Search results for: neural interface
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3198

Search results for: neural interface

1788 Thick Data Techniques for Identifying Abnormality in Video Frames for Wireless Capsule Endoscopy

Authors: Jinan Fiaidhi, Sabah Mohammed, Petros Zezos

Abstract:

Capsule endoscopy (CE) is an established noninvasive diagnostic modality in investigating small bowel disease. CE has a pivotal role in assessing patients with suspected bleeding or identifying evidence of active Crohn's disease in the small bowel. However, CE produces lengthy videos with at least eighty thousand frames, with a frequency rate of 2 frames per second. Gastroenterologists cannot dedicate 8 to 15 hours to reading the CE video frames to arrive at a diagnosis. This is why the issue of analyzing CE videos based on modern artificial intelligence techniques becomes a necessity. However, machine learning, including deep learning, has failed to report robust results because of the lack of large samples to train its neural nets. In this paper, we are describing a thick data approach that learns from a few anchor images. We are using sound datasets like KVASIR and CrohnIPI to filter candidate frames that include interesting anomalies in any CE video. We are identifying candidate frames based on feature extraction to provide representative measures of the anomaly, like the size of the anomaly and the color contrast compared to the image background, and later feed these features to a decision tree that can classify the candidate frames as having a condition like the Crohn's Disease. Our thick data approach reported accuracy of detecting Crohn's Disease based on the availability of ulcer areas at the candidate frames for KVASIR was 89.9% and for the CrohnIPI was 83.3%. We are continuing our research to fine-tune our approach by adding more thick data methods for enhancing diagnosis accuracy.

Keywords: thick data analytics, capsule endoscopy, Crohn’s disease, siamese neural network, decision tree

Procedia PDF Downloads 160
1787 Multiphase Flow Regime Detection Algorithm for Gas-Liquid Interface Using Ultrasonic Pulse-Echo Technique

Authors: Serkan Solmaz, Jean-Baptiste Gouriet, Nicolas Van de Wyer, Christophe Schram

Abstract:

Efficiency of the cooling process for cryogenic propellant boiling in engine cooling channels on space applications is relentlessly affected by the phase change occurs during the boiling. The effectiveness of the cooling process strongly pertains to the type of the boiling regime such as nucleate and film. Geometric constraints like a non-transparent cooling channel unable to use any of visualization methods. The ultrasonic (US) technique as a non-destructive method (NDT) has therefore been applied almost in every engineering field for different purposes. Basically, the discontinuities emerge between mediums like boundaries among different phases. The sound wave emitted by the US transducer is both transmitted and reflected through a gas-liquid interface which makes able to detect different phases. Due to the thermal and structural concerns, it is impractical to sustain a direct contact between the US transducer and working fluid. Hence the transducer should be located outside of the cooling channel which results in additional interfaces and creates ambiguities on the applicability of the present method. In this work, an exploratory research is prompted so as to determine detection ability and applicability of the US technique on the cryogenic boiling process for a cooling cycle where the US transducer is taken place outside of the channel. Boiling of the cryogenics is a complex phenomenon which mainly brings several hindrances for experimental protocol because of thermal properties. Thus substitute materials are purposefully selected based on such parameters to simplify experiments. Aside from that, nucleate and film boiling regimes emerging during the boiling process are simply simulated using non-deformable stainless steel balls, air-bubble injection apparatuses and air clearances instead of conducting a real-time boiling process. A versatile detection algorithm is perennially developed concerning exploratory studies afterward. According to the algorithm developed, the phases can be distinguished 99% as no-phase, air-bubble, and air-film presences. The results show the detection ability and applicability of the US technique for an exploratory purpose.

Keywords: Ultrasound, ultrasonic, multiphase flow, boiling, cryogenics, detection algorithm

Procedia PDF Downloads 172
1786 Design and Simulation Interface Circuit for Piezoresistive Accelerometers with Offset Cancellation Ability

Authors: Mohsen Bagheri, Ahmad Afifi

Abstract:

This paper presents a new method for read out of the piezoresistive accelerometer sensors. The circuit works based on instrumentation amplifier and it is useful for reducing offset in Wheatstone bridge. The obtained gain is 645 with 1 μv/°c equivalent drift and 1.58 mw power consumption. A Schmitt trigger and multiplexer circuit control output node. A high speed counter is designed in this work. The proposed circuit is designed and simulated in 0.18 μm CMOS technology with 1.8 v power supply.

Keywords: piezoresistive accelerometer, zero offset, Schmitt trigger, bidirectional reversible counter

Procedia PDF Downloads 318
1785 Machine Learning Techniques for COVID-19 Detection: A Comparative Analysis

Authors: Abeer A. Aljohani

Abstract:

COVID-19 virus spread has been one of the extreme pandemics across the globe. It is also referred to as coronavirus, which is a contagious disease that continuously mutates into numerous variants. Currently, the B.1.1.529 variant labeled as omicron is detected in South Africa. The huge spread of COVID-19 disease has affected several lives and has surged exceptional pressure on the healthcare systems worldwide. Also, everyday life and the global economy have been at stake. This research aims to predict COVID-19 disease in its initial stage to reduce the death count. Machine learning (ML) is nowadays used in almost every area. Numerous COVID-19 cases have produced a huge burden on the hospitals as well as health workers. To reduce this burden, this paper predicts COVID-19 disease is based on the symptoms and medical history of the patient. This research presents a unique architecture for COVID-19 detection using ML techniques integrated with feature dimensionality reduction. This paper uses a standard UCI dataset for predicting COVID-19 disease. This dataset comprises symptoms of 5434 patients. This paper also compares several supervised ML techniques to the presented architecture. The architecture has also utilized 10-fold cross validation process for generalization and the principal component analysis (PCA) technique for feature reduction. Standard parameters are used to evaluate the proposed architecture including F1-Score, precision, accuracy, recall, receiver operating characteristic (ROC), and area under curve (AUC). The results depict that decision tree, random forest, and neural networks outperform all other state-of-the-art ML techniques. This achieved result can help effectively in identifying COVID-19 infection cases.

Keywords: supervised machine learning, COVID-19 prediction, healthcare analytics, random forest, neural network

Procedia PDF Downloads 95
1784 Adsorption and Desorption Behavior of Ionic and Nonionic Surfactants on Polymer Surfaces

Authors: Giulia Magi Meconi, Nicholas Ballard, José M. Asua, Ronen Zangi

Abstract:

Experimental and computational studies are combined to elucidate the adsorption proprieties of ionic and nonionic surfactants on hydrophobic polymer surface such us poly(styrene). To present these two types of surfactants, sodium dodecyl sulfate and poly(ethylene glycol)-block-poly(ethylene), commonly utilized in emulsion polymerization, are chosen. By applying quartz crystal microbalance with dissipation monitoring it is found that, at low surfactant concentrations, it is easier to desorb (as measured by rate) ionic surfactants than nonionic surfactants. From molecular dynamics simulations, the effective, attractive force of these nonionic surfactants to the surface increases with the decrease of their concentration, whereas, the ionic surfactant exhibits mildly the opposite trend. The contrasting behavior of ionic and nonionic surfactants critically relies on two observations obtained from the simulations. The first is that there is a large degree of interweavement between head and tails groups in the adsorbed layer formed by the nonionic surfactant (PEO/PE systems). The second is that water molecules penetrate this layer. In the disordered layer, these nonionic surfactants generate at the surface, only oxygens of the head groups present at the interface with the water phase or oxygens next to the penetrating waters can form hydrogen bonds. Oxygens inside this layer lose this favorable energy, with a magnitude that increases with the surfactants density at the interface. This reduced stability of the surfactants diminishes their driving force for adsorption. All that is shown to be in accordance with experimental results on the dynamics of surfactants desorption. Ionic surfactants assemble into an ordered structure and the attraction to the surface was even slightly augmented at higher surfactant concentration, in agreement with the experimentally determined adsorption isotherm. The reason these two types of surfactants behave differently is because the ionic surfactant has a small head group that is strongly hydrophilic, whereas the head groups of the nonionic surfactants are large and only weakly attracted to water.

