Search results for: intent detection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3631

Search results for: intent detection

2221 Surface Plasmon Resonance Imaging-Based Epigenetic Assay for Blood DNA Post-Traumatic Stress Disorder Biomarkers

Authors: Judy M. Obliosca, Olivia Vest, Sandra Poulos, Kelsi Smith, Tammy Ferguson, Abigail Powers Lott, Alicia K. Smith, Yang Xu, Christopher K. Tison

Abstract:

Post-Traumatic Stress Disorder (PTSD) is a mental health problem that people may develop after experiencing traumatic events such as combat, natural disasters, and major emotional challenges. Tragically, the number of military personnel with PTSD correlates directly with the number of veterans who attempt suicide, with the highest rate in the Army. Research has shown epigenetic risks in those who are prone to several psychiatric dysfunctions, particularly PTSD. Once initiated in response to trauma, epigenetic alterations in particular, the DNA methylation in the form of 5-methylcytosine (5mC) alters chromatin structure and represses gene expression. Current methods to detect DNA methylation, such as bisulfite-based genomic sequencing techniques, are laborious and have massive analysis workflow while still having high error rates. A faster and simpler detection method of high sensitivity and precision would be useful in a clinical setting to confirm potential PTSD etiologies, prevent other psychiatric disorders, and improve military health. A nano-enhanced Surface Plasmon Resonance imaging (SPRi)-based assay that simultaneously detects site-specific 5mC base (termed as PTSD base) in methylated genes related to PTSD is being developed. The arrays on a sensing chip were first constructed for parallel detection of PTSD bases using synthetic and genomic DNA (gDNA) samples. For the gDNA sample extracted from the whole blood of a PTSD patient, the sample was first digested using specific restriction enzymes, and fragments were denatured to obtain single-stranded methylated target genes (ssDNA). The resulting mixture of ssDNA was then injected into the assay platform, where targets were captured by specific DNA aptamer probes previously immobilized on the surface of a sensing chip. The PTSD bases in targets were detected by anti-5-methylcytosine antibody (anti-5mC), and the resulting signals were then enhanced by the universal nanoenhancer. Preliminary results showed successful detection of a PTSD base in a gDNA sample. Brighter spot images and higher delta values (control-subtracted reflectivity signal) relative to those of the control were observed. We also implemented the in-house surface activation system for detection and developed SPRi disposable chips. Multiplexed PTSD base detection of target methylated genes in blood DNA from PTSD patients of severity conditions (asymptomatic and severe) was conducted. This diagnostic capability being developed is a platform technology, and upon successful implementation for PTSD, it could be reconfigured for the study of a wide variety of neurological disorders such as traumatic brain injury, Alzheimer’s disease, schizophrenia, and Huntington's disease and can be extended to the analyses of other sample matrices such as urine and saliva.

Keywords: epigenetic assay, DNA methylation, PTSD, whole blood, multiplexing

Procedia PDF Downloads 124
2220 Measurement of Asphalt Pavement Temperature to Find out the Proper Asphalt Binder Performance Grade to the Asphalt Mixtures in Southern Desert of Libya

Authors: Khlifa El Atrash, Gabriel Assaf

Abstract:

Most developing countries use volumetric analysis in designing asphalt mixtures, which can also be upgraded in hot arid weather. However, in order to be effective, it should include many important aspects which are materials, environment, and method of construction. The overall intent of the work reported in this study is to test different asphalt mixtures while taking into consideration the environment, type and source of material, tools, equipment, and the construction method. In this study, several tests were conducted on many samples that were carefully prepared under the expected traffic loads and temperatures in a dry hot climate. Several asphalt concrete mixtures were designed using two different binders. These mixtures were analyzed under two types of tests - Complex Modulus and Rutting test - to evaluate the hot mix asphalt properties under the represented temperatures and traffic load in Libya. These factors play an important role to improve the pavement performances in a hot climate weather based on the properties of the asphalt mixture, climate, and traffic load. This research summarized some recommendations for making asphalt mixtures used in hot dry areas. Such asphalt mixtures should use asphalt binder which is less affected by pavement temperature change and traffic load. The properties of the mixture, such as durability, deformation, air voids and performance, largely depend on the type of materials, environment, and mixing method. These properties, in turn, affect the pavement performance. Therefore, this study is aimed to develop a method for designing an asphalt mixture that takes into account field loading, various stresses, and temperature spectrums.

