Search results for: wound classification
1145 Automatic Identification and Classification of Contaminated Biodegradable Plastics using Machine Learning Algorithms and Hyperspectral Imaging Technology
Authors: Nutcha Taneepanichskul, Helen C. Hailes, Mark Miodownik
Abstract:
Plastic waste has emerged as a critical global environmental challenge, primarily driven by the prevalent use of conventional plastics derived from petrochemical refining and manufacturing processes in modern packaging. While these plastics serve vital functions, their persistence in the environment post-disposal poses significant threats to ecosystems. Addressing this issue necessitates approaches, one of which involves the development of biodegradable plastics designed to degrade under controlled conditions, such as industrial composting facilities. It is imperative to note that compostable plastics are engineered for degradation within specific environments and are not suited for uncontrolled settings, including natural landscapes and aquatic ecosystems. The full benefits of compostable packaging are realized when subjected to industrial composting, preventing environmental contamination and waste stream pollution. Therefore, effective sorting technologies are essential to enhance composting rates for these materials and diminish the risk of contaminating recycling streams. In this study, it leverage hyperspectral imaging technology (HSI) coupled with advanced machine learning algorithms to accurately identify various types of plastics, encompassing conventional variants like Polyethylene terephthalate (PET), Polypropylene (PP), Low density polyethylene (LDPE), High density polyethylene (HDPE) and biodegradable alternatives such as Polybutylene adipate terephthalate (PBAT), Polylactic acid (PLA), and Polyhydroxyalkanoates (PHA). The dataset is partitioned into three subsets: a training dataset comprising uncontaminated conventional and biodegradable plastics, a validation dataset encompassing contaminated plastics of both types, and a testing dataset featuring real-world packaging items in both pristine and contaminated states. Five distinct machine learning algorithms, namely Partial Least Squares Discriminant Analysis (PLS-DA), Support Vector Machine (SVM), Convolutional Neural Network (CNN), Logistic Regression, and Decision Tree Algorithm, were developed and evaluated for their classification performance. Remarkably, the Logistic Regression and CNN model exhibited the most promising outcomes, achieving a perfect accuracy rate of 100% for the training and validation datasets. Notably, the testing dataset yielded an accuracy exceeding 80%. The successful implementation of this sorting technology within recycling and composting facilities holds the potential to significantly elevate recycling and composting rates. As a result, the envisioned circular economy for plastics can be established, thereby offering a viable solution to mitigate plastic pollution.Keywords: biodegradable plastics, sorting technology, hyperspectral imaging technology, machine learning algorithms
Procedia PDF Downloads 821144 Assessment of DNA Sequence Encoding Techniques for Machine Learning Algorithms Using a Universal Bacterial Marker
Authors: Diego Santibañez Oyarce, Fernanda Bravo Cornejo, Camilo Cerda Sarabia, Belén Díaz Díaz, Esteban Gómez Terán, Hugo Osses Prado, Raúl Caulier-Cisterna, Jorge Vergara-Quezada, Ana Moya-Beltrán
Abstract:
The advent of high-throughput sequencing technologies has revolutionized genomics, generating vast amounts of genetic data that challenge traditional bioinformatics methods. Machine learning addresses these challenges by leveraging computational power to identify patterns and extract information from large datasets. However, biological sequence data, being symbolic and non-numeric, must be converted into numerical formats for machine learning algorithms to process effectively. So far, some encoding methods, such as one-hot encoding or k-mers, have been explored. This work proposes additional approaches for encoding DNA sequences in order to compare them with existing techniques and determine if they can provide improvements or if current methods offer superior results. Data from the 16S rRNA gene, a universal marker, was used to analyze eight bacterial groups that are significant in the pulmonary environment and have clinical implications. The bacterial genes included in this analysis are Prevotella, Abiotrophia, Acidovorax, Streptococcus, Neisseria, Veillonella, Mycobacterium, and Megasphaera. These data were downloaded from the NCBI database in Genbank file format, followed by a syntactic analysis to selectively extract relevant information from each file. For data encoding, a sequence normalization process was carried out as the first step. From approximately 22,000 initial data points, a subset was generated for testing purposes. Specifically, 55 sequences from each bacterial group met the length criteria, resulting in an initial sample of approximately 440 sequences. The sequences were encoded using different methods, including one-hot encoding, k-mers, Fourier transform, and Wavelet transform. Various machine learning algorithms, such as support vector machines, random forests, and neural networks, were trained to evaluate these encoding methods. The performance of these models was assessed using multiple metrics, including the confusion matrix, ROC curve, and F1 Score, providing a comprehensive evaluation of their classification capabilities. The results show that accuracies between encoding methods vary by up to approximately 15%, with the Fourier transform obtaining the best results for the evaluated machine learning algorithms. These findings, supported by the detailed analysis using the confusion matrix, ROC curve, and F1 Score, provide valuable insights into the effectiveness of different encoding methods and machine learning algorithms for genomic data analysis, potentially improving the accuracy and efficiency of bacterial classification and related genomic studies.Keywords: DNA encoding, machine learning, Fourier transform, Fourier transformation
Procedia PDF Downloads 281143 Understanding the Health Issues of Impoverished Child Rag Pickers in India
Authors: Burhan Khan
Abstract:
Objective: This study aims to enhance the body of knowledge about the vulnerabilities of child waste pickers in solid waste management. The primary objective of this research is to investigate the occupational menaces and their potential harm to the health of child waste pickers. Material and Methods: The present study design is descriptive in nature and involves children aged 5 through 14, who were rummaging through garbage in the roads and streets of Aligarh city, Uttar Pradesh. The researcher adopted an empirical approach to interview 65 participants (27 boys and 38 girls) across Aligarh city, Uttar Pradesh. The majority of the participants are Muslims (76.9 %), scheduled Castes (13.8 %), and Hindus (9.2 %). Out of 65 participants, 73.8% of children were migrated within the last five years. The primary data were analysed by utilising descriptive statistics, including frequencies, cross-tabs, means, and percentages. Results: The results show that the vast majority of children (87.7%) have experienced superficial injuries or open wound at their work. More than 32% were suffering from respiratory problems such as coughing, wheezing and short of breath, close to 37% reported skin problems like allergy, irritation and bruising and 4.6% had eye problems such as pain and irritation in eyes. Nearly 78% of children lift and carry a heavy load like large garbage bags. Over 83% informed that they sort through refuse in a filthy environment such as open dumpsites, effluents, and runnels. Conclusion: This research provides pieces of evidence of how children are being tormented in the rag-picking sector. It has been observed that child rag pickers are susceptible to injuries or illnesses due to work-related risks and toxic environment. In India, there is no robust policy to address the concerns of waste pickers and laws to protect their rights. Consequently, these deprived communities of rag pickers, especially children, have become more vulnerable over time in India. Hence, this research paper calls for a quick response to the exigencies of child rag picker by developing a holistic approach that deals with education, medical care, sanitation, and nutrition for child rag pickers.Keywords: child rag pickers, health impairments, occupational hazards, toxic environment
Procedia PDF Downloads 1271142 Facial Emotion Recognition with Convolutional Neural Network Based Architecture
Authors: Koray U. Erbas
Abstract:
Neural networks are appealing for many applications since they are able to learn complex non-linear relationships between input and output data. As the number of neurons and layers in a neural network increase, it is possible to represent more complex relationships with automatically extracted features. Nowadays Deep Neural Networks (DNNs) are widely used in Computer Vision problems such as; classification, object detection, segmentation image editing etc. In this work, Facial Emotion Recognition task is performed by proposed Convolutional Neural Network (CNN)-based DNN architecture using FER2013 Dataset. Moreover, the effects of different hyperparameters (activation function, kernel size, initializer, batch size and network size) are investigated and ablation study results for Pooling Layer, Dropout and Batch Normalization are presented.Keywords: convolutional neural network, deep learning, deep learning based FER, facial emotion recognition
Procedia PDF Downloads 2751141 Evaluation of Percutaneous Tube Thoracostomy Performed by Trainee in Both Trauma and Non-Trauma Patients
Authors: Kulsum Maula, Md Kamrul Alam, Md Ibrahim Khalil, Md Nazmul Hasan, Mohammad Omar Faruq
Abstract:
Background: Percutaneous Tube Thoracostomy (PTT) is an invasive procedure that can save a life now and then in different traumatic and non-traumatic conditions. But still, it is an enigma; how our trainee surgeons are at home in this procedure. Objectives: To evaluate the outcome of the percutaneous tube thoracostomy performed by trainees in both trauma and non-trauma patients. Study design: Prospective, Observational Study. The duration of the study was September 2018 to February 2019. Methods: All patients who need PTT in traumatic and non-traumatic conditions were selected by purposive sampling. Thereafter, they were scrutinized according to eligibility criteria and 96 patients were finalized. A pre-tested, observation-based, peer-reviewed data collection sheet was prepared before the study. Data regarding clinical and surgical outcome profiles were recorded. Data were compiled, edited, and analyzed. Results: Among 96 patients, the highest 32.29% belonged to age group 31-40 years and the lowest 9.37% belonged to the age group ≤20. The mean age of the respondents was 29.19±9.81. We found out of 96 patients, 70(72.91%) were indicated PTT for traumatic conditions and the rest 26(27.08%) were indicated PTT for non-traumatic chest conditions, where 36(37.5%) had simple penumothorax, 21(21.87%) haemothorax, 14(14.58%) massive pleural effusion, 13(13.54%) tension pneumothorax, 10(10.41%) haemopneumothorax, and 2(2.08%) had pyothorax respectively. In 53.12% of patients had right-sided intercostal chest tube (ICT) insertion, whereas 46.87% had left-sided ICT insertion. In our study, 89.55 % of the tube was placed at the normal anatomical position. Besides, 10.41% of tube thoracostomy were performed deviated from anatomical site. Among 96 patients 62.5% patients had length of incision 2-3cm, 35.41% had >3cm and 2.08% had <2cm respectively. Out of 96 patients, 75(78.13%) showed uneventful outcomes, whereas 21(21.87%) had complications, including 11.15%(11) each had wound infection, 4.46%(4) subcutaneous emphysema, 4.28%(3) drain auto expulsion, 2.85%(2) hemorrhage, 1.45%(1) had a non-functioning drain and empyema with ascending infection respectively (p=<0.05). Conclusion: PTT is a life-saving procedure that is most frequently implemented in chest trauma patients in our country. In the majority of cases, the outcome of PTT was uneventful (78.13). Besides this, more than one-third of patients had a length of incision more than 3 cm that needed extra stitches and 10.41% of cases of PTT were placed other than the normal anatomical site. Trainees of Dhaka Medical College Hospitals are doing well in their performance of PTT insertion, but still, some anatomical orientations are necessary to avoid operative and post-operative complications.Keywords: PTT, trainee, trauma, non-chest trauma patients
Procedia PDF Downloads 1211140 Threat Analysis: A Technical Review on Risk Assessment and Management of National Testing Service (NTS)
Authors: Beenish Urooj, Ubaid Ullah, Sidra Riasat
Abstract:
National Testing Service-Pakistan (NTS) is an agency in Pakistan that conducts student success appraisal examinations. In this research paper, we must present a security model for the NTS organization. The security model will depict certain security countermeasures for a better defense against certain types of breaches and system malware. We will provide a security roadmap, which will help the company to execute its further goals to maintain security standards and policies. We also covered multiple aspects in securing the environment of the organization. We introduced the processes, architecture, data classification, auditing approaches, survey responses, data handling, and also training and awareness of risk for the company. The primary contribution is the Risk Survey, based on the maturity model meant to assess and examine employee training and knowledge of risks in the company's activities.Keywords: NTS, risk assessment, threat factors, security, services
Procedia PDF Downloads 711139 Success of Trabeculectomy: May Not Always Depend on Mitomycin C
Authors: Sushma Tejwani, Shoruba Dinakaran, Rupa Rokhade, K. Bhujang Shetty
Abstract:
Introduction and aim: One of the major causes for failure of trabeculectomy is fibrosis and scarring of subconjunctival tissue around the bleb, and hence intra operative usage of anti-fibrotic agents like Mitomycin C (MMC) has become very popular. However, the long term effects of MMC like thin, avascular bleb, hypotony, bleb leaks and late onset endophthalmitis cannot be ignored, and may preclude its usage in routine trabeculectomy. In this particular study we aim to study the outcomes of trabeculectomy with and without MMC in uncomplicated glaucoma patients. Methods: Retrospective study of series of patients that underwent trabeculectomy with or without cataract surgery in glaucoma department of a tertiary eye care centre by a single surgeon for primary open angle glaucoma (POAG), angle closure glaucoma (PACG), Pseudoexfoliation glaucoma (PXF glaucoma). Patients with secondary glaucoma, juvenile and congenital glaucoma were excluded; also patients undergoing second trabeculectomy were excluded. The outcomes were studied in terms of IOP control at 1 month, 6 months, and 1 year and were analyzed separately for surgical outcomes with and without MMC. Success was considered if IOP was < 16 mmHg on applanation tonometry. Further, the necessity of medication, 5 fluorouracil (5FU) postoperative injections, needling post operatively was noted. Results: Eighty nine patient’s medical records were reviewed, of which 58 patients had undergone trabeculectomy without MMC and 31 with MMC. Mean age was 62.4 (95%CI 61- 64), 34 were females and 55 males. MMC group (n=31): Preoperative mean IOP was 21.1mmHg (95% CI: 17.6 -24.6), and 22 patients had IOP > 16. Three out of 33 patients were on single medication and rests were on multiple drugs. At 1 month (n=27) mean IOP was 12.4 mmHg (CI: 10.7-14), and 31/33 had success. At 6 months (n=18) mean IOP was 13mmHg (CI: 10.3-14.6) and 16/18 had good outcome, however at 1 year only 11 patients were available for follow up and 91% (10/11) had success. Overall, 3 patients required medication and one patient required postoperative injection of 5 FU. No MMC group (n=58): Preoperative mean IOP was 21.9 mmHg (CI: 19.8-24.2), and 42 had IOP > 16 mmHg. 12 out of 58 patients were on single medication and rests were on multiple drugs. At 1 month (n=52) mean IOP was14.6mmHg (CI: 13.2-15.9), and 45/ 58 had IOP < 16mmHg. At 6 months (n=31) mean IOP was 13.5 mmHg (CI: 11.9-15.2) and 26/31 had success, however at 1 year only 23 patients came for follow up and of these 87% (20/23) patients had success. Overall, 1 patient required needling, 5 required 5 FU injections and 5 patients required medication. The success rates at each follow up visit were not significantly different in both the groups. Conclusion: Intra-operative MMC usage may not be required in all patients undergoing trabeculectomy, and the ones without MMC also have fairly good outcomes in primary glaucoma.Keywords: glaucoma filtration surgery, mitomycin C, outcomes of trabeculectomy, wound modulation
Procedia PDF Downloads 2751138 Contribution to the Study of Automatic Epileptiform Pattern Recognition in Long Term EEG Signals
Authors: Christine F. Boos, Fernando M. Azevedo
Abstract:
Electroencephalogram (EEG) is a record of the electrical activity of the brain that has many applications, such as monitoring alertness, coma and brain death; locating damaged areas of the brain after head injury, stroke and tumor; monitoring anesthesia depth; researching physiology and sleep disorders; researching epilepsy and localizing the seizure focus. Epilepsy is a chronic condition, or a group of diseases of high prevalence, still poorly explained by science and whose diagnosis is still predominantly clinical. The EEG recording is considered an important test for epilepsy investigation and its visual analysis is very often applied for clinical confirmation of epilepsy diagnosis. Moreover, this EEG analysis can also be used to help define the types of epileptic syndrome, determine epileptiform zone, assist in the planning of drug treatment and provide additional information about the feasibility of surgical intervention. In the context of diagnosis confirmation the analysis is made using long term EEG recordings with at least 24 hours long and acquired by a minimum of 24 electrodes in which the neurophysiologists perform a thorough visual evaluation of EEG screens in search of specific electrographic patterns called epileptiform discharges. Considering that the EEG screens usually display 10 seconds of the recording, the neurophysiologist has to evaluate 360 screens per hour of EEG or a minimum of 8,640 screens per long term EEG recording. Analyzing thousands of EEG screens in search patterns that have a maximum duration of 200 ms is a very time consuming, complex and exhaustive task. Because of this, over the years several studies have proposed automated methodologies that could facilitate the neurophysiologists’ task of identifying epileptiform discharges and a large number of methodologies used neural networks for the pattern classification. One of the differences between all of these methodologies is the type of input stimuli presented to the networks, i.e., how the EEG signal is introduced in the network. Five types of input stimuli have been commonly found in literature: raw EEG signal, morphological descriptors (i.e. parameters related to the signal’s morphology), Fast Fourier Transform (FFT) spectrum, Short-Time Fourier Transform (STFT) spectrograms and Wavelet Transform features. This study evaluates the application of these five types of input stimuli and compares the classification results of neural networks that were implemented using each of these inputs. The performance of using raw signal varied between 43 and 84% efficiency. The results of FFT spectrum and STFT spectrograms were quite similar with average efficiency being 73 and 77%, respectively. The efficiency of Wavelet Transform features varied between 57 and 81% while the descriptors presented efficiency values between 62 and 93%. After simulations we could observe that the best results were achieved when either morphological descriptors or Wavelet features were used as input stimuli.Keywords: Artificial neural network, electroencephalogram signal, pattern recognition, signal processing
Procedia PDF Downloads 5301137 Machine Learning Approach for Lateralization of Temporal Lobe Epilepsy
Authors: Samira-Sadat JamaliDinan, Haidar Almohri, Mohammad-Reza Nazem-Zadeh
Abstract:
Lateralization of temporal lobe epilepsy (TLE) is very important for positive surgical outcomes. We propose a machine learning framework to ultimately identify the epileptogenic hemisphere for temporal lobe epilepsy (TLE) cases using magnetoencephalography (MEG) coherence source imaging (CSI) and diffusion tensor imaging (DTI). Unlike most studies that use classification algorithms, we propose an effective clustering approach to distinguish between normal and TLE cases. We apply the famous Minkowski weighted K-Means (MWK-Means) technique as the clustering framework. To overcome the problem of poor initialization of K-Means, we use particle swarm optimization (PSO) to effectively select the initial centroids of clusters prior to applying MWK-Means. We demonstrate that compared to K-means and MWK-means independently, this approach is able to improve the result of a benchmark data set.Keywords: temporal lobe epilepsy, machine learning, clustering, magnetoencephalography
Procedia PDF Downloads 1571136 Enhancing Fall Detection Accuracy with a Transfer Learning-Aided Transformer Model Using Computer Vision
Authors: Sheldon McCall, Miao Yu, Liyun Gong, Shigang Yue, Stefanos Kollias
Abstract:
Falls are a significant health concern for older adults globally, and prompt identification is critical to providing necessary healthcare support. Our study proposes a new fall detection method using computer vision based on modern deep learning techniques. Our approach involves training a trans- former model on a large 2D pose dataset for general action recognition, followed by transfer learning. Specifically, we freeze the first few layers of the trained transformer model and train only the last two layers for fall detection. Our experimental results demonstrate that our proposed method outperforms both classical machine learning and deep learning approaches in fall/non-fall classification. Overall, our study suggests that our proposed methodology could be a valuable tool for identifying falls.Keywords: healthcare, fall detection, transformer, transfer learning
Procedia PDF Downloads 1501135 Multimodal Characterization of Emotion within Multimedia Space
Authors: Dayo Samuel Banjo, Connice Trimmingham, Niloofar Yousefi, Nitin Agarwal
Abstract:
Technological advancement and its omnipresent connection have pushed humans past the boundaries and limitations of a computer screen, physical state, or geographical location. It has provided a depth of avenues that facilitate human-computer interaction that was once inconceivable such as audio and body language detection. Given the complex modularities of emotions, it becomes vital to study human-computer interaction, as it is the commencement of a thorough understanding of the emotional state of users and, in the context of social networks, the producers of multimodal information. This study first acknowledges the accuracy of classification found within multimodal emotion detection systems compared to unimodal solutions. Second, it explores the characterization of multimedia content produced based on their emotions and the coherence of emotion in different modalities by utilizing deep learning models to classify emotion across different modalities.Keywords: affective computing, deep learning, emotion recognition, multimodal
Procedia PDF Downloads 1601134 Intelligent Grading System of Apple Using Neural Network Arbitration
Authors: Ebenezer Obaloluwa Olaniyi
Abstract:
In this paper, an intelligent system has been designed to grade apple based on either its defective or healthy for production in food processing. This paper is segmented into two different phase. In the first phase, the image processing techniques were employed to extract the necessary features required in the apple. These techniques include grayscale conversion, segmentation where a threshold value is chosen to separate the foreground of the images from the background. Then edge detection was also employed to bring out the features in the images. These extracted features were then fed into the neural network in the second phase of the paper. The second phase is a classification phase where neural network employed to classify the defective apple from the healthy apple. In this phase, the network was trained with back propagation and tested with feed forward network. The recognition rate obtained from our system shows that our system is more accurate and faster as compared with previous work.Keywords: image processing, neural network, apple, intelligent system
Procedia PDF Downloads 3991133 Continuous Improvement Programme as a Strategy for Technological Innovation in Developing Nations. Nigeria as a Case Study
Authors: Sefiu Adebowale Adewumi
Abstract:
Continuous improvement programme (CIP) adopts an approach to improve organizational performance with small incremental steps over time. In this approach, it is not the size of each step that is important, but the likelihood that the improvements will be ongoing. Many companies in developing nations are now complementing continuous improvement with innovation, which is the successful exploitation of new ideas. Focus area of CIP in the organization was in relation to the size of the organizations and also in relation to the generic classification of these organizations. Product quality was prevalent in the manufacturing industry while manpower training and retraining and marketing strategy were emphasized for improvement to be made in the service, transport and supply industries. However, focus on innovation in raw materials, process and methods are needed because these are the critical factors that influence product quality in the manufacturing industries.Keywords: continuous improvement programme, developing countries, generic classfications, technological innovation
Procedia PDF Downloads 1901132 Compression Strength of Treated Fine-Grained Soils with Epoxy or Cement
Authors: M. Mlhem
Abstract:
Geotechnical engineers face many problematic soils upon construction and they have the choice for replacing these soils with more appropriate soils or attempting to improve the engineering properties of the soil through a suitable soil stabilization technique. Mostly, improving soils is environmental, easier and more economical than other solutions. Stabilization soils technique is applied by introducing a cementing agent or by injecting a substance to fill the pore volume. Chemical stabilizers are divided into two groups: traditional agents such as cement or lime and non-traditional agents such as polymers. This paper studies the effect of epoxy additives on the compression strength of four types of soil and then compares with the effect of cement on the compression strength for the same soils. Overall, the epoxy additives are more effective in increasing the strength for different types of soils regardless its classification. On the other hand, there was no clear relation between studied parameters liquid limit, passing No.200, unit weight and between the strength of samples for different types of soils.Keywords: additives, clay, compression strength, epoxy, stabilization
Procedia PDF Downloads 1281131 Artificial Intelligence Models for Detecting Spatiotemporal Crop Water Stress in Automating Irrigation Scheduling: A Review
Authors: Elham Koohi, Silvio Jose Gumiere, Hossein Bonakdari, Saeid Homayouni
Abstract:
Water used in agricultural crops can be managed by irrigation scheduling based on soil moisture levels and plant water stress thresholds. Automated irrigation scheduling limits crop physiological damage and yield reduction. Knowledge of crop water stress monitoring approaches can be effective in optimizing the use of agricultural water. Understanding the physiological mechanisms of crop responding and adapting to water deficit ensures sustainable agricultural management and food supply. This aim could be achieved by analyzing and diagnosing crop characteristics and their interlinkage with the surrounding environment. Assessments of plant functional types (e.g., leaf area and structure, tree height, rate of evapotranspiration, rate of photosynthesis), controlling changes, and irrigated areas mapping. Calculating thresholds of soil water content parameters, crop water use efficiency, and Nitrogen status make irrigation scheduling decisions more accurate by preventing water limitations between irrigations. Combining Remote Sensing (RS), the Internet of Things (IoT), Artificial Intelligence (AI), and Machine Learning Algorithms (MLAs) can improve measurement accuracies and automate irrigation scheduling. This paper is a review structured by surveying about 100 recent research studies to analyze varied approaches in terms of providing high spatial and temporal resolution mapping, sensor-based Variable Rate Application (VRA) mapping, the relation between spectral and thermal reflectance and different features of crop and soil. The other objective is to assess RS indices formed by choosing specific reflectance bands and identifying the correct spectral band to optimize classification techniques and analyze Proximal Optical Sensors (POSs) to control changes. The innovation of this paper can be defined as categorizing evaluation methodologies of precision irrigation (applying the right practice, at the right place, at the right time, with the right quantity) controlled by soil moisture levels and sensitiveness of crops to water stress, into pre-processing, processing (retrieval algorithms), and post-processing parts. Then, the main idea of this research is to analyze the error reasons and/or values in employing different approaches in three proposed parts reported by recent studies. Additionally, as an overview conclusion tried to decompose different approaches to optimizing indices, calibration methods for the sensors, thresholding and prediction models prone to errors, and improvements in classification accuracy for mapping changes.Keywords: agricultural crops, crop water stress detection, irrigation scheduling, precision agriculture, remote sensing
Procedia PDF Downloads 711130 Challenges and Opportunities: One Stop Processing for the Automation of Indonesian Large-Scale Topographic Base Map Using Airborne LiDAR Data
Authors: Elyta Widyaningrum
Abstract:
The LiDAR data acquisition has been recognizable as one of the fastest solution to provide the basis data for topographic base mapping in Indonesia. The challenges to accelerate the provision of large-scale topographic base maps as a development plan basis gives the opportunity to implement the automated scheme in the map production process. The one stop processing will also contribute to accelerate the map provision especially to conform with the Indonesian fundamental spatial data catalog derived from ISO 19110 and geospatial database integration. Thus, the automated LiDAR classification, DTM generation and feature extraction will be conducted in one GIS-software environment to form all layers of topographic base maps. The quality of automated topographic base map will be assessed and analyzed based on its completeness, correctness, contiguity, consistency and possible customization.Keywords: automation, GIS environment, LiDAR processing, map quality
Procedia PDF Downloads 3691129 Human Errors in IT Services, HFACS Model in Root Cause Categorization
Authors: Kari Saarelainen, Marko Jantti
Abstract:
IT service trending of root causes of service incidents and problems is an important part of proactive problem management and service improvement. Human error related root causes are an important root cause category also in IT service management, although it’s proportion among root causes is smaller than in the other industries. The research problem in this study is: How root causes of incidents related to human errors should be categorized in an ITSM organization to effectively support service improvement. Categorization based on IT service management processes and based on Human Factors Analysis and Classification System (HFACS) taxonomy was studied in a case study. HFACS is widely used in human error root cause categorization across many industries. Combining these two categorization models in a two dimensional matrix was found effective, yet impractical for daily work.Keywords: IT service management, ITIL, incident, problem, HFACS, swiss cheese model
Procedia PDF Downloads 4901128 Function Approximation with Radial Basis Function Neural Networks via FIR Filter
Authors: Kyu Chul Lee, Sung Hyun Yoo, Choon Ki Ahn, Myo Taeg Lim
Abstract:
Recent experimental evidences have shown that because of a fast convergence and a nice accuracy, neural networks training via extended Kalman filter (EKF) method is widely applied. However, as to an uncertainty of the system dynamics or modeling error, the performance of the method is unreliable. In order to overcome this problem in this paper, a new finite impulse response (FIR) filter based learning algorithm is proposed to train radial basis function neural networks (RBFN) for nonlinear function approximation. Compared to the EKF training method, the proposed FIR filter training method is more robust to those environmental conditions. Furthermore, the number of centers will be considered since it affects the performance of approximation.Keywords: extended Kalman filter, classification problem, radial basis function networks (RBFN), finite impulse response (FIR) filter
Procedia PDF Downloads 4581127 Using Machine Learning to Monitor the Condition of the Cutting Edge during Milling Hardened Steel
Authors: Pawel Twardowski, Maciej Tabaszewski, Jakub Czyżycki
Abstract:
The main goal of the work was to use machine learning to predict cutting-edge wear. The research was carried out while milling hardened steel with sintered carbide cutters at various cutting speeds. During the tests, cutting-edge wear was measured, and vibration acceleration signals were also measured. Appropriate measures were determined from the vibration signals and served as input data in the machine-learning process. Two approaches were used in this work. The first one involved a two-state classification of the cutting edge - suitable and unfit for further work. In the second approach, prediction of the cutting-edge state based on vibration signals was used. The obtained research results show that the appropriate use of machine learning algorithms gives excellent results related to monitoring cutting edge during the process.Keywords: milling of hardened steel, tool wear, vibrations, machine learning
Procedia PDF Downloads 601126 The Need for Interdisciplinary Approach in Studying Archaeology: An Evolving Cultural Science
Authors: Inalegwu Stephany Akipu
Abstract:
Archaeology being the study of mans past using the materials he left behind has been argued to be classified under sciences while some scholars are of the opinion that it does not deserve the status of being referred to as ‘science’. However divergent the opinions of scholars may be on the classification of Archaeology as a science or in the humanities, the discipline has no doubt, greatly aided in shaping the history of man’s past. Through the different stages that the discipline has transgressed, it has encountered some challenges. This paper therefore, attempts to highlight the need for the inclusion of branches of other disciplines when using Archaeology in reconstructing man’s history. The objective of course, is to add to the existing body of knowledge but specifically to expose the incomparable importance of archaeology as a discipline and to place it on such a high scale that it will not be regulated to the background as is done in some Nigerian Universities. The paper attempts a clarification of some conceptual terms and discusses the developmental stages of archaeology. It further describes the present state of the discipline and concludes with the disciplines that need to be imbibed in the use of Archaeology which is an evolving cultural science to obtain the aforementioned interdisciplinary approach.Keywords: archaeology, cultural, evolution, interdisciplinary, science
Procedia PDF Downloads 3311125 Decolonial Aesthetics in Ronnie Govender’s at the Edge and Other Cato Manor Stories
Authors: Rajendra Chetty
Abstract:
Decolonial aesthetics departs and delinks from colonial ideas about ‘the arts’ and the modernist/colonial work of aesthetics. Education is trapped in the western epistemic and hermeneutical vocabulary, hence it is necessary to introduce new concepts and work the entanglement between co-existing concepts. This paper will discuss the contribution of Ronnie Govender, a South African writer, to build decolonial sensibilities and delink from the grand narrative of the colonial and apartheid literary landscape in Govender’s text, At the Edge and other Cato Manor Stories. Govender uses the world of art to make a decolonial statement. Decolonial artists have to work in the entanglement of power and engage with a border epistemology. Govender’s writings depart from an embodied consciousness of the colonial wound and moves toward healing. Border thinking and doing (artistic creativity) is precisely the decolonial methodology posited by Linda T. Smith, where theory comes in the form of storytelling. Govender’s stories engage with the wounds infringed by racism and patriarchy, two pillars of eurocentric knowing, sensing, and believing that sustain a structure of knowledge. This structure is embedded in characters, institutions, languages that regulate and mange the world of the excluded. Healing is the process of delinking, or regaining pride, dignity, and humanity, not through the psychoanalytic cure, but the popular healer. The legacies of the community of Cato Manor that was pushed out of their land are built in his stories. Decoloniality then is a concept that carries the experience of liberation struggles and recognizes the strenuous conditions of marginalized people together with their strength, wisdom, and endurance. Govender’s unique performative prose reconstructs and resurrects the lives of the people of Cato Manor, their vitality and humor, pain and humiliation: a vibrant and racially integrated community destroyed by the regime’s notorious racial laws. The paper notes that Govender’s objective with his plays and stories was to open windows to both the pain and joy of life; a mission that is not didactic but to shine a torch on both mankind’s waywardness as well as its inspiring and often moving achievements against huge odds.Keywords: Govender, decoloniality, delinking, exclusion, racism, Cato Manor
Procedia PDF Downloads 1581124 Water Quality Assessment of Owu Falls for Water Use Classification
Authors: Modupe O. Jimoh
Abstract:
Waterfalls create an ambient environment for tourism and relaxation. They are also potential sources for water supply. Owu waterfall located at Isin Local Government, Kwara state, Nigeria is the highest waterfall in the West African region, yet none of its potential usefulness has been fully exploited. Water samples were taken from two sections of the fall and were analyzed for various water quality parameters. The results obtained include pH (6.71 ± 0.1), Biochemical oxygen demand (4.2 ± 0.5 mg/l), Chemical oxygen demand (3.07 ± 0.01 mg/l), Dissolved oxygen (6.59 ± 0.6 mg/l), Turbidity (4.43 ± 0.11 NTU), Total dissolved solids (8.2 ± 0.09 mg/l), Total suspended solids (18.25 ± 0.5 mg/l), Chloride ion (0.48 ± 0.08 mg/l), Calcium ion (0.82 ± 0.02 mg/l)), Magnesium ion (0.63 ± 0.03 mg/l) and Nitrate ion (1.25 ± 0.01 mg/l). The results were compared to the World Health Organisations standard for drinking water and the Nigerian standard for drinking water. From the comparison, it can be deduced that due to the Biochemical oxygen demand value, the water is not suitable for drinking unless it undergoes treatment. However, it is suitable for other classes of water usage.Keywords: Owu falls, waterfall, water quality, water quality parameters, water use
Procedia PDF Downloads 1811123 The Planning Criteria of Block-Unit Redevelopment to Improve Residential Environment: Focused on Redevelopment Project in Seoul
Authors: Hong-Nam Choi, Hyeong-Wook Song, Sungwan Hong, Hong-Kyu Kim
Abstract:
In Korea, elements that decide the quality of residential environment are not only diverse, but show deviation as well. However, people do not consider these elements and instead, they try to settle the uniformed style of residential environment, which focuses on the construction development of apartment housing and business based plans. Recently, block-unit redevelopment is becoming the standout alternative plan of standardize redevelopment projects, but constructions become inefficient because of indefinite planning criteria. In conclusion, the following research is about analyzing and categorizing the development method and legal ground of redevelopment project district, plan determinant and applicable standard. The purpose of this study is to become a basis in compatible analysis of planning standards that will happen in the future.Keywords: shape restrictions, improvement of regulation, diversity of residential environment, classification of redevelopment project, planning criteria of redevelopment, special architectural district (SAD)
Procedia PDF Downloads 4851122 Characterization and Geographical Differentiation of Yellow Prickly Pear Produced in Different Mediterranean Countries
Authors: Artemis Louppis, Michalis Constantinou, Ioanna Kosma, Federica Blando, Michael Kontominas, Anastasia Badeka
Abstract:
The aim of the present study was to differentiate yellow prickly pear according to geographical origin based on the combination of mineral content, physicochemical parameters, vitamins and antioxidants. A total of 240 yellow prickly pear samples from Cyprus, Spain, Italy and Greece were analyzed for pH, titratable acidity, electrical conductivity, protein, moisture, ash, fat, antioxidant activity, individual antioxidants, sugars and vitamins by UPLC-MS/MS as well as minerals by ICP-MS. Statistical treatment of the data included multivariate analysis of variance followed by linear discriminant analysis. Based on results, a correct classification of 66.7% was achieved using the cross validation by mineral content while 86.1% was achieved using the cross validation method by combination of all analytical parameters.Keywords: geographical differentiation, prickly pear, chemometrics, analytical techniques
Procedia PDF Downloads 1451121 A Supervised Face Parts Labeling Framework
Authors: Khalil Khan, Ikram Syed, Muhammad Ehsan Mazhar, Iran Uddin, Nasir Ahmad
Abstract:
Face parts labeling is the process of assigning class labels to each face part. A face parts labeling method (FPL) which divides a given image into its constitutes parts is proposed in this paper. A database FaceD consisting of 564 images is labeled with hand and make publically available. A supervised learning model is built through extraction of features from the training data. The testing phase is performed with two semantic segmentation methods, i.e., pixel and super-pixel based segmentation. In pixel-based segmentation class label is provided to each pixel individually. In super-pixel based method class label is assigned to super-pixel only – as a result, the same class label is given to all pixels inside a super-pixel. Pixel labeling accuracy reported with pixel and super-pixel based methods is 97.68 % and 93.45% respectively.Keywords: face labeling, semantic segmentation, classification, face segmentation
Procedia PDF Downloads 2571120 Isolation, Identification and Screening of Pectinase Producing Fungi Isolated from Apple (Malus Domestica)
Authors: Shameel Pervez, Saad Aziz Durrani, Ibatsam Khokhar
Abstract:
Pectinase is an enzyme that breaks down pectin, a compound responsible for structural integrity of the plant. Pectin is difficult to break down mechanically and the cost is very high, that is why many industries including food industries use pectinase enzyme produced by microbes for pectin breakdown. Apple (Malus domestica) is an important fruit in terms of market value. Every year, millions of apples are wasted due to post-harvest rot caused by fungi. Fungi are natural decomposers of our ecosystem and are infamous for post-harvest rot of apple fruit but at the same time they are prized for their high production of valuable extracellular enzymes such as pectinase. In this study, fungi belonging to different genus were isolated from rotten apples. Rotten samples of apple were picked from different markets of Lahore. After surface sterilization, the rotten parts were cut into small pieces and placed onto MEA media plates for three days. Afterwards, distinct colonies were picked and purified by sub-culturing. The isolates were identified to genus level through the study of basic colony morphology and microscopic features. The isolates were then subjected to screening for pectinase activity on MS media to compare pectinase production and were then subsequently tested for pathogenic activity through wound suspension method to evaluate the pathogenic activity of isolates in comparison with their pectinolytic activity. A total of twelve fungal strains were isolates from rotten apples. They were belonging to genus Penicillium, Alternaria, Paecilomyces and Rhizopus. Upon screening for pectinolytic activity, isolates Pen 1, Pen 4, and Rz showed high pectinolytic activity and were further subjected to DNA isolation and partial sequencing for species identification. The results of partial sequencing were combined with in-depth study of morphological features revealing Pen 1 as Penicillium janthinellum, Pen 4 as Penicillium griseofulvum, and Rz as Rhizopus microsporus. Pathogenic activity of all twelve isolates was evaluated. Penicillium spp. were highly pathogenic and destructive and same was the case with Paecilomyces sp. and Rhizopus sp. However, Alternaria spp. were found to be more consistent in their pathogenic activity, on all types of apples.Keywords: apple, pectinase, fungal pathogens, penicillium, rhizopus
Procedia PDF Downloads 651119 Smartphone Video Source Identification Based on Sensor Pattern Noise
Authors: Raquel Ramos López, Anissa El-Khattabi, Ana Lucila Sandoval Orozco, Luis Javier García Villalba
Abstract:
An increasing number of mobile devices with integrated cameras has meant that most digital video comes from these devices. These digital videos can be made anytime, anywhere and for different purposes. They can also be shared on the Internet in a short period of time and may sometimes contain recordings of illegal acts. The need to reliably trace the origin becomes evident when these videos are used for forensic purposes. This work proposes an algorithm to identify the brand and model of mobile device which generated the video. Its procedure is as follows: after obtaining the relevant video information, a classification algorithm based on sensor noise and Wavelet Transform performs the aforementioned identification process. We also present experimental results that support the validity of the techniques used and show promising results.Keywords: digital video, forensics analysis, key frame, mobile device, PRNU, sensor noise, source identification
Procedia PDF Downloads 4291118 Gauging Floral Resources for Pollinators Using High Resolution Drone Imagery
Authors: Nicholas Anderson, Steven Petersen, Tom Bates, Val Anderson
Abstract:
Under the multiple-use management regime established in the United States for federally owned lands, government agencies have come under pressure from commercial apiaries to grant permits for the summer pasturing of honeybees on government lands. Federal agencies have struggled to integrate honeybees into their management plans and have little information to make regulations that resolve how many colonies should be allowed in a single location and at what distance sets of hives should be placed. Many conservation groups have voiced their concerns regarding the introduction of honeybees to these natural lands, as they may outcompete and displace native pollinating species. Assessing the quality of an area in regard to its floral resources, pollen, and nectar can be important when attempting to create regulations for the integration of commercial honeybee operations into a native ecosystem. Areas with greater floral resources may be able to support larger numbers of honeybee colonies, while poorer resource areas may be less resilient to introduced disturbances. Attempts are made in this study to determine flower cover using high resolution drone imagery to help assess the floral resource availability to pollinators in high elevation, tall forb communities. This knowledge will help in determining the potential that different areas may have for honeybee pasturing and honey production. Roughly 700 images were captured at 23m above ground level using a drone equipped with a Sony QX1 RGB 20-megapixel camera. These images were stitched together using Pix4D, resulting in a 60m diameter high-resolution mosaic of a tall forb meadow. Using the program ENVI, a supervised maximum likelihood classification was conducted to calculate the percentage of total flower cover and flower cover by color (blue, white, and yellow). A complete vegetation inventory was taken on site, and the major flowers contributing to each color class were noted. An accuracy assessment was performed on the classification yielding an 89% overall accuracy and a Kappa Statistic of 0.855. With this level of accuracy, drones provide an affordable and time efficient method for the assessment of floral cover in large areas. The proximal step of this project will now be to determine the average pollen and nectar loads carried by each flower species. The addition of this knowledge will result in a quantifiable method of measuring pollen and nectar resources of entire landscapes. This information will not only help land managers determine stocking rates for honeybees on public lands but also has applications in the agricultural setting, aiding producers in the determination of the number of honeybee colonies necessary for proper pollination of fruit and nut crops.Keywords: honeybee, flower, pollinator, remote sensing
Procedia PDF Downloads 1421117 Overview of Time, Resource and Cost Planning Techniques in Construction Management Research
Authors: R. Gupta, P. Jain, S. Das
Abstract:
One way to approach construction scheduling optimization problem is to focus on the individual aspects of planning, which can be broadly classified as time scheduling, crew and resource management, and cost control. During the last four decades, construction planning has seen a lot of research, but to date, no paper had attempted to summarize the literature available under important heads. This paper addresses each of aspects separately, and presents the findings of an in-depth literature of the various planning techniques. For techniques dealing with time scheduling, the authors have adopted a rough chronological documentation. For crew and resource management, classification has been done on the basis of the different steps involved in the resource planning process. For cost control, techniques dealing with both estimation of costs and the subsequent optimization of costs have been dealt with separately.Keywords: construction planning techniques, time scheduling, resource planning, cost control
Procedia PDF Downloads 4881116 Self-Inflating Soft Tissue Expander Outcome for Alveolar Ridge Augmentation a Randomized Controlled Clinical and Histological Study
Authors: Alaa T. Ali, Nevine H. Kheir El Din, Ehab S. Abdelhamid, Ahmed E. Amr
Abstract:
Objective: Severe alveolar bone resorption is usually associated with a deficient amount of soft tissues. soft tissue expansion is introduced to provide an adequate amount of soft tissue over the grafted area. This study aimed to assess the efficacy of sub-periosteal self-inflating osmotic tissue expanders used as preparatory surgery before horizontal alveolar ridge augmentation using autogenous onlay block bone graft. Methods: A prospective randomized controlled clinical trial was performed. Sixteen partially edentulous patients demanding horizontal bone augmentation in the anterior maxilla were randomly assigned to horizontal ridge augmentation with autogenous bone block grafts harvested from the mandibular symphysis. For the test group, soft tissue expanders were placed sub-periosteally before horizontal ridge augmentation. Impressions were taken before and after STE, and the cast models were optically scanned and superimposed to be used for volumetric analysis. Horizontal ridge augmentation was carried out after STE completion. For the control group, a periosteal releasing incision was performed during bone augmentation procedures. Implants were placed in both groups at re-entry surgery after six months period. A core biopsy was taken. Histomorphometric assessment for newly formed bone surface area, mature collagen area fraction, the osteoblasts count, and blood vessel count were performed. The change in alveolar ridge width was evaluated through bone caliper and CBCT. Results: Soft tissue expander successfully provides a Surplus amount of soft tissues in 5 out of 8 patients in the test group. Complications during the expansion period were perforation through oral mucosa occurred in two patients. Infection occurred in one patient. The mean soft tissue volume gain was 393.9 ± 322mm. After 6 months. The mean horizontal bone gains for the test and control groups were 3.14 mm and 3.69 mm, respectively. Conclusion: STE with a sub-periosteal approach is an applicable method to achieve an additional soft tissue and to reduce bone block graft exposure and wound dehiscence.Keywords: soft tissue expander, ridge augmentation, block graft, symphysis bone block
Procedia PDF Downloads 126