Keywords: emulsion polymerization process, molecular dynamics simulations, polymer surface, surfactants adsorption

Procedia PDF Downloads 349
1783 A Machine Learning-Based Model to Screen Antituberculosis Compound Targeted against LprG Lipoprotein of Mycobacterium tuberculosis

Authors: Syed Asif Hassan, Syed Atif Hassan

Abstract:

Multidrug-resistant Tuberculosis (MDR-TB) is an infection caused by the resistant strains of Mycobacterium tuberculosis that do not respond either to isoniazid or rifampicin, which are the most important anti-TB drugs. The increase in the occurrence of a drug-resistance strain of MTB calls for an intensive search of novel target-based therapeutics. In this context LprG (Rv1411c) a lipoprotein from MTB plays a pivotal role in the immune evasion of Mtb leading to survival and propagation of the bacterium within the host cell. Therefore, a machine learning method will be developed for generating a computational model that could predict for a potential anti LprG activity of the novel antituberculosis compound. The present study will utilize dataset from PubChem database maintained by National Center for Biotechnology Information (NCBI). The dataset involves compounds screened against MTB were categorized as active and inactive based upon PubChem activity score. PowerMV, a molecular descriptor generator, and visualization tool will be used to generate the 2D molecular descriptors for the actives and inactive compounds present in the dataset. The 2D molecular descriptors generated from PowerMV will be used as features. We feed these features into three different classifiers, namely, random forest, a deep neural network, and a recurring neural network, to build separate predictive models and choosing the best performing model based on the accuracy of predicting novel antituberculosis compound with an anti LprG activity. Additionally, the efficacy of predicted active compounds will be screened using SMARTS filter to choose molecule with drug-like features.

Keywords: antituberculosis drug, classifier, machine learning, molecular descriptors, prediction

Procedia PDF Downloads 396
1782 Deep Convolutional Neural Network for Detection of Microaneurysms in Retinal Fundus Images at Early Stage

Authors: Goutam Kumar Ghorai, Sandip Sadhukhan, Arpita Sarkar, Debprasad Sinha, G. Sarkar, Ashis K. Dhara

Abstract:

Diabetes mellitus is one of the most common chronic diseases in all countries and continues to increase in numbers significantly. Diabetic retinopathy (DR) is damage to the retina that occurs with long-term diabetes. DR is a major cause of blindness in the Indian population. Therefore, its early diagnosis is of utmost importance towards preventing progression towards imminent irreversible loss of vision, particularly in the huge population across rural India. The barriers to eye examination of all diabetic patients are socioeconomic factors, lack of referrals, poor access to the healthcare system, lack of knowledge, insufficient number of ophthalmologists, and lack of networking between physicians, diabetologists and ophthalmologists. A few diabetic patients often visit a healthcare facility for their general checkup, but their eye condition remains largely undetected until the patient is symptomatic. This work aims to focus on the design and development of a fully automated intelligent decision system for screening retinal fundus images towards detection of the pathophysiology caused by microaneurysm in the early stage of the diseases. Automated detection of microaneurysm is a challenging problem due to the variation in color and the variation introduced by the field of view, inhomogeneous illumination, and pathological abnormalities. We have developed aconvolutional neural network for efficient detection of microaneurysm. A loss function is also developed to handle severe class imbalance due to very small size of microaneurysms compared to background. The network is able to locate the salient region containing microaneurysms in case of noisy images captured by non-mydriatic cameras. The ground truth of microaneurysms is created by expert ophthalmologists for MESSIDOR database as well as private database, collected from Indian patients. The network is trained from scratch using the fundus images of MESSIDOR database. The proposed method is evaluated on DIARETDB1 and the private database. The method is successful in detection of microaneurysms for dilated and non-dilated types of fundus images acquired from different medical centres. The proposed algorithm could be used for development of AI based affordable and accessible system, to provide service at grass root-level primary healthcare units spread across the country to cater to the need of the rural people unaware of the severe impact of DR.

Keywords: retinal fundus image, deep convolutional neural network, early detection of microaneurysms, screening of diabetic retinopathy

Procedia PDF Downloads 146
1781 Worldwide GIS Based Earthquake Information System/Alarming System for Microzonation/Liquefaction and It’s Application for Infrastructure Development

Authors: Rajinder Kumar Gupta, Rajni Kant Agrawal, Jaganniwas

Abstract:

One of the most frightening phenomena of nature is the occurrence of earthquake as it has terrible and disastrous effects. Many earthquakes occur every day worldwide. There is need to have knowledge regarding the trends in earthquake occurrence worldwide. The recoding and interpretation of data obtained from the establishment of the worldwide system of seismological stations made this possible. From the analysis of recorded earthquake data, the earthquake parameters and source parameters can be computed and the earthquake catalogues can be prepared. These catalogues provide information on origin, time, epicenter locations (in term of latitude and longitudes) focal depths, magnitude and other related details of the recorded earthquakes. Theses catalogues are used for seismic hazard estimation. Manual interpretation and analysis of these data is tedious and time consuming. A geographical information system is a computer based system designed to store, analyzes and display geographic information. The implementation of integrated GIS technology provides an approach which permits rapid evaluation of complex inventor database under a variety of earthquake scenario and allows the user to interactively view results almost immediately. GIS technology provides a powerful tool for displaying outputs and permit to users to see graphical distribution of impacts of different earthquake scenarios and assumptions. An endeavor has been made in present study to compile the earthquake data for the whole world in visual Basic on ARC GIS Plate form so that it can be used easily for further analysis to be carried out by earthquake engineers. The basic data on time of occurrence, location and size of earthquake has been compiled for further querying based on various parameters. A preliminary analysis tool is also provided in the user interface to interpret the earthquake recurrence in region. The user interface also includes the seismic hazard information already worked out under GHSAP program. The seismic hazard in terms of probability of exceedance in definite return periods is provided for the world. The seismic zones of the Indian region are included in the user interface from IS 1893-2002 code on earthquake resistant design of buildings. The City wise satellite images has been inserted in Map and based on actual data the following information could be extracted in real time: • Analysis of soil parameters and its effect • Microzonation information • Seismic hazard and strong ground motion • Soil liquefaction and its effect in surrounding area • Impacts of liquefaction on buildings and infrastructure • Occurrence of earthquake in future and effect on existing soil • Propagation of earth vibration due of occurrence of Earthquake GIS based earthquake information system has been prepared for whole world in Visual Basic on ARC GIS Plate form and further extended micro level based on actual soil parameters. Individual tools has been developed for liquefaction, earthquake frequency etc. All information could be used for development of infrastructure i.e. multi story structure, Irrigation Dam & Its components, Hydro-power etc in real time for present and future.