Keywords: volumetric analysis, pavement performances, hot climate, asphalt mixture, traffic load

Procedia PDF Downloads 309
2219 A Spatio-Temporal Analysis and Change Detection of Wetlands in Diamond Harbour, West Bengal, India Using Normalized Difference Water Index

Authors: Lopita Pal, Suresh V. Madha

Abstract:

Wetlands are areas of marsh, fen, peat land or water, whether natural or artificial, permanent or temporary, with water that is static or flowing, fresh, brackish or salt, including areas of marine water the depth of which at low tide does not exceed six metres. The rapidly expanding human population, large scale changes in land use/land cover, burgeoning development projects and improper use of watersheds all has caused a substantial decline of wetland resources in the world. Major degradations have been impacted from agricultural, industrial and urban developments leading to various types of pollutions and hydrological perturbations. Regular fishing activities and unsustainable grazing of animals are degrading the wetlands in a slow pace. The paper focuses on the spatio-temporal change detection of the area of the water body and the main cause of this depletion. The total area under study (22°19’87’’ N, 88°20’23’’ E) is a wetland region in West Bengal of 213 sq.km. The procedure used is the Normalized Difference Water Index (NDWI) from multi-spectral imagery and Landsat to detect the presence of surface water, and the datasets have been compared of the years 2016, 2006 and 1996. The result shows a sharp decline in the area of water body due to a rapid increase in the agricultural practices and the growing urbanization.

Keywords: spatio-temporal change, NDWI, urbanization, wetland

Procedia PDF Downloads 283
2218 A Practical and Theoretical Study on the Electromotor Bearing Defect Detection in a Wet Mill Using the Vibration Analysis Method and Defect Length Calculation in the Bearing

Authors: Mostafa Firoozabadi, Alireza Foroughi Nematollahi

Abstract:

Wet mills are one of the most important equipment in the mining industries and any defect occurrence in them can stop the production line and it can make some irrecoverable damages to the system. Electromotors are the significant parts of a mill and their monitoring is a necessary process to prevent unwanted defects. The purpose of this study is to investigate the Electromotor bearing defects, theoretically and practically, using the vibration analysis method. When a defect happens in a bearing, it can be transferred to the other parts of the equipment like inner ring, outer ring, balls, and the bearing cage. The electromotor defects source can be electrical or mechanical. Sometimes, the electrical and mechanical defect frequencies are modulated and the bearing defect detection becomes difficult. In this paper, to detect the electromotor bearing defects, the electrical and mechanical defect frequencies are extracted firstly. Then, by calculating the bearing defect frequencies, and the spectrum and time signal analysis, the bearing defects are detected. In addition, the obtained frequency determines that the bearing level in which the defect has happened and by comparing this level to the standards it determines the bearing remaining lifetime. Finally, the defect length is calculated by theoretical equations to demonstrate that there is no need to replace the bearing. The results of the proposed method, which has been implemented on the wet mills in the Golgohar mining and industrial company in Iran, show that this method is capable of detecting the electromotor bearing defects accurately and on time.

Keywords: bearing defect length, defect frequency, electromotor defects, vibration analysis

Procedia PDF Downloads 502
2217 Information Retrieval from Internet Using Hand Gestures

Authors: Aniket S. Joshi, Aditya R. Mane, Arjun Tukaram

Abstract:

In the 21st century, in the era of e-world, people are continuously getting updated by daily information such as weather conditions, news, stock exchange market updates, new projects, cricket updates, sports and other such applications. In the busy situation, they want this information on the little use of keyboard, time. Today in order to get such information user have to repeat same mouse and keyboard actions which includes time and inconvenience. In India due to rural background many people are not much familiar about the use of computer and internet also. Also in small clinics, small offices, and hotels and in the airport there should be a system which retrieves daily information with the minimum use of keyboard and mouse actions. We plan to design application based project that can easily retrieve information with minimum use of keyboard and mouse actions and make our task more convenient and easier. This can be possible with an image processing application which takes real time hand gestures which will get matched by system and retrieve information. Once selected the functions with hand gestures, the system will report action information to user. In this project we use real time hand gesture movements to select required option which is stored on the screen in the form of RSS Feeds. Gesture will select the required option and the information will be popped and we got the information. A real time hand gesture makes the application handier and easier to use.

Keywords: hand detection, hand tracking, hand gesture recognition, HSV color model, Blob detection

Procedia PDF Downloads 290
2216 Development of Advanced Virtual Radiation Detection and Measurement Laboratory (AVR-DML) for Nuclear Science and Engineering Students

Authors: Lily Ranjbar, Haori Yang

Abstract:

Online education has been around for several decades, but the importance of online education became evident after the COVID-19 pandemic. Eventhough the online delivery approach works well for knowledge building through delivering content and oversight processes, it has limitations in developing hands-on laboratory skills, especially in the STEM field. During the pandemic, many education institutions faced numerous challenges in delivering lab-based courses, especially in the STEM field. Also, many students worldwide were unable to practice working with lab equipment due to social distancing or the significant cost of highly specialized equipment. The laboratory plays a crucial role in nuclear science and engineering education. It can engage students and improve their learning outcomes. In addition, online education and virtual labs have gained substantial popularity in engineering and science education. Therefore, developing virtual labs is vital for institutions to deliver high-class education to their students, including their online students. The School of Nuclear Science and Engineering (NSE) at Oregon State University, in partnership with SpectralLabs company, has developed an Advanced Virtual Radiation Detection and Measurement Lab (AVR-DML) to offer a fully online Master of Health Physics program. It was essential for us to use a system that could simulate nuclear modules that accurately replicate the underlying physics, the nature of radiation and radiation transport, and the mechanics of the instrumentations used in the real radiation detection lab. It was all accomplished using a Realistic, Adaptive, Interactive Learning System (RAILS). RAILS is a comprehensive software simulation-based learning system for use in training. It is comprised of a web-based learning management system that is located on a central server, as well as a 3D-simulation package that is downloaded locally to user machines. Users will find that the graphics, animations, and sounds in RAILS create a realistic, immersive environment to practice detecting different radiation sources. These features allow students to coexist, interact and engage with a real STEM lab in all its dimensions. It enables them to feel like they are in a real lab environment and to see the same system they would in a lab. Unique interactive interfaces were designed and developed by integrating all the tools and equipment needed to run each lab. These interfaces provide students full functionality for data collection, changing the experimental setup, and live data collection with real-time updates for each experiment. Students can manually do all experimental setups and parameter changes in this lab. Experimental results can then be tracked and analyzed in an oscilloscope, a multi-channel analyzer, or a single-channel analyzer (SCA). The advanced virtual radiation detection and measurement laboratory developed in this study enabled the NSE school to offer a fully online MHP program. This flexibility of course modality helped us to attract more non-traditional students, including international students. It is a valuable educational tool as students can walk around the virtual lab, make mistakes, and learn from them. They have an unlimited amount of time to repeat and engage in experiments. This lab will also help us speed up training in nuclear science and engineering.

Keywords: advanced radiation detection and measurement, virtual laboratory, realistic adaptive interactive learning system (rails), online education in stem fields, student engagement, stem online education, stem laboratory, online engineering education

Procedia PDF Downloads 90
2215 Advanced Magnetic Field Mapping Utilizing Vertically Integrated Deployment Platforms

Authors: John E. Foley, Martin Miele, Raul Fonda, Jon Jacobson

Abstract:

This paper presents development and implementation of new and innovative data collection and analysis methodologies based on deployment of total field magnetometer arrays. Our research has focused on the development of a vertically-integrated suite of platforms all utilizing common data acquisition, data processing and analysis tools. These survey platforms include low-altitude helicopters and ground-based vehicles, including robots, for terrestrial mapping applications. For marine settings the sensor arrays are deployed from either a hydrodynamic bottom-following wing towed from a surface vessel or from a towed floating platform for shallow-water settings. Additionally, sensor arrays are deployed from tethered remotely operated vehicles (ROVs) for underwater settings where high maneuverability is required. While the primary application of these systems is the detection and mapping of unexploded ordnance (UXO), these system are also used for various infrastructure mapping and geologic investigations. For each application, success is driven by the integration of magnetometer arrays, accurate geo-positioning, system noise mitigation, and stable deployment of the system in appropriate proximity of expected targets or features. Each of the systems collects geo-registered data compatible with a web-enabled data management system providing immediate access of data and meta-data for remote processing, analysis and delivery of results. This approach allows highly sophisticated magnetic processing methods, including classification based on dipole modeling and remanent magnetization, to be efficiently applied to many projects. This paper also briefly describes the initial development of magnetometer-based detection systems deployed from low-altitude helicopter platforms and the subsequent successful transition of this technology to the marine environment. Additionally, we present examples from a range of terrestrial and marine settings as well as ongoing research efforts related to sensor miniaturization for unmanned aerial vehicle (UAV) magnetic field mapping applications.

Keywords: dipole modeling, magnetometer mapping systems, sub-surface infrastructure mapping, unexploded ordnance detection

Procedia PDF Downloads 464
2214 External Noise Distillation in Quantum Holography with Undetected Light

Authors: Sebastian Töpfer, Jorge Fuenzalida, Marta Gilaberte Basset, Juan P. Torres, Markus Gräfe

Abstract:

This work presents an experimental and theoretical study about the noise resilience of quantum holography with undetected photons. Quantum imaging has become an important research topic in the recent years after its first publication in 2014. Following this research, advances towards different spectral ranges in detection and different optical geometries have been made. Especially an interest in the field of near infrared to mid infrared measurements has developed, because of the unique characteristic, that allows to sample a probe with photons in a different wavelength than the photons arriving at the detector. This promising effect can be used for medical applications, to measure in the so-called molecule fingerprint region, while using broadly available detectors for the visible spectral range. Further advance the development of quantum imaging methods have been made by new measurement and detection schemes. One of which is quantum holography with undetected light. It combines digital phase shifting holography with quantum imaging to extent the obtainable sample information, by measuring not only the object transmission, but also its influence on the phase shift experienced by the transmitted light. This work will present extended research for the quantum holography with undetected light scheme regarding the influence of external noise. It is shown experimentally and theoretically that the samples information can still be at noise levels of 250 times higher than the signal level, because of its information being transmitted by the interferometric pattern. A detailed theoretic explanation is also provided.

Keywords: distillation, quantum holography, quantum imaging, quantum metrology

Procedia PDF Downloads 75
2213 Detection and Dissemination of Putative Virulence Genes from Brucella Species Isolated from Livestock in Eastern Cape Province of South Africa

Authors: Rudzani Manafe, Ezekiel Green

Abstract:

Brucella, has many different virulence factors that act as a causative agent of brucellosis, depending on the environment and other factors, some factors may play a role more than others during infection and as a result, play a role in becoming a causative agent for pathogenesis. Brucella melitensis and Brucella abortus are considered to be pathogenic to humans. The genetic regularity of nine potential causes of virulence of two Brucella species in Eastern Cape livestock have been examined. A hundred and twenty isolates obtained from Molecular Pathogenesis and Molecular Epidemiology Research Group (MPMERG) were used for this study. All isolates were grown on Brucella agar medium. Nine primer pairs were used for the detection of virB2, virB5, vceC, btpA, btpB, prpA, betB, bpe275, and bspB virulence factors using Polymerase chain reaction (PCR). Approximately 100% was observed for genes BecC and BetB from B. arbotus. While the lowest gene observed was PrpA at 4.6% from B. arbotus. BetB was detected in 34.7%, while virB2 and prpA (0%) were not detected in B. melitensis. The results from this research suggest that most isolates of Brucella have virulence-related genes associated with disease pathogenesis. Finally, our findings showed that Brucella strains in the Eastern Cape Province are extremely virulent as virulence characteristics exist in most strains investigated.

Keywords: putative virulence genes, brucella, polymerase chain reaction, milk

Procedia PDF Downloads 139
2212 An Assessment into Impact of Regional Conflicts upon Socio-Political Sustainability in Pakistan

Authors: Syed Toqueer Akhter, Muhammad Muzaffar Abbas

Abstract:

Conflicts in Pakistan are a result of a configuration of factors, which are directly related to the system of the state, the unstable regional setting, and the geo-strategic location of Pakistan at large. This paper examines the impact of regional conflict onto the socio-political sustainability of Pakistan. The magnitude of the spillover from a conflicted region is similar in size of the equivalent increase in domestic conflict. Pakistan has gone at war three times with India; the border with India is named as the tensest borderlines of the world. Disagreements with India and lack of dispute settlement mechanisms have negatively effected the peace in the region, influx of illegal weapons and refugees from Afghanistan as an outcome of 9/11 incidence, have exasperated the criticality of levels of internal conflict in Pakistan. Our empirical findings are based on the data collected on regional conflict levels, regional trade, global trade, comparative defence capabilities of the region in contrast to Pakistan and the government regime (Autocratic, Democratic) over 1972-2007. It has been proposed in this paper that the intent of domestic conflict is associated with the conflict in the region, regional trade, global trade and the government regime of Pakistan. The estimated model (OLS) implies that domestic conflict is effected positively and significantly with long term impact of conflict in the region. Also, if defence capabilities of the region are better than that of Pakistan it effects domestic conflict positively and significantly. Conflict in neighbouring countries are found as a source of domestic conflict in Pakistan, whereas the regional trade as well as type of government regimes in Pakistan lowered the intensity of domestic conflict significantly, while globalized trade imply risk of domestic conflict to be reduced but not significantly.

Keywords: conflict, regional trade, socio-politcal instability

Procedia PDF Downloads 321
2211 Colloid-Based Biodetection at Aqueous Electrical Interfaces Using Fluidic Dielectrophoresis

Authors: Francesca Crivellari, Nicholas Mavrogiannis, Zachary Gagnon

Abstract:

Portable diagnostic methods have become increasingly important for a number of different purposes: point-of-care screening in developing nations, environmental contamination studies, bio/chemical warfare agent detection, and end-user use for commercial health monitoring. The cheapest and most portable methods currently available are paper-based – lateral flow and dipstick methods are widely available in drug stores for use in pregnancy detection and blood glucose monitoring. These tests are successful because they are cheap to produce, easy to use, and require minimally invasive sampling. While adequate for their intended uses, in the realm of blood-borne pathogens and numerous cancers, these paper-based methods become unreliable, as they lack the nM/pM sensitivity currently achieved by clinical diagnostic methods. Clinical diagnostics, however, utilize techniques involving surface plasmon resonance (SPR) and enzyme-linked immunosorbent assays (ELISAs), which are expensive and unfeasible in terms of portability. To develop a better, competitive biosensor, we must reduce the cost of one, or increase the sensitivity of the other. Electric fields are commonly utilized in microfluidic devices to manipulate particles, biomolecules, and cells. Applications in this area, however, are primarily limited to interfaces formed between immiscible interfaces. Miscible, liquid-liquid interfaces are common in microfluidic devices, and are easily reproduced with simple geometries. Here, we demonstrate the use of electrical fields at liquid-liquid electrical interfaces, known as fluidic dielectrophoresis, (fDEP) for biodetection in a microfluidic device. In this work, we apply an AC electric field across concurrent laminar streams with differing conductivities and permittivities to polarize the interface and induce a discernible, near-immediate, frequency-dependent interfacial tilt. We design this aqueous electrical interface, which becomes the biosensing “substrate,” to be intelligent – it “moves” only when a target of interest is present. This motion requires neither labels nor expensive electrical equipment, so the biosensor is inexpensive and portable, yet still capable of sensitive detection. Nanoparticles, due to their high surface-area-to-volume ratio, are often incorporated to enhance detection capabilities of schemes like SPR and fluorimetric assays. Most studies currently investigate binding at an immobilized solid-liquid or solid-gas interface, where particles are adsorbed onto a planar surface, functionalized with a receptor to create a reactive substrate, and subsequently flushed with a fluid or gas with the relevant analyte. These typically involve many preparation and rinsing steps, and are susceptible to surface fouling. Our microfluidic device is continuously flowing and renewing the “substrate,” and is thus not subject to fouling. In this work, we demonstrate the ability to electrokinetically detect biomolecules binding to functionalized nanoparticles at liquid-liquid interfaces using fDEP. In biotin-streptavidin experiments, we report binding detection limits on the order of 1-10 pM, without amplifying signals or concentrating samples. We also demonstrate the ability to detect this interfacial motion, and thus the presence of binding, using impedance spectroscopy, allowing this scheme to become non-optical, in addition to being label-free.

Keywords: biodetection, dielectrophoresis, microfluidics, nanoparticles

Procedia PDF Downloads 388
2210 Deep Learning-Based Object Detection on Low Quality Images: A Case Study of Real-Time Traffic Monitoring

Authors: Jean-Francois Rajotte, Martin Sotir, Frank Gouineau

Abstract:

The installation and management of traffic monitoring devices can be costly from both a financial and resource point of view. It is therefore important to take advantage of in-place infrastructures to extract the most information. Here we show how low-quality urban road traffic images from cameras already available in many cities (such as Montreal, Vancouver, and Toronto) can be used to estimate traffic flow. To this end, we use a pre-trained neural network, developed for object detection, to count vehicles within images. We then compare the results with human annotations gathered through crowdsourcing campaigns. We use this comparison to assess performance and calibrate the neural network annotations. As a use case, we consider six months of continuous monitoring over hundreds of cameras installed in the city of Montreal. We compare the results with city-provided manual traffic counting performed in similar conditions at the same location. The good performance of our system allows us to consider applications which can monitor the traffic conditions in near real-time, making the counting usable for traffic-related services. Furthermore, the resulting annotations pave the way for building a historical vehicle counting dataset to be used for analysing the impact of road traffic on many city-related issues, such as urban planning, security, and pollution.

Keywords: traffic monitoring, deep learning, image annotation, vehicles, roads, artificial intelligence, real-time systems

Procedia PDF Downloads 200
2209 Investigation of Ascochyta Blight Resistance in Registered Turkish Chickpea (Cicer arietinum L.) Varieties by Using Molecular Techniques

Authors: Ibrahim Ilker Ozyigit, Fatih Tabanli, Sezin Adinir

Abstract:

In this study, Ascochyta blight resistance was investigated in 34 registered chickpea varieties, which are widely planting in different regions of Turkey. For this aim, molecular marker techniques, such as STMS, RAPD and ISSR were used. Ta2, Ta146 and Ts54 primers were used for STMS, while UBC733 and UBC681 primers for RAPD, and UBC836 and UBC858 primers for ISSR. Ta2, Ts54 and Ta146 (STMS), and UBC733 (RAPD) primers demonstrated the distinctive feature for Ascochyta blight resistance. Ta2, Ts54 and Ta146 primers yielded the quite effective results in detection of resistant and sensitive varieties. Besides, UBC 733 primer distinguished all kinds of standard did not give any reliable results for other varieties since it demonstrated all as resistant. In addition, monomorphic bands were obtained from UBC681 (RAPD), and UBC836 and UBC858 (ISSR) primers, not demonstrating reliable results in detection of resistance against Ascochyta blight disease. Obtained results informed us about both disease resistance and genetic diversity in registered Turkish chickpea varieties. This project was funded through the Scientific Research Projects of Marmara University under Grant Number FEN-C-YLP-070617-0365 and The Scientific and Technological Research Council of Turkey (TUBITAK) under Grant Number 113O070.

Keywords: plant genetics, ISSR, RAPD, STMS

Procedia PDF Downloads 199
2208 A Spatial Approach to Model Mortality Rates

Authors: Yin-Yee Leong, Jack C. Yue, Hsin-Chung Wang

Abstract:

Human longevity has been experiencing its largest increase since the end of World War II, and modeling the mortality rates is therefore often the focus of many studies. Among all mortality models, the Lee–Carter model is the most popular approach since it is fairly easy to use and has good accuracy in predicting mortality rates (e.g., for Japan and the USA). However, empirical studies from several countries have shown that the age parameters of the Lee–Carter model are not constant in time. Many modifications of the Lee–Carter model have been proposed to deal with this problem, including adding an extra cohort effect and adding another period effect. In this study, we propose a spatial modification and use clusters to explain why the age parameters of the Lee–Carter model are not constant. In spatial analysis, clusters are areas with unusually high or low mortality rates than their neighbors, where the “location” of mortality rates is measured by age and time, that is, a 2-dimensional coordinate. We use a popular cluster detection method—Spatial scan statistics, a local statistical test based on the likelihood ratio test to evaluate where there are locations with mortality rates that cannot be described well by the Lee–Carter model