSO) and diluted into the medium, to give final concentrations of 1.56, 3.12, 6.25, 12.5, 25 and 50 µg.mL⁻¹. The plates were incubated at 25ºC for 24 h, and the lysis percentage was determined by using a Neubauer chamber. The bioassays were performed in triplicate, using a medium with 0.5% DMSO as a negative control and amphotericin B as a positive control. The leishimnicidal effect against promastigote forms was also evaluated at the same concentrations. Cytotoxicity experiments also were performed in 96-well plates against normal (CHO-k1) and tumor cell lines (AGP01 and HeLa) using XTT colorimetric method. Phenolic compounds, flavonoids, and terpenoids were identified in brown propolis. The major compounds were identified as follows: p-coumaric acid (24.6%) for a methanolic fraction, Artepelin-C (29.2%) for ethyl acetate fraction and the compounds of hexane fraction are in the process of structural elucidation. The major volatile compounds identified were β-caryophyllene (10.9%), germacrene D (9.7%), nerolidol (10.8%) and spathulenol (8.5%). The propolis did not show cytotoxicity against normal cell lines (CHO) with IC₅₀ > 100 μg.mL⁻¹, whereas the IC₅₀ < 10 μg.mL⁻¹ showed a potential against the AGP01 cell line, propolis did not demonstrate cytotoxicity against HeLa cell lines IC₅₀ > 100 μg.mL⁻¹. In the determination of the leishmanicidal activity, the highest (50 μg.mL⁻¹) and lowest (1.56 μg.mL⁻¹) concentrations of the crude extract caused the lysis of 76% and 45% of promastigote forms of L. amazonensis, respectively. To the amastigote form, the highest (50 μg.mL⁻¹) and lowest (1.56 μg.mL⁻¹) concentrations caused the mortality of 89% and 75% of L. amazonensis, respectively. The IC₅₀ was 2.8 μg.mL⁻¹ to amastigote form and 3.9 μg.mL⁻¹ to promastigote form, showing a promising activity against Leishmania amazonensis.

Keywords: amastigote, brown propolis, cytotoxicity, promastigote

Procedia PDF Downloads 145
589 Isolation of Clitorin and Manghaslin from Carica papaya L. Leaves by CPC and Its Quantitative Analysis by QNMR

Authors: Norazlan Mohmad Misnan, Maizatul Hasyima Omar, Mohd Isa Wasiman

Abstract:

Papaya (Carica papaya L., Caricaceae) is a tree which mainly cultivated for its fruits in many tropical regions including Australia, Brazil, China, Hawaii, and Malaysia. Beside of fruits, its leaves, seeds, and latex have also been traditionally used for treating diseases, which also reported to possess anti-cancer and anti- malaria properties. Its leaves have been reported to consist of various chemical compounds such as alkaloids, flavonoids and phenolics. Clitorin and manghaslin are among major flavonoids presence. Thus, the aim of this study is to quantify the purity of these isolated compounds (clitorin and manghsalin) by using quantitative Nuclear Magnetic Resonance (qNMR) analysis. Only fresh C. papaya leaves were used for juice extraction procedure and subsequently was freeze-dried to obtain a dark green powdered form of the extract prior to Centrifugal Partition Chromatography (CPC) separation. The CPC experiments were performed using a two-phase solvent system comprising ethyl acetate/butanol/water (1:4:5, v/v/v/v) solvent. The upper organic phase was used as the stationary phase, and the lower aqueous phase was employed as the mobile phase. Ten fractions were obtained after an hour runtime analysis. Fraction 6 and fraction 8 has been identified as clitorin (m/z 739.21 [M-H]-) and manghaslin (m/z 755.21 [M-H]-), respectively, based on LCMS data and full analysis of NMR (1H NMR, 13C NMR, HMBC, and HSQC). The 1H-qNMR measurements were carried out using a 400 MHz NMR spectrometer (JEOL ECS 400MHz, Japan) and deuterated methanol was used as a solvent. Quantification was performed using the AQARI method (Accurate Quantitative NMR) with deuterated 1,4-Bis(trimethylsilyl)benzene (BTMSB) as an internal reference substances. This AQARI protocol includes not only NMR measurement but also sample preparation that provide highest precision and accuracy than other qNMR methods. The 90° pulse length and the T1 relaxation times for compounds and BTMSB were determined prior to the quantification to give the best signal-to-noise ratio. Regions containing the two downfield signals from aromatic part (6.00–6.89 ppm), and the singlet signal, (18H) arising from BTMSB (0.63-1.05ppm) were selected for integration. The purity of clitorin and manghaslin were calculated to be 52.22% and 43.36%, respectively. Further purification is needed in order to increase its purity. This finding has demonstrated the use of qNMR for quality control and standardization of various plant extracts and which can be applied for NMR fingerprinting of other plant-based products with good reproducibility and in the case where commercial standards is not readily available.

Keywords: Carica papaya, clitorin, manghaslin, quantitative Nuclear Magnetic Resonance, Centrifugal Partition Chromatography

Procedia PDF Downloads 482
588 Clinical Staff Perceptions of the Quality of End-of-Life Care in an Acute Private Hospital: A Mixed Methods Design

Authors: Rosemary Saunders, Courtney Glass, Karla Seaman, Karen Gullick, Julie Andrew, Anne Wilkinson, Ashwini Davray

Abstract:

Current literature demonstrates that most Australians receive end-of-life care in a hospital setting, despite most hoping to die within their own home. The necessity for high quality end-of-life care has been emphasised by the Australian Commission on Safety and Quality in Health Care and the National Safety and Quality in Health Services Standards depict the requirement for comprehensive care at the end of life (Action 5.20), reinforcing the obligation for continual organisational assessment to determine if these standards are suitably achieved. Limited research exploring clinical staff perspectives of end-of-life care delivery has been conducted within an Australian private health context. This study aimed to investigate clinical staff member perceptions of end-of-life care delivery at a private hospital in Western Australia. The study comprised of a multi-faceted mixed-methods methodology, part of a larger study. Data was obtained from clinical staff utilising surveys and focus groups. A total of 133 questionnaires were completed by clinical staff, including registered nurses (61.4%), enrolled nurses (22.7%), allied health professionals (9.9%), non-palliative care consultants (3.8%) and junior doctors (2.2%). A total of 14.7% of respondents were palliative care ward staff members. Additionally, seven staff focus groups were conducted with physicians (n=3), nurses (n=26) and allied health professionals including social workers (n=1), dietitians (n=2), physiotherapists (n=5) and speech pathologists (n=3). Key findings from the surveys highlighted that the majority of staff agreed it was part of their role to talk to doctors about the care of patients who they thought may be dying, and recognised the importance of communication, appropriate training and support for clinical staff to provide quality end-of-life care. Thematic analysis of the qualitative data generated three key themes: creating the setting which highlighted the importance of adequate resourcing and conducive physical environments for end-of-life care and to support staff and families; planning and care delivery which emphasised the necessity for collaboration between staff, families and patients to develop care plans and treatment directives; and collaborating in end-of-life care, with effective communication and teamwork leading to achievable care delivery expectations. These findings contribute to health professionals better understanding of end-of-life care provision and the importance of collaborating with patients and families in care delivery. It is crucial that health care providers implement strategies to overcome gaps in care, so quality end-of-life care is provided. Findings from this study have been translated into practice, with the development and implementation of resources, training opportunities, support networks and guidelines for the delivery of quality end-of-life care.

Keywords: clinical staff, end-of-life care, mixed-methods, private hospital.

Procedia PDF Downloads 138
587 Contribution to the Study of Automatic Epileptiform Pattern Recognition in Long Term EEG Signals

Authors: Christine F. Boos, Fernando M. Azevedo

Abstract:

Electroencephalogram (EEG) is a record of the electrical activity of the brain that has many applications, such as monitoring alertness, coma and brain death; locating damaged areas of the brain after head injury, stroke and tumor; monitoring anesthesia depth; researching physiology and sleep disorders; researching epilepsy and localizing the seizure focus. Epilepsy is a chronic condition, or a group of diseases of high prevalence, still poorly explained by science and whose diagnosis is still predominantly clinical. The EEG recording is considered an important test for epilepsy investigation and its visual analysis is very often applied for clinical confirmation of epilepsy diagnosis. Moreover, this EEG analysis can also be used to help define the types of epileptic syndrome, determine epileptiform zone, assist in the planning of drug treatment and provide additional information about the feasibility of surgical intervention. In the context of diagnosis confirmation the analysis is made using long term EEG recordings with at least 24 hours long and acquired by a minimum of 24 electrodes in which the neurophysiologists perform a thorough visual evaluation of EEG screens in search of specific electrographic patterns called epileptiform discharges. Considering that the EEG screens usually display 10 seconds of the recording, the neurophysiologist has to evaluate 360 screens per hour of EEG or a minimum of 8,640 screens per long term EEG recording. Analyzing thousands of EEG screens in search patterns that have a maximum duration of 200 ms is a very time consuming, complex and exhaustive task. Because of this, over the years several studies have proposed automated methodologies that could facilitate the neurophysiologists’ task of identifying epileptiform discharges and a large number of methodologies used neural networks for the pattern classification. One of the differences between all of these methodologies is the type of input stimuli presented to the networks, i.e., how the EEG signal is introduced in the network. Five types of input stimuli have been commonly found in literature: raw EEG signal, morphological descriptors (i.e. parameters related to the signal’s morphology), Fast Fourier Transform (FFT) spectrum, Short-Time Fourier Transform (STFT) spectrograms and Wavelet Transform features. This study evaluates the application of these five types of input stimuli and compares the classification results of neural networks that were implemented using each of these inputs. The performance of using raw signal varied between 43 and 84% efficiency. The results of FFT spectrum and STFT spectrograms were quite similar with average efficiency being 73 and 77%, respectively. The efficiency of Wavelet Transform features varied between 57 and 81% while the descriptors presented efficiency values between 62 and 93%. After simulations we could observe that the best results were achieved when either morphological descriptors or Wavelet features were used as input stimuli.

Keywords: Artificial neural network, electroencephalogram signal, pattern recognition, signal processing

Procedia PDF Downloads 515
586 Inhibition of Influenza Replication through the Restrictive Factors Modulation by CCR5 and CXCR4 Receptor Ligands

Authors: Thauane Silva, Gabrielle do Vale, Andre Ferreira, Marilda Siqueira, Thiago Moreno L. Souza, Milene D. Miranda

Abstract:

The exposure of A(H1N1)pdm09-infected epithelial cells (HeLa) to HIV-1 viral particles, or its gp120, enhanced interferon-induced transmembrane protein (IFITM3) content, a viral restriction factor (RF), resulting in a decrease in influenza replication. The gp120 binds to CCR5 (R5) or CXCR4 (X4) cell receptors during HIV-1 infection. Then, it is possible that the endogenous ligands of these receptors also modulate the expression of IFITM3 and other cellular factors that restrict influenza virus replication. Thus, the aim of this study is to analyze the role of cellular receptors R5 and X4 in modulating RFs in order to inhibit the replication of the influenza virus. A549 cells were treated with 2x effective dose (ED50) of endogenous R5 or X4 receptor agonists, CCL3 (20 ng/ml), CCL4 (10 ng/ml), CCL5 (10 ng/ml) and CXCL12 (100 ng/mL) or exogenous agonists, gp120 Bal-R5, gp120 IIIB-X4 and its mutants (5 µg/mL). The interferon α (10 ng/mL) and oseltamivir (60 nM) were used as a control. After 24 h post agonists exposure, the cells were infected with virus influenza A(H3N2) at 2 MOI (multiplicity of infection) for 1 h. Then, 24 h post infection, the supernatant was harvested and, the viral titre was evaluated by qRT-PCR. To evaluate IFITM3 and SAM and HD domain containing deoxynucleoside triphosphate triphosphohydrolase 1 (SAMHD1) protein levels, A549 were exposed to agonists for 24 h, and the monolayer was lysed with Laemmli buffer for western blot (WB) assay or fixed for indirect immunofluorescence (IFI) assay. In addition to this, we analyzed other RFs modulation in A549, after 24 h post agonists exposure by customized RT² Profiler Polymerase Chain Reaction Array. We also performed a functional assay in which SAMHD1-knocked-down, by single-stranded RNA (siRNA), A549 cells were infected with A(H3N2). In addition, the cells were treated with guanosine to assess the regulatory role of dNTPs by SAMHD1. We found that R5 and X4 agonists inhibited influenza replication in 54 ± 9%. We observed a four-fold increase in SAMHD1 transcripts by RFs mRNA quantification panel. After 24 h post agonists exposure, we did not observe an increase in IFITM3 protein levels through WB or IFI assays, but we observed an upregulation up to three-fold in the protein content of SAMHD1, in A549 exposed to agonists. Besides this, influenza replication enhanced in 20% in cell cultures that SAMDH1 was knockdown. Guanosine treatment in cells exposed to R5 ligands further inhibited influenza virus replication, suggesting that the inhibitory mechanism may involve the activation of the SAMHD1 deoxynucleotide triphosphohydrolase activity. Thus, our data show for the first time a direct relationship of SAMHD1 and inhibition of influenza replication, and provides perspectives for new studies on the signaling modulation, through cellular receptors, to induce proteins of great importance in the control of relevant infections for public health.

Keywords: chemokine receptors, gp120, influenza, virus restriction factors

Procedia PDF Downloads 121
585 Utilization of Process Mapping Tool to Enhance Production Drilling in Underground Metal Mining Operations

Authors: Sidharth Talan, Sanjay Kumar Sharma, Eoin Joseph Wallace, Nikita Agrawal

Abstract:

Underground mining is at the core of rapidly evolving metals and minerals sector due to the increasing mineral consumption globally. Even though the surface mines are still more abundant on earth, the scales of industry are slowly tipping towards underground mining due to rising depth and complexities of orebodies. Thus, the efficient and productive functioning of underground operations depends significantly on the synchronized performance of key elements such as operating site, mining equipment, manpower and mine services. Production drilling is the process of conducting long hole drilling for the purpose of charging and blasting these holes for the production of ore in underground metal mines. Thus, production drilling is the crucial segment in the underground metal mining value chain. This paper presents the process mapping tool to evaluate the production drilling process in the underground metal mining operation by dividing the given process into three segments namely Input, Process and Output. The three segments are further segregated into factors and sub-factors. As per the study, the major input factors crucial for the efficient functioning of production drilling process are power, drilling water, geotechnical support of the drilling site, skilled drilling operators, services installation crew, oils and drill accessories for drilling machine, survey markings at drill site, proper housekeeping, regular maintenance of drill machine, suitable transportation for reaching the drilling site and finally proper ventilation. The major outputs for the production drilling process are ore, waste as a result of dilution, timely reporting and investigation of unsafe practices, optimized process time and finally well fragmented blasted material within specifications set by the mining company. The paper also exhibits the drilling loss matrix, which is utilized to appraise the loss in planned production meters per day in a mine on account of availability loss in the machine due to breakdowns, underutilization of the machine and productivity loss in the machine measured in drilling meters per unit of percussion hour with respect to its planned productivity for the day. The given three losses would be essential to detect the bottlenecks in the process map of production drilling operation so as to instigate the action plan to suppress or prevent the causes leading to the operational performance deficiency. The given tool is beneficial to mine management to focus on the critical factors negatively impacting the production drilling operation and design necessary operational and maintenance strategies to mitigate them. 

Keywords: process map, drilling loss matrix, SIPOC, productivity, percussion rate

Procedia PDF Downloads 202
584 Significant Influence of Land Use Type on Earthworm Communities but Not on Soil Microbial Respiration in Selected Soils of Hungary

Authors: Tsedekech Gebremeskel Weldmichael, Tamas Szegi, Lubangakene Denish, Ravi Kumar Gangwar, Erika Micheli, Barbara Simon

Abstract:

Following the 1992 Earth Summit in Rio de Janeiro, soil biodiversity has been recognized globally as a crucial player in guaranteeing the functioning of soil and a provider of several ecosystem services essential for human well-being. The microbial fraction of the soil is a vital component of soil fertility as soil microbes play key roles in soil aggregate formation, nutrient cycling, humification, and degradation of pollutants. Soil fauna, such as earthworms, have huge impacts on soil organic matter dynamics, nutrient cycling, and infiltration and distribution of water in the soil. Currently, land-use change has been a global concern as evidence accumulates that it adversely affects soil biodiversity and the associated ecosystem goods and services. In this study, we examined the patterns of soil microbial respiration (SMR) and earthworm (abundance, biomass, and species richness) across three land-use types (grassland, arable land, and forest) in Hungary. The objectives were i) to investigate whether there is a significant difference in SMR and earthworm (abundance, biomass, and species richness) among land-use types. ii) to determine the key soil properties that best predict the variation in SMR and earthworm communities. Soil samples, to a depth of 25 cm, were collected from the surrounding areas of seven soil profiles. For physicochemical parameters, soil organic matter (SOM), pH, CaCO₃, E₄/E₆, available nitrogen (NH₄⁺-N and NO₃⁻-N), potassium (K₂O), phosphorus (P₂O₅), exchangeable Ca²⁺, Mg²⁺, soil moisture content (MC) and bulk density were measured. The analysis of SMR was determined by basal respiration method, and the extraction of earthworms was carried out by hand sorting method as described by ISO guideline. The results showed that there was no statistically significant difference among land-use types in SMR (p > 0.05). However, the highest SMR was observed in grassland soils (11.77 mgCO₂ 50g⁻¹ soil 10 days⁻¹) and lowest in forest soils (8.61 mgCO₂ 50g⁻¹ soil 10 days⁻¹). SMR had strong positive correlations with exchangeable Ca²⁺ (r = 0.80), MC (r = 0.72), and exchangeable Mg²⁺(r = 0.69). We found a pronounced variation in SMR among soil texture classes (p < 0.001), where the highest value in silty clay loam soils and the lowest in sandy soils. This study provides evidence that agricultural activities can negatively influence earthworm communities, in which the arable land had significantly lower earthworm communities compared to forest and grassland respectively. Overall, in our study, land use type had minimal effects on SMR whereas, earthworm communities were profoundly influenced by land-use type particularly agricultural activities related to tillage. Exchangeable Ca²⁺, MC, and texture were found to be the key drivers of the variation in SMR.

Keywords: earthworm community, land use, soil biodiversity, soil microbial respiration, soil property

Procedia PDF Downloads 126
583 Development of High-Efficiency Down-Conversion Fluoride Phosphors to Increase the Efficiency of Solar Panels

Authors: S. V. Kuznetsov, M. N. Mayakova, V. Yu. Proydakova, V. V. Pavlov, A. S. Nizamutdinov, O. A. Morozov, V. V. Voronov, P. P. Fedorov

Abstract:

Increase in the share of electricity received by conversion of solar energy results in the reduction of the industrial impact on the environment from the use of the hydrocarbon energy sources. One way to increase said share is to improve the efficiency of solar energy conversion in silicon-based solar panels. Such efficiency increase can be achieved by transferring energy from sunlight-insensitive areas of work of silicon solar panels to the area of their photoresistivity. To achieve this goal, a transition to new luminescent materials with the high quantum yield of luminescence is necessary. Improvement in the quantum yield can be achieved by quantum cutting, which allows obtaining a quantum yield of down conversion of more than 150% due to the splitting of high-energy photons of the UV spectral range into lower-energy photons of the visible and near infrared spectral ranges. The goal of present work is to test approach of excitation through sensibilization of 4f-4f fluorescence of Yb3+ by various RE ions absorbing in UV and Vis spectral ranges. One of promising materials for quantum cutting luminophores are fluorides. In our investigation we have developed synthesis of nano- and submicron powders of calcium fluoride and strontium doped with rare-earth elements (Yb: Ce, Yb: Pr, Yb: Eu) of controlled dimensions and shape by co-precipitation from water solution technique. We have used Ca(NO3)2*4H2O, Sr(NO3)2, HF, NH4F as precursors. After initial solutions of nitrates were prepared they have been mixed with fluorine containing solution by dropwise manner. According to XRD data, the synthesis resulted in single phase samples with fluorite structure. By means of SEM measurements, we have confirmed spherical morphology and have determined sizes of particles (50-100 nm after synthesis and 150-300 nm after calcination). Temperature of calcination appeared to be 600°C. We have investigated the spectral-kinetic characteristics of above mentioned compounds. Here the diffuse reflection and laser induced fluorescence spectra of Yb3+ ions excited at around 4f-4f and 4f-5d transitions of Pr3+, Eu3+ and Ce3+ ions in the synthesized powders are reported. The investigation of down conversion luminescence capability of synthesized compounds included measurements of fluorescence decays and quantum yield of 2F5/2-2F7/2 fluorescence of Yb3+ ions as function of Yb3+ and sensitizer contents. An optimal chemical composition of CaF2-YbF3- LnF3 (Ln=Ce, Eu, Pr), SrF2-YbF3-LnF3 (Ln=Ce, Eu, Pr) micro- and nano- powders according to criteria of maximal IR fluorescence yield is proposed. We suppose that investigated materials are prospective in solar panels improvement applications. Work was supported by Russian Science Foundation grant #17-73- 20352.

Keywords: solar cell, fluorides, down-conversion luminescence, maximum quantum yield

Procedia PDF Downloads 261
582 A Dynamic Mechanical Thermal T-Peel Test Approach to Characterize Interfacial Behavior of Polymeric Textile Composites

Authors: J. R. Büttler, T. Pham

Abstract:

Basic understanding of interfacial mechanisms is of importance for the development of polymer composites. For this purpose, we need techniques to analyze the quality of interphases, their chemical and physical interactions and their strength and fracture resistance. In order to investigate the interfacial phenomena in detail, advanced characterization techniques are favorable. Dynamic mechanical thermal analysis (DMTA) using a rheological system is a sensitive tool. T-peel tests were performed with this system, to investigate the temperature-dependent peel behavior of woven textile composites. A model system was made of polyamide (PA) woven fabric laminated with films of polypropylene (PP) or PP modified by grafting with maleic anhydride (PP-g-MAH). Firstly, control measurements were performed with solely PP matrixes. Polymer melt investigations, as well as the extensional stress, extensional viscosity and extensional relaxation modulus at -10°C, 100 °C and 170 °C, demonstrate similar viscoelastic behavior for films made of PP-g-MAH and its non-modified PP-control. Frequency sweeps have shown that PP-g-MAH has a zero phase viscosity of around 1600 Pa·s and PP-control has a similar zero phase viscosity of 1345 Pa·s. Also, the gelation points are similar at 2.42*104 Pa (118 rad/s) and 2.81*104 Pa (161 rad/s) for PP-control and PP-g-MAH, respectively. Secondly, the textile composite was analyzed. The extensional stress of PA66 fabric laminated with either PP-control or PP-g-MAH at -10 °C, 25 °C and 170 °C for strain rates of 0.001 – 1 s-1 was investigated. The laminates containing the modified PP need more stress for T-peeling. However, the strengthening effect due to the modification decreases by increasing temperature and at 170 °C, just above the melting temperature of the matrix, the difference disappears. Independent of the matrix used in the textile composite, there is a decrease of extensional stress by increasing temperature. It appears that the more viscous is the matrix, the weaker the laminar adhesion. Possibly, the measurement is influenced by the fact that the laminate becomes stiffer at lower temperatures. Adhesive lap-shear testing at room temperature supports the findings obtained with the T-peel test. Additional analysis of the textile composite at the microscopic level ensures that the fibers are well embedded in the matrix. Atomic force microscopy (AFM) imaging of a cross section of the composite shows no gaps between the fibers and matrix. Measurements of the water contact angle show that the MAH grafted PP is more polar than the virgin-PP, and that suggests a more favorable chemical interaction of PP-g-MAH with PA, compared to the non-modified PP. In fact, this study indicates that T-peel testing by DMTA is a technique to achieve more insights into polymeric textile composites.

Keywords: dynamic mechanical thermal analysis, interphase, polyamide, polypropylene, textile composite

Procedia PDF Downloads 123
581 Methods of Detoxification of Nuts With Aflatoxin B1 Contamination

Authors: Auteleyeva Laura, Maikanov Balgabai, Smagulova Ayana

Abstract:

In order to find and select detoxification methods, patent and information research was conducted, as a result of which 68 patents for inventions were found, among them from the near abroad - 14 (Russia), from far abroad: China – 27, USA - 6, South Korea–1, Germany - 2, Mexico – 4, Yugoslavia – 7, Austria, Taiwan, Belarus, Denmark, Italy, Japan, Canada for 1 security document. Aflatoxin B₁ in various nuts was determined by two methods: enzyme immunoassay "RIDASCREEN ® FAST Aflatoxin" with determination of optical density on a microplate spectrophotometer RIDA®ABSORPTION 96 with RIDASOFT® software Win.NET (Germany) and the method of high-performance liquid chromatography (HPLC Corporation Water, USA) according to GOST 307112001. For experimental contamination of nuts, the cultivation of strain A was carried out. flavus KWIK-STIK on the medium of Chapek (France) with subsequent infection of various nuts (peanuts, peanuts with shells, badam, walnuts with and without shells, pistachios).Based on our research, we have selected 2 detoxification methods: method 1 – combined (5% citric acid solution + microwave for 640 W for 3 min + UV for 20 min) and a chemical method with various leaves of plants: Artemisia terra-albae, Thymus vulgaris, Callogonum affilium, collected in the territory of Akmola region (Artemisia terra-albae, Thymus vulgaris) and Western Kazakhstan (Callogonum affilium). The first stage was the production of ethanol extracts of Artemisia terraea-albae, Thymus vulgaris, Callogonum affilium. To obtain them, 100 g of vegetable raw materials were taken, which was dissolved in 70% ethyl alcohol. Extraction was carried out for 2 hours at the boiling point of the solvent with a reverse refrigerator using an ultrasonic bath "Sapphire". The obtained extracts were evaporated on a rotary evaporator IKA RV 10. At the second stage, the three samples obtained were tested for antimicrobial and antifungal activity. Extracts of Thymus vulgaris and Callogonum affilium showed high antimicrobial and antifungal activity. Artemisia terraea-albae extract showed high antimicrobial activity and low antifungal activity. When testing method 1, it was found that in the first and third experimental groups there was a decrease in the concentration of aflatoxin B1 in walnut samples by 63 and 65%, respectively, but these values also exceeded the maximum permissible concentrations, while the nuts in the second and third experimental groups had a tart lemon flavor; When testing method 2, a decrease in the concentration of aflatoxin B1 to a safe level was observed by 91% (0.0038 mg/kg) in nuts of the 1st and 2nd experimental groups (Artemisia terra-albae, Thymus vulgaris), while in samples of the 2nd and 3rd experimental groups, a decrease in the amount of aflatoxin in 1 to a safe level was observed.

Keywords: nuts, aflatoxin B1, my, mycotoxins

Procedia PDF Downloads 74
580 Comparative Effects of Resveratrol and Energy Restriction on Liver Fat Accumulation and Hepatic Fatty Acid Oxidation

Authors: Iñaki Milton-Laskibar, Leixuri Aguirre, Maria P. Portillo

Abstract:

Introduction: Energy restriction is an effective approach in preventing liver steatosis. However, due to social and economic reasons among others, compliance with this treatment protocol is often very poor, especially in the long term. Resveratrol, a natural polyphenolic compound that belongs to stilbene group, has been widely reported to imitate the effects of energy restriction. Objective: To analyze the effects of resveratrol under normoenergetic feeding conditions and under a mild energy restriction on liver fat accumulation and hepatic fatty acid oxidation. Methods: 36 male six-week-old rats were fed a high-fat high-sucrose diet for 6 weeks in order to induce steatosis. Then, rats were divided into four groups and fed a standard diet for 6 additional weeks: control group (C), resveratrol group (RSV, resveratrol 30 mg/kg/d), restricted group (R, 15 % energy restriction) and combined group (RR, 15 % energy restriction and resveratrol 30 mg/kg/d). Liver triacylglycerols (TG) and total cholesterol contents were measured by using commercial kits. Carnitine palmitoyl transferase 1a (CPT 1a) and citrate synthase (CS) activities were measured spectrophotometrically. TFAM (mitochondrial transcription factor A) and peroxisome proliferator-activator receptor alpha (PPARα) protein contents, as well as the ratio acetylated peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α)/Total PGC1α were analyzed by Western blot. Statistical analysis was performed by using one way ANOVA and Newman-Keuls as post-hoc test. Results: No differences were observed among the four groups regarding liver weight and cholesterol content, but the three treated groups showed reduced TG when compared to the control group, being the restricted groups the ones showing the lowest values (with no differences between them). Higher CPT 1a and CS activities were observed in the groups supplemented with resveratrol (RSV and RR), with no difference between them. The acetylated PGC1α /total PGC1α ratio was lower in the treated groups (RSV, R and RR) than in the control group, with no differences among them. As far as TFAM protein expression is concerned, only the RR group reached a higher value. Finally, no changes were observed in PPARα protein expression. Conclusions: Resveratrol administration is an effective intervention for liver triacylglycerol content reduction, but a mild energy restriction is even more effective. The mechanisms of action of these two strategies are different. Thus resveratrol, but not energy restriction, seems to act by increasing fatty acid oxidation, although mitochondriogenesis seems not to be induced. When both treatments (resveratrol administration and a mild energy restriction) were combined, no additive or synergic effects were appreciated. Acknowledgements: MINECO-FEDER (AGL2015-65719-R), Basque Government (IT-572-13), University of the Basque Country (ELDUNANOTEK UFI11/32), Institut of Health Carlos III (CIBERobn). Iñaki Milton is a fellowship from the Basque Government.

Keywords: energy restriction, fat, liver, oxidation, resveratrol

Procedia PDF Downloads 204
579 Recent Advances in the Valorization of Goat Milk: Nutritional Properties and Production Sustainability

Authors: A. M. Tarola, R. Preti, A. M. Girelli, P. Campana

Abstract:

Goat dairy products are gaining popularity worldwide. In developing countries, but also in many marginal regions of the Mediterranean area, goats represent a great part of the economy and ensure food security. In fact, these small ruminants are able to convert efficiently poor weedy plants and small trees into traditional products of high nutritional quality, showing great resilience to different climatic and environmental conditions. In developed countries, goat milk is appreciated for the presence of health-promoting compounds, bioactive compounds such as conjugated linoleic acids, oligosaccharides, sphingolipids and polyammines. This paper focuses on the recent advances in literature on the nutritional properties of goat milk and on innovative techniques to improve its quality as to become a promising functional food. The environmental sustainability of different methodologies of production has also been examined. Goat milk is valued today as a food of high nutritional value and functional properties as well as small environmental footprint. It is widely consumed in many countries due to high nutritional value, lower allergenic potential, and better digestibility when compared to bovine milk, that makes this product suitable for infants, elderly or sensitive patients. The main differences in chemical composition between a cow and goat milk rely on fat globules that in goat milk are smaller and in fatty acids that present a smaller chain length, while protein, fat, and lactose concentration are comparable. Milk nutritional properties have demonstrated to be strongly influenced by animal diet, genotype, and welfare, but also by season and production systems. Furthermore, there is a growing interest in the dairy industry in goat milk for its relatively high concentration of prebiotics and a good amount of probiotics, which have recently gained importance for their therapeutic potential. Therefore, goat milk is studied as a promising matrix to develop innovative functional foods. In addition to the economic and nutritional value, goat milk is considered a sustainable product for its small environmental footprint, as they require relatively little water and land, and less medical treatments, compared to cow, these characteristics make its production naturally vocated to organic farming. Organic goat milk production has becoming more and more interesting both for farmers and consumers as it can answer to several concerns like environment protection, animal welfare and economical sustainment of rural populations living in marginal lands. These evidences make goat milk an ancient food with novel properties and advantages to be valorized and exploited.

Keywords: goat milk, nutritional quality, bioactive compounds, sustainable production, animal welfare

Procedia PDF Downloads 135
578 High Impact Biostratigrapgic Study

Authors: Njoku, Joy

Abstract:

The re-calibration of the Campanian to Maastritchian of some parts Anambra basin was carried outusing samples from two exploration wells (Amama-1 and Bara-1), Amama-1 (219M–1829M) and Bara-1 (317M-1594M). Palynological and Paleontological analyses werecarried out on 100 ditch cutting samples. The faunal and floral succession were of terrestrialand marine origin as described and logged. The well penetrated four stratigraphic units inAnambra Basin (the Nkporo, Mamu, Ajali and Nsukka) the wells yielded well preservedformanifera and palynormorphs. The well yielded 53 species of foram and 69 species ofpalynomorphs, with 12 genera Bara-1 (25 Species of foram and 101 species of palynormorphs). Amama-1permitted the recognition of 21 genera with 31 formainiferal assemblage zones, 32 pollen and 37 sporesassemblage zones, and dinoflagellate cyst, biozonation, ranging from late Campanian – earlyPaleocene. Bara-1 yielded (60 pollen, 41 spore assemblage zone and 18 dinoflagellate cyst).The zones, in stratigraphically ascending order for the foraminifera and palynomorphs are asfollows. AmamaBiozone A-Globotruncanellahavanensis zone: Late Campanian –Maastrichtian (695 – 1829m) Biozone B-Morozovellavelascoensis zone: Early Paleocene(165–695m) Bara-1 Biozone A-Globotruncanellahavanensis zone: Late Campanian(1512m) Biozone B-Bolivinaafra, B. explicate zone: Maastrichtian (634–1204m) BiozoneC- Indeterminate (305 – 634m) Palynological Amama-1 A.Ctenolophoniditescostatus zone:Early Maastrichtian (1829m) B-Retidiporitesminiporatus Zone: Late Maastrichtian (1274m)Constructipollenitesineffectus Zone: Early Paleocene(695m) Bara-1 Droseriditessenonicus Zone: Late Campanian (994– 1600m) B. Ctenolophoniditescostatus Zone: EarlyMaastrichtian (713–994m) C. Retidiporitesminiporatus Zone: Late Maastrichtian (305 –713m) The paleo – environment of deposition were determined to range from non-marine toouter netritic. A detailed categorization of the palynormorphs into terrestrially derivedpalynormorphs and marine derived palynormorphs based on the distribution of three broadvegetation types; mangrove, fresh water swamps and hinther land communities were used toevaluate sea level fluctuations with respect to sediments deposited in the basins and linkedwith a particular depositional system tract. Amama-1 recorded 4 maximum flooding surface(MFS) at depth 165-1829, dated b/w 61ma-76ma and three sequence boundary(SB) at depth1048m-1533m and 1581 dated b/w 634m-1387m, dated 69.5ma-82ma and four sequenceboundary(SB) at 552m-876m, dated 68ma-77.5ma respectively. The application ofecostratigraphic description is characterised by the prominent expansion of the hinterlandcomponent consisting of the Mangrove to Lowland Rainforest and Afromontane – Savannah vegetation.

Keywords: formanifera, palynomorphs. campanian, maastritchian, ecostratigraphic anambra

Procedia PDF Downloads 6