Keywords: GIS based earthquake information system, microzonation, analysis and real time information about liquefaction, infrastructure development

Procedia PDF Downloads 322
1780 Machine Learning Techniques in Seismic Risk Assessment of Structures

Authors: Farid Khosravikia, Patricia Clayton

Abstract:

The main objective of this work is to evaluate the advantages and disadvantages of various machine learning techniques in two key steps of seismic hazard and risk assessment of different types of structures. The first step is the development of ground-motion models, which are used for forecasting ground-motion intensity measures (IM) given source characteristics, source-to-site distance, and local site condition for future events. IMs such as peak ground acceleration and velocity (PGA and PGV, respectively) as well as 5% damped elastic pseudospectral accelerations at different periods (PSA), are indicators of the strength of shaking at the ground surface. Typically, linear regression-based models, with pre-defined equations and coefficients, are used in ground motion prediction. However, due to the restrictions of the linear regression methods, such models may not capture more complex nonlinear behaviors that exist in the data. Thus, this study comparatively investigates potential benefits from employing other machine learning techniques as statistical method in ground motion prediction such as Artificial Neural Network, Random Forest, and Support Vector Machine. The results indicate the algorithms satisfy some physically sound characteristics such as magnitude scaling distance dependency without requiring pre-defined equations or coefficients. Moreover, it is shown that, when sufficient data is available, all the alternative algorithms tend to provide more accurate estimates compared to the conventional linear regression-based method, and particularly, Random Forest outperforms the other algorithms. However, the conventional method is a better tool when limited data is available. Second, it is investigated how machine learning techniques could be beneficial for developing probabilistic seismic demand models (PSDMs), which provide the relationship between the structural demand responses (e.g., component deformations, accelerations, internal forces, etc.) and the ground motion IMs. In the risk framework, such models are used to develop fragility curves estimating exceeding probability of damage for pre-defined limit states, and therefore, control the reliability of the predictions in the risk assessment. In this study, machine learning algorithms like artificial neural network, random forest, and support vector machine are adopted and trained on the demand parameters to derive PSDMs for them. It is observed that such models can provide more accurate estimates of prediction in relatively shorter about of time compared to conventional methods. Moreover, they can be used for sensitivity analysis of fragility curves with respect to many modeling parameters without necessarily requiring more intense numerical response-history analysis.

Keywords: artificial neural network, machine learning, random forest, seismic risk analysis, seismic hazard analysis, support vector machine

Procedia PDF Downloads 109
1779 Hyper Parameter Optimization of Deep Convolutional Neural Networks for Pavement Distress Classification

Authors: Oumaima Khlifati, Khadija Baba

Abstract:

Pavement distress is the main factor responsible for the deterioration of road structure durability, damage vehicles, and driver comfort. Transportation agencies spend a high proportion of their funds on pavement monitoring and maintenance. The auscultation of pavement distress was based on the manual survey, which was extremely time consuming, labor intensive, and required domain expertise. Therefore, the automatic distress detection is needed to reduce the cost of manual inspection and avoid more serious damage by implementing the appropriate remediation actions at the right time. Inspired by recent deep learning applications, this paper proposes an algorithm for automatic road distress detection and classification using on the Deep Convolutional Neural Network (DCNN). In this study, the types of pavement distress are classified as transverse or longitudinal cracking, alligator, pothole, and intact pavement. The dataset used in this work is composed of public asphalt pavement images. In order to learn the structure of the different type of distress, the DCNN models are trained and tested as a multi-label classification task. In addition, to get the highest accuracy for our model, we adjust the structural optimization hyper parameters such as the number of convolutions and max pooling, filers, size of filters, loss functions, activation functions, and optimizer and fine-tuning hyper parameters that conclude batch size and learning rate. The optimization of the model is executed by checking all feasible combinations and selecting the best performing one. The model, after being optimized, performance metrics is calculated, which describe the training and validation accuracies, precision, recall, and F1 score.

Keywords: distress pavement, hyperparameters, automatic classification, deep learning

Procedia PDF Downloads 99
1778 An Educational Electronic Health Record with a Configurable User Interface

Authors: Floriane Shala, Evangeline Wagner, Yichun Zhao

Abstract:

Background: Proper educational training and support are proven to be major components of EHR (Electronic Health Record) implementation and use. However, the majority of health providers are not sufficiently trained in EHR use, leading to adverse events, errors, and decreased quality of care. In response to this, students studying Health Information Science, Public Health, Nursing, and Medicine should all gain a thorough understanding of EHR use at different levels for different purposes. The design of a usable and safe EHR system that accommodates the needs and workflows of different users, user groups, and disciplines is required for EHR learning to be efficient and effective. Objectives: This project builds several artifacts which seek to address both the educational and usability aspects of an educational EHR. The artifacts proposed are models for and examples of such an EHR with a configurable UI to be learned by students who need a background in EHR use during their degrees. Methods: Review literature and gather professional opinions from domain experts on usability, the use of workflow patterns, UI configurability and design, and the educational aspect of EHR use. Conduct interviews in a semi-casual virtual setting with open discussion in order to gain a deeper understanding of the principal aspects of EHR use in educational settings. Select a specific task and user group to illustrate how the proposed solution will function based on the current research. Develop three artifacts based on the available research, professional opinions, and prior knowledge of the topic. The artifacts capture the user task and user’s interactions with the EHR for learning. The first generic model provides a general understanding of the EHR system process. The second model is a specific example of performing the task of MRI ordering with a configurable UI. The third artifact includes UI mock-ups showcasing the models in a practical and visual way. Significance: Due to the lack of educational EHRs, medical professionals do not receive sufficient EHR training. Implementing an educational EHR with a usable and configurable interface to suit the needs of different user groups and disciplines will help facilitate EHR learning and training and ultimately improve the quality of patient care.

Keywords: education, EHR, usability, configurable

Procedia PDF Downloads 159
1777 Comparative Study on Daily Discharge Estimation of Soolegan River

Authors: Redvan Ghasemlounia, Elham Ansari, Hikmet Kerem Cigizoglu

Abstract:

Hydrological modeling in arid and semi-arid regions is very important. Iran has many regions with these climate conditions such as Chaharmahal and Bakhtiari province that needs lots of attention with an appropriate management. Forecasting of hydrological parameters and estimation of hydrological events of catchments, provide important information that used for design, management and operation of water resources such as river systems, and dams, widely. Discharge in rivers is one of these parameters. This study presents the application and comparison of some estimation methods such as Feed-Forward Back Propagation Neural Network (FFBPNN), Multi Linear Regression (MLR), Gene Expression Programming (GEP) and Bayesian Network (BN) to predict the daily flow discharge of the Soolegan River, located at Chaharmahal and Bakhtiari province, in Iran. In this study, Soolegan, station was considered. This Station is located in Soolegan River at 51° 14՜ Latitude 31° 38՜ longitude at North Karoon basin. The Soolegan station is 2086 meters higher than sea level. The data used in this study are daily discharge and daily precipitation of Soolegan station. Feed Forward Back Propagation Neural Network(FFBPNN), Multi Linear Regression (MLR), Gene Expression Programming (GEP) and Bayesian Network (BN) models were developed using the same input parameters for Soolegan's daily discharge estimation. The results of estimation models were compared with observed discharge values to evaluate performance of the developed models. Results of all methods were compared and shown in tables and charts.

Keywords: ANN, multi linear regression, Bayesian network, forecasting, discharge, gene expression programming

Procedia PDF Downloads 563
1776 A Multi-Output Network with U-Net Enhanced Class Activation Map and Robust Classification Performance for Medical Imaging Analysis

Authors: Jaiden Xuan Schraut, Leon Liu, Yiqiao Yin

Abstract:

Computer vision in medical diagnosis has achieved a high level of success in diagnosing diseases with high accuracy. However, conventional classifiers that produce an image to-label result provides insufficient information for medical professionals to judge and raise concerns over the trust and reliability of a model with results that cannot be explained. In order to gain local insight into cancerous regions, separate tasks such as imaging segmentation need to be implemented to aid the doctors in treating patients, which doubles the training time and costs which renders the diagnosis system inefficient and difficult to be accepted by the public. To tackle this issue and drive AI-first medical solutions further, this paper proposes a multi-output network that follows a U-Net architecture for image segmentation output and features an additional convolutional neural networks (CNN) module for auxiliary classification output. Class activation maps are a method of providing insight into a convolutional neural network’s feature maps that leads to its classification but in the case of lung diseases, the region of interest is enhanced by U-net-assisted Class Activation Map (CAM) visualization. Therefore, our proposed model combines image segmentation models and classifiers to crop out only the lung region of a chest X-ray’s class activation map to provide a visualization that improves the explainability and is able to generate classification results simultaneously which builds trust for AI-led diagnosis systems. The proposed U-Net model achieves 97.61% accuracy and a dice coefficient of 0.97 on testing data from the COVID-QU-Ex Dataset which includes both diseased and healthy lungs.

Keywords: multi-output network model, U-net, class activation map, image classification, medical imaging analysis

Procedia PDF Downloads 207
1775 CFD-DEM Modelling of Liquid Fluidizations of Ellipsoidal Particles

Authors: Esmaeil Abbaszadeh Molaei, Zongyan Zhou, Aibing Yu

Abstract:

The applications of liquid fluidizations have been increased in many parts of industries such as particle classification, backwashing of granular filters, crystal growth, leaching and washing, and bioreactors due to high-efficient liquid–solid contact, favorable mass and heat transfer, high operation flexibilities, and reduced back mixing of phases. In most of these multiphase operations the particles properties, i.e. size, density, and shape, may change during the process because of attrition, coalescence or chemical reactions. Previous studies, either experimentally or numerically, mainly have focused on studies of liquid-solid fluidized beds containing spherical particles; however, the role of particle shape on the hydrodynamics of liquid fluidized beds is still not well-known. A three-dimensional Discrete Element Model (DEM) and Computational Fluid Dynamics (CFD) are coupled to study the influence of particles shape on particles and liquid flow patterns in liquid-solid fluidized beds. In the simulations, ellipsoid particles are used to study the shape factor since they can represent a wide range of particles shape from oblate and sphere to prolate shape particles. Different particle shapes from oblate (disk shape) to elongated particles (rod shape) are selected to investigate the effect of aspect ratio on different flow characteristics such as general particles and liquid flow pattern, pressure drop, and particles orientation. First, the model is verified based on experimental observations, then further detail analyses are made. It was found that spherical particles showed a uniform particle distribution in the bed, which resulted in uniform pressure drop along the bed height. However for particles with aspect ratios less than one (disk-shape), some particles were carried into the freeboard region, and the interface between the bed and freeboard was not easy to be determined. A few particle also intended to leave the bed. On the other hand, prolate particles showed different behaviour in the bed. They caused unstable interface and some flow channeling was observed for low liquid velocities. Because of the non-uniform particles flow pattern for particles with aspect ratios lower (oblate) and more (prolate) than one, the pressure drop distribution in the bed was not observed as uniform as what was found for spherical particles.

Keywords: CFD, DEM, ellipsoid, fluidization, multiphase flow, non-spherical, simulation

Procedia PDF Downloads 315
1774 Lung Cancer Detection and Multi Level Classification Using Discrete Wavelet Transform Approach

Authors: V. Veeraprathap, G. S. Harish, G. Narendra Kumar

Abstract:

Uncontrolled growth of abnormal cells in the lung in the form of tumor can be either benign (non-cancerous) or malignant (cancerous). Patients with Lung Cancer (LC) have an average of five years life span expectancy provided diagnosis, detection and prediction, which reduces many treatment options to risk of invasive surgery increasing survival rate. Computed Tomography (CT), Positron Emission Tomography (PET), and Magnetic Resonance Imaging (MRI) for earlier detection of cancer are common. Gaussian filter along with median filter used for smoothing and noise removal, Histogram Equalization (HE) for image enhancement gives the best results without inviting further opinions. Lung cavities are extracted and the background portion other than two lung cavities is completely removed with right and left lungs segmented separately. Region properties measurements area, perimeter, diameter, centroid and eccentricity measured for the tumor segmented image, while texture is characterized by Gray-Level Co-occurrence Matrix (GLCM) functions, feature extraction provides Region of Interest (ROI) given as input to classifier. Two levels of classifications, K-Nearest Neighbor (KNN) is used for determining patient condition as normal or abnormal, while Artificial Neural Networks (ANN) is used for identifying the cancer stage is employed. Discrete Wavelet Transform (DWT) algorithm is used for the main feature extraction leading to best efficiency. The developed technology finds encouraging results for real time information and on line detection for future research.

Keywords: artificial neural networks, ANN, discrete wavelet transform, DWT, gray-level co-occurrence matrix, GLCM, k-nearest neighbor, KNN, region of interest, ROI

Procedia PDF Downloads 158
1773 Room Temperature Ionic Liquids Filled Mixed Matrix Membranes for CO2 Separation

Authors: Asim Laeeq Khan, Mazhar Amjad Gilani, Tayub Raza

Abstract:

The use of fossil fuels for energy generation leads to the emission of greenhouse gases particularly CO2 into the atmosphere. To date, several techniques have been proposed for the efficient removal of CO2 from flue gas mixtures. Membrane technology is a promising choice due to its several inherent advantages such as low capital cost, high energy efficiency, and low ecological footprint. One of the goals in the development of membranes is to achieve high permeability and selectivity. Mixed matrix membranes comprising of inorganic fillers embedded in polymer matrix are a class of membranes that have showed improved separation properties. One of the biggest challenges in the commercialization if mixed matrix membranes are the removal of non-selective voids existing at the polymer-filler interface. In this work, mixed matrix membranes were prepared using polysulfone as polymer matrix and ordered mesoporous MCM-41 as filler materials. A new approach to removing the interfacial voids was developed by introducing room temperature ionic (RTIL) at the polymer-filler interface. The results showed that the imidazolium based RTIL not only provided wettability characteristics but also helped in further improving the separation properties. The removal of interfacial voids and good contact between polymer and filler was verified by SEM measurement. The synthesized membranes were tested in a custom built gas permeation set-up for the measurement of gas permeability and ideal gas selectivity. The results showed that the mixed matrix membranes showed significantly higher CO2 permeability in comparison to the pristine membrane. In order to have further insight into the role of fillers, diffusion and solubility measurements were carried out. The results showed that the presence of highly porous fillers resulted in increasing the diffusion coefficient while the solubility showed a slight drop. The RTIL filled membranes showed higher CO2/CH4 and CO2/N2 selectivity than unfilled membranes while the permeability dropped slightly. The increase in selectivity was due to the highly selective RTIL used in this work. The study revealed that RTIL filled mixed matrix membranes are an interesting candidate for gas separation membranes.

Keywords: ionic liquids, CO2 separation, membranes, mixed matrix membranes

Procedia PDF Downloads 482
1772 Web Data Scraping Technology Using Term Frequency Inverse Document Frequency to Enhance the Big Data Quality on Sentiment Analysis

Authors: Sangita Pokhrel, Nalinda Somasiri, Rebecca Jeyavadhanam, Swathi Ganesan

Abstract:

Tourism is a booming industry with huge future potential for global wealth and employment. There are countless data generated over social media sites every day, creating numerous opportunities to bring more insights to decision-makers. The integration of Big Data Technology into the tourism industry will allow companies to conclude where their customers have been and what they like. This information can then be used by businesses, such as those in charge of managing visitor centers or hotels, etc., and the tourist can get a clear idea of places before visiting. The technical perspective of natural language is processed by analysing the sentiment features of online reviews from tourists, and we then supply an enhanced long short-term memory (LSTM) framework for sentiment feature extraction of travel reviews. We have constructed a web review database using a crawler and web scraping technique for experimental validation to evaluate the effectiveness of our methodology. The text form of sentences was first classified through Vader and Roberta model to get the polarity of the reviews. In this paper, we have conducted study methods for feature extraction, such as Count Vectorization and TFIDF Vectorization, and implemented Convolutional Neural Network (CNN) classifier algorithm for the sentiment analysis to decide the tourist’s attitude towards the destinations is positive, negative, or simply neutral based on the review text that they posted online. The results demonstrated that from the CNN algorithm, after pre-processing and cleaning the dataset, we received an accuracy of 96.12% for the positive and negative sentiment analysis.

Keywords: counter vectorization, convolutional neural network, crawler, data technology, long short-term memory, web scraping, sentiment analysis

Procedia PDF Downloads 93
1771 Dynamic EEG Desynchronization in Response to Vicarious Pain

Authors: Justin Durham, Chanda Rooney, Robert Mather, Mickie Vanhoy

Abstract:

The psychological construct of empathy is to understand a person’s cognitive perspective and experience the other person’s emotional state. Deciphering emotional states is conducive for interpreting vicarious pain. Observing others' physical pain activates neural networks related to the actual experience of pain itself. The study addresses empathy as a nonlinear dynamic process of simulation for individuals to understand the mental states of others and experience vicarious pain, exhibiting self-organized criticality. Such criticality follows from a combination of neural networks with an excitatory feedback loop generating bistability to resonate permutated empathy. Cortical networks exhibit diverse patterns of activity, including oscillations, synchrony and waves, however, the temporal dynamics of neurophysiological activities underlying empathic processes remain poorly understood. Mu rhythms are EEG oscillations with dominant frequencies of 8-13 Hz becoming synchronized when the body is relaxed with eyes open and when the sensorimotor system is in idle, thus, mu rhythm synchrony is expected to be highest in baseline conditions. When the sensorimotor system is activated either by performing or simulating action, mu rhythms become suppressed or desynchronize, thus, should be suppressed while observing video clips of painful injuries if previous research on mirror system activation holds. Twelve undergraduates contributed EEG data and survey responses to empathy and psychopathy scales in addition to watching consecutive video clips of sports injuries. Participants watched a blank, black image on a computer monitor before and after observing a video of consecutive sports injuries incidents. Each video condition lasted five-minutes long. A BIOPAC MP150 recorded EEG signals from sensorimotor and thalamocortical regions related to a complex neural network called the ‘pain matrix’. Physical and social pain are activated in this network to resonate vicarious pain responses to processing empathy. Five EEG single electrode locations were applied to regions measuring sensorimotor electrical activity in microvolts (μV) to monitor mu rhythms. EEG signals were sampled at a rate of 200 Hz. Mu rhythm desynchronization was measured via 8-13 Hz at electrode sites (F3 & F4). Data for each participant’s mu rhythms were analyzed via Fast Fourier Transformation (FFT) and multifractal time series analysis.

Keywords: desynchronization, dynamical systems theory, electroencephalography (EEG), empathy, multifractal time series analysis, mu waveform, neurophysiology, pain simulation, social cognition

Procedia PDF Downloads 286
1770 Neural Network Based Control Algorithm for Inhabitable Spaces Applying Emotional Domotics

Authors: Sergio A. Navarro Tuch, Martin Rogelio Bustamante Bello, Leopoldo Julian Lechuga Lopez

Abstract:

In recent years, Mexico’s population has seen a rise of different physiological and mental negative states. Two main consequences of this problematic are deficient work performance and high levels of stress generating and important impact on a person’s physical, mental and emotional health. Several approaches, such as the use of audiovisual stimulus to induce emotions and modify a person’s emotional state, can be applied in an effort to decreases these negative effects. With the use of different non-invasive physiological sensors such as EEG, luminosity and face recognition we gather information of the subject’s current emotional state. In a controlled environment, a subject is shown a series of selected images from the International Affective Picture System (IAPS) in order to induce a specific set of emotions and obtain information from the sensors. The raw data obtained is statistically analyzed in order to filter only the specific groups of information that relate to a subject’s emotions and current values of the physical variables in the controlled environment such as, luminosity, RGB light color, temperature, oxygen level and noise. Finally, a neural network based control algorithm is given the data obtained in order to feedback the system and automate the modification of the environment variables and audiovisual content shown in an effort that these changes can positively alter the subject’s emotional state. During the research, it was found that the light color was directly related to the type of impact generated by the audiovisual content on the subject’s emotional state. Red illumination increased the impact of violent images and green illumination along with relaxing images decreased the subject’s levels of anxiety. Specific differences between men and women were found as to which type of images generated a greater impact in either gender. The population sample was mainly constituted by college students whose data analysis showed a decreased sensibility to violence towards humans. Despite the early stage of the control algorithm, the results obtained from the population sample give us a better insight into the possibilities of emotional domotics and the applications that can be created towards the improvement of performance in people’s lives. The objective of this research is to create a positive impact with the application of technology to everyday activities; nonetheless, an ethical problem arises since this can also be applied to control a person’s emotions and shift their decision making.

Keywords: data analysis, emotional domotics, performance improvement, neural network

Procedia PDF Downloads 145
1769 Forecast Financial Bubbles: Multidimensional Phenomenon

Authors: Zouari Ezzeddine, Ghraieb Ikram

Abstract:

From the results of the academic literature which evokes the limitations of previous studies, this article shows the reasons for multidimensionality Prediction of financial bubbles. A new framework for modeling study predicting financial bubbles by linking a set of variable presented on several dimensions dictating its multidimensional character. It takes into account the preferences of financial actors. A multicriteria anticipation of the appearance of bubbles in international financial markets helps to fight against a possible crisis.

Keywords: classical measures, predictions, financial bubbles, multidimensional, artificial neural networks

Procedia PDF Downloads 581
1768 ARABEX: Automated Dotted Arabic Expiration Date Extraction using Optimized Convolutional Autoencoder and Custom Convolutional Recurrent Neural Network

Authors: Hozaifa Zaki, Ghada Soliman

Abstract:

In this paper, we introduced an approach for Automated Dotted Arabic Expiration Date Extraction using Optimized Convolutional Autoencoder (ARABEX) with bidirectional LSTM. This approach is used for translating the Arabic dot-matrix expiration dates into their corresponding filled-in dates. A custom lightweight Convolutional Recurrent Neural Network (CRNN) model is then employed to extract the expiration dates. Due to the lack of available dataset images for the Arabic dot-matrix expiration date, we generated synthetic images by creating an Arabic dot-matrix True Type Font (TTF) matrix to address this limitation. Our model was trained on a realistic synthetic dataset of 3287 images, covering the period from 2019 to 2027, represented in the format of yyyy/mm/dd. We then trained our custom CRNN model using the generated synthetic images to assess the performance of our model (ARABEX) by extracting expiration dates from the translated images. Our proposed approach achieved an accuracy of 99.4% on the test dataset of 658 images, while also achieving a Structural Similarity Index (SSIM) of 0.46 for image translation on our dataset. The ARABEX approach demonstrates its ability to be applied to various downstream learning tasks, including image translation and reconstruction. Moreover, this pipeline (ARABEX+CRNN) can be seamlessly integrated into automated sorting systems to extract expiry dates and sort products accordingly during the manufacturing stage. By eliminating the need for manual entry of expiration dates, which can be time-consuming and inefficient for merchants, our approach offers significant results in terms of efficiency and accuracy for Arabic dot-matrix expiration date recognition.

Keywords: computer vision, deep learning, image processing, character recognition

Procedia PDF Downloads 86
1767 Italian Speech Vowels Landmark Detection through the Legacy Tool 'xkl' with Integration of Combined CNNs and RNNs

Authors: Kaleem Kashif, Tayyaba Anam, Yizhi Wu

Abstract:

This paper introduces a methodology for advancing Italian speech vowels landmark detection within the distinctive feature-based speech recognition domain. Leveraging the legacy tool 'xkl' by integrating combined convolutional neural networks (CNNs) and recurrent neural networks (RNNs), the study presents a comprehensive enhancement to the 'xkl' legacy software. This integration incorporates re-assigned spectrogram methodologies, enabling meticulous acoustic analysis. Simultaneously, our proposed model, integrating combined CNNs and RNNs, demonstrates unprecedented precision and robustness in landmark detection. The augmentation of re-assigned spectrogram fusion within the 'xkl' software signifies a meticulous advancement, particularly enhancing precision related to vowel formant estimation. This augmentation catalyzes unparalleled accuracy in landmark detection, resulting in a substantial performance leap compared to conventional methods. The proposed model emerges as a state-of-the-art solution in the distinctive feature-based speech recognition systems domain. In the realm of deep learning, a synergistic integration of combined CNNs and RNNs is introduced, endowed with specialized temporal embeddings, harnessing self-attention mechanisms, and positional embeddings. The proposed model allows it to excel in capturing intricate dependencies within Italian speech vowels, rendering it highly adaptable and sophisticated in the distinctive feature domain. Furthermore, our advanced temporal modeling approach employs Bayesian temporal encoding, refining the measurement of inter-landmark intervals. Comparative analysis against state-of-the-art models reveals a substantial improvement in accuracy, highlighting the robustness and efficacy of the proposed methodology. Upon rigorous testing on a database (LaMIT) speech recorded in a silent room by four Italian native speakers, the landmark detector demonstrates exceptional performance, achieving a 95% true detection rate and a 10% false detection rate. A majority of missed landmarks were observed in proximity to reduced vowels. These promising results underscore the robust identifiability of landmarks within the speech waveform, establishing the feasibility of employing a landmark detector as a front end in a speech recognition system. The synergistic integration of re-assigned spectrogram fusion, CNNs, RNNs, and Bayesian temporal encoding not only signifies a significant advancement in Italian speech vowels landmark detection but also positions the proposed model as a leader in the field. The model offers distinct advantages, including unparalleled accuracy, adaptability, and sophistication, marking a milestone in the intersection of deep learning and distinctive feature-based speech recognition. This work contributes to the broader scientific community by presenting a methodologically rigorous framework for enhancing landmark detection accuracy in Italian speech vowels. The integration of cutting-edge techniques establishes a foundation for future advancements in speech signal processing, emphasizing the potential of the proposed model in practical applications across various domains requiring robust speech recognition systems.

Keywords: landmark detection, acoustic analysis, convolutional neural network, recurrent neural network

Procedia PDF Downloads 67
1766 Failure Mechanism of Slip-Critical Connections on Curved Surface

Authors: Bae Doobyong, Yoo Jaejun, Park Ilgyu, Choi Seowon, Oh Chang Kook

Abstract:

Variation of slip coefficient in slip-critical connections of curved plates. This paper presents the results of analytical investigations of slip coefficients in slip-critical bolted connections of curved plates. It may depend on the contact stress distribution at interface and the flexibility of spliced plate. Non-linear FEM analyses have been made to simulate the behavior of bolted connections of curved plates with various radiuses of curvature and thicknesses.

Keywords: slip coefficient, curved plates, slip-critical bolted connection, radius of curvature

Procedia PDF Downloads 521
1765 Grid Architecture Model for Smart Grid

Authors: Nick Farid, Roghoyeh Salmeh

Abstract:

The planning and operation of the power grid is becoming much more complex because of the introduction of renewable energy resources, the digitalization of the electricity industry, as well as the coupling of efficiency and greener energy trends. These changes, along with new trends, make interactions between grid users and the other stakeholders more complex. This paper focuses on the main “physical” and “logical” interactions between grid users and the grid stakeholders, both from power system equipment and information management standpoints, and proposes a new interoperability model for Smart Grids.

Keywords: user interface, interoperability layers, grid architecture framework, smart grid

Procedia PDF Downloads 98
1764 Unsupervised Classification of DNA Barcodes Species Using Multi-Library Wavelet Networks

Authors: Abdesselem Dakhli, Wajdi Bellil, Chokri Ben Amar

Abstract:

DNA Barcode, a short mitochondrial DNA fragment, made up of three subunits; a phosphate group, sugar and nucleic bases (A, T, C, and G). They provide good sources of information needed to classify living species. Such intuition has been confirmed by many experimental results. Species classification with DNA Barcode sequences has been studied by several researchers. The classification problem assigns unknown species to known ones by analyzing their Barcode. This task has to be supported with reliable methods and algorithms. To analyze species regions or entire genomes, it becomes necessary to use similarity sequence methods. A large set of sequences can be simultaneously compared using Multiple Sequence Alignment which is known to be NP-complete. To make this type of analysis feasible, heuristics, like progressive alignment, have been developed. Another tool for similarity search against a database of sequences is BLAST, which outputs shorter regions of high similarity between a query sequence and matched sequences in the database. However, all these methods are still computationally very expensive and require significant computational infrastructure. Our goal is to build predictive models that are highly accurate and interpretable. This method permits to avoid the complex problem of form and structure in different classes of organisms. On empirical data and their classification performances are compared with other methods. Our system consists of three phases. The first is called transformation, which is composed of three steps; Electron-Ion Interaction Pseudopotential (EIIP) for the codification of DNA Barcodes, Fourier Transform and Power Spectrum Signal Processing. The second is called approximation, which is empowered by the use of Multi Llibrary Wavelet Neural Networks (MLWNN).The third is called the classification of DNA Barcodes, which is realized by applying the algorithm of hierarchical classification.

Keywords: DNA barcode, electron-ion interaction pseudopotential, Multi Library Wavelet Neural Networks (MLWNN)

Procedia PDF Downloads 323
1763 Neural Correlates of Diminished Humor Comprehension in Schizophrenia: A Functional Magnetic Resonance Imaging Study

Authors: Przemysław Adamczyk, Mirosław Wyczesany, Aleksandra Domagalik, Artur Daren, Kamil Cepuch, Piotr Błądziński, Tadeusz Marek, Andrzej Cechnicki

Abstract:

The present study aimed at evaluation of neural correlates of humor comprehension impairments observed in schizophrenia. To investigate the nature of this deficit in schizophrenia and to localize cortical areas involved in humor processing we used functional magnetic resonance imaging (fMRI). The study included chronic schizophrenia outpatients (SCH; n=20), and sex, age and education level matched healthy controls (n=20). The task consisted of 60 stories (setup) of which 20 had funny, 20 nonsensical and 20 neutral (not funny) punchlines. After the punchlines were presented, the participants were asked to indicate whether the story was comprehensible (yes/no) and how funny it was (1-9 Likert-type scale). fMRI was performed on a 3T scanner (Magnetom Skyra, Siemens) using 32-channel head coil. Three contrasts in accordance with the three stages of humor processing were analyzed in both groups: abstract vs neutral stories - incongruity detection; funny vs abstract - incongruity resolution; funny vs neutral - elaboration. Additionally, parametric modulation analysis was performed using both subjective ratings separately in order to further differentiate the areas involved in incongruity resolution processing. Statistical analysis for behavioral data used U Mann-Whitney test and Bonferroni’s correction, fMRI data analysis utilized whole-brain voxel-wise t-tests with 10-voxel extent threshold and with Family Wise Error (FWE) correction at alpha = 0.05, or uncorrected at alpha = 0.001. Between group comparisons revealed that the SCH subjects had attenuated activation in: the right superior temporal gyrus in case of irresolvable incongruity processing of nonsensical puns (nonsensical > neutral); the left medial frontal gyrus in case of incongruity resolution processing of funny puns (funny > nonsensical) and the interhemispheric ACC in case of elaboration of funny puns (funny > neutral). Additionally, the SCH group revealed weaker activation during funniness ratings in the left ventro-medial prefrontal cortex, the medial frontal gyrus, the angular and the supramarginal gyrus, and the right temporal pole. In comprehension ratings the SCH group showed suppressed activity in the left superior and medial frontal gyri. Interestingly, these differences were accompanied by protraction of time in both types of rating responses in the SCH group, a lower level of comprehension for funny punchlines and a higher funniness for absurd punchlines. Presented results indicate that, in comparison to healthy controls, schizophrenia is characterized by difficulties in humor processing revealed by longer reaction times, impairments of understanding jokes and finding nonsensical punchlines more funny. This is accompanied by attenuated brain activations, especially in the left fronto-parietal and the right temporal cortices. Disturbances of the humor processing seem to be impaired at the all three stages of the humor comprehension process, from incongruity detection, through its resolution to elaboration. The neural correlates revealed diminished neural activity of the schizophrenia brain, as compared with the control group. The study was supported by the National Science Centre, Poland (grant no 2014/13/B/HS6/03091).

Keywords: communication skills, functional magnetic resonance imaging, humor, schizophrenia

Procedia PDF Downloads 217
1762 Preliminary Study of Hand Gesture Classification in Upper-Limb Prosthetics Using Machine Learning with EMG Signals

Authors: Linghui Meng, James Atlas, Deborah Munro

Abstract:

There is an increasing demand for prosthetics capable of mimicking natural limb movements and hand gestures, but precise movement control of prosthetics using only electrode signals continues to be challenging. This study considers the implementation of machine learning as a means of improving accuracy and presents an initial investigation into hand gesture recognition using models based on electromyographic (EMG) signals. EMG signals, which capture muscle activity, are used as inputs to machine learning algorithms to improve prosthetic control accuracy, functionality and adaptivity. Using logistic regression, a machine learning classifier, this study evaluates the accuracy of classifying two hand gestures from the publicly available Ninapro dataset using two-time series feature extraction algorithms: Time Series Feature Extraction (TSFE) and Convolutional Neural Networks (CNNs). Trials were conducted using varying numbers of EMG channels from one to eight to determine the impact of channel quantity on classification accuracy. The results suggest that although both algorithms can successfully distinguish between hand gesture EMG signals, CNNs outperform TSFE in extracting useful information for both accuracy and computational efficiency. In addition, although more channels of EMG signals provide more useful information, they also require more complex and computationally intensive feature extractors and consequently do not perform as well as lower numbers of channels. The findings also underscore the potential of machine learning techniques in developing more effective and adaptive prosthetic control systems.

Keywords: EMG, machine learning, prosthetic control, electromyographic prosthetics, hand gesture classification, CNN, computational neural networks, TSFE, time series feature extraction, channel count, logistic regression, ninapro, classifiers

Procedia PDF Downloads 43
1761 Stable Diffusion, Context-to-Motion Model to Augmenting Dexterity of Prosthetic Limbs

Authors: André Augusto Ceballos Melo

Abstract:

Design to facilitate the recognition of congruent prosthetic movements, context-to-motion translations guided by image, verbal prompt, users nonverbal communication such as facial expressions, gestures, paralinguistics, scene context, and object recognition contributes to this process though it can also be applied to other tasks, such as walking, Prosthetic limbs as assistive technology through gestures, sound codes, signs, facial, body expressions, and scene context The context-to-motion model is a machine learning approach that is designed to improve the control and dexterity of prosthetic limbs. It works by using sensory input from the prosthetic limb to learn about the dynamics of the environment and then using this information to generate smooth, stable movements. This can help to improve the performance of the prosthetic limb and make it easier for the user to perform a wide range of tasks. There are several key benefits to using the context-to-motion model for prosthetic limb control. First, it can help to improve the naturalness and smoothness of prosthetic limb movements, which can make them more comfortable and easier to use for the user. Second, it can help to improve the accuracy and precision of prosthetic limb movements, which can be particularly useful for tasks that require fine motor control. Finally, the context-to-motion model can be trained using a variety of different sensory inputs, which makes it adaptable to a wide range of prosthetic limb designs and environments. Stable diffusion is a machine learning method that can be used to improve the control and stability of movements in robotic and prosthetic systems. It works by using sensory feedback to learn about the dynamics of the environment and then using this information to generate smooth, stable movements. One key aspect of stable diffusion is that it is designed to be robust to noise and uncertainty in the sensory feedback. This means that it can continue to produce stable, smooth movements even when the sensory data is noisy or unreliable. To implement stable diffusion in a robotic or prosthetic system, it is typically necessary to first collect a dataset of examples of the desired movements. This dataset can then be used to train a machine learning model to predict the appropriate control inputs for a given set of sensory observations. Once the model has been trained, it can be used to control the robotic or prosthetic system in real-time. The model receives sensory input from the system and uses it to generate control signals that drive the motors or actuators responsible for moving the system. Overall, the use of the context-to-motion model has the potential to significantly improve the dexterity and performance of prosthetic limbs, making them more useful and effective for a wide range of users Hand Gesture Body Language Influence Communication to social interaction, offering a possibility for users to maximize their quality of life, social interaction, and gesture communication.

Keywords: stable diffusion, neural interface, smart prosthetic, augmenting

Procedia PDF Downloads 106
1760 Quality Assessment of New Zealand Mānuka Honeys Using Hyperspectral Imaging Combined with Deep 1D-Convolutional Neural Networks

Authors: Hien Thi Dieu Truong, Mahmoud Al-Sarayreh, Pullanagari Reddy, Marlon M. Reis, Richard Archer

Abstract:

New Zealand mānuka honey is a honeybee product derived mainly from Leptospermum scoparium nectar. The potent antibacterial activity of mānuka honey derives principally from methylglyoxal (MGO), in addition to the hydrogen peroxide and other lesser activities present in all honey. MGO is formed from dihydroxyacetone (DHA) unique to L. scoparium nectar. Mānuka honey also has an idiosyncratic phenolic profile that is useful as a chemical maker. Authentic mānuka honey is highly valuable, but almost all honey is formed from natural mixtures of nectars harvested by a hive over a time period. Once diluted by other nectars, mānuka honey irrevocably loses value. We aimed to apply hyperspectral imaging to honey frames before bulk extraction to minimise the dilution of genuine mānuka by other honey and ensure authenticity at the source. This technology is non-destructive and suitable for an industrial setting. Chemometrics using linear Partial Least Squares (PLS) and Support Vector Machine (SVM) showed limited efficacy in interpreting chemical footprints due to large non-linear relationships between predictor and predictand in a large sample set, likely due to honey quality variability across geographic regions. Therefore, an advanced modelling approach, one-dimensional convolutional neural networks (1D-CNN), was investigated for analysing hyperspectral data for extraction of biochemical information from honey. The 1D-CNN model showed superior prediction of honey quality (R² = 0.73, RMSE = 2.346, RPD= 2.56) to PLS (R² = 0.66, RMSE = 2.607, RPD= 1.91) and SVM (R² = 0.67, RMSE = 2.559, RPD=1.98). Classification of mono-floral manuka honey from multi-floral and non-manuka honey exceeded 90% accuracy for all models tried. Overall, this study reveals the potential of HSI and deep learning modelling for automating the evaluation of honey quality in frames.

Keywords: mānuka honey, quality, purity, potency, deep learning, 1D-CNN, chemometrics

Procedia PDF Downloads 144
1759 Direct Current Electric Field Stimulation against PC12 Cells in 3D Bio-Reactor to Enhance Axonal Extension

Authors: E. Nakamachi, S. Tanaka, K. Yamamoto, Y. Morita

Abstract:

In this study, we developed a three-dimensional (3D) direct current electric field (DCEF) stimulation bio-reactor for axonal outgrowth enhancement to generate the neural network of the central nervous system (CNS). By using our newly developed 3D DCEF stimulation bio-reactor, we cultured the rat pheochromocytoma cells (PC12) and investigated the effects on the axonal extension enhancement and network generation. Firstly, we designed and fabricated a 3D bio-reactor, which can load DCEF stimulation on PC12 cells embedded in the collagen gel as extracellular environment. The connection between the electrolyte and the medium using salt bridges for DCEF stimulation was introduced to avoid the cell death by the toxicity of metal ion. The distance between the salt bridges was adopted as the design variable to optimize a structure for uniform DCEF stimulation, where the finite element (FE) analyses results were used. Uniform DCEF strength and electric flux vector direction in the PC12 cells embedded in collagen gel were examined through measurements of the fabricated 3D bio-reactor chamber. Measurement results of DCEF strength in the bio-reactor showed a good agreement with FE results. In addition, the perfusion system was attached to maintain pH 7.2 ~ 7.6 of the medium because pH change was caused by DCEF stimulation loading. Secondly, we disseminated PC12 cells in collagen gel and carried out 3D culture. Finally, we measured the morphology of PC12 cell bodies and neurites by the multiphoton excitation fluorescence microscope (MPM). The effectiveness of DCEF stimulation to enhance the axonal outgrowth and the neural network generation was investigated. We confirmed that both an increase of mean axonal length and axogenesis rate of PC12, which have been exposed 5 mV/mm for 6 hours a day for 4 days in the bioreactor. We found following conclusions in our study. 1) Design and fabrication of DCEF stimulation bio-reactor capable of 3D culture nerve cell were completed. A uniform electric field strength of average value of 17 mV/mm within the 1.2% error range was confirmed by using FE analyses, after the structure determination through the optimization process. In addition, we attached a perfusion system capable of suppressing the pH change of the culture solution due to DCEF stimulation loading. 2) Evaluation of DCEF stimulation effects on PC12 cell activity was executed. The 3D culture of PC 12 was carried out adopting the embedding culture method using collagen gel as a scaffold for four days under the condition of 5.0 mV/mm and 10mV/mm. There was a significant effect on the enhancement of axonal extension, as 11.3% increase in an average length, and the increase of axogenesis rate. On the other hand, no effects on the orientation of axon against the DCEF flux direction was observed. Further, the network generation was enhanced to connect longer distance between the target neighbor cells by DCEF stimulation.

Keywords: PC12, DCEF stimulation, 3D bio-reactor, axonal extension, neural network generation

Procedia PDF Downloads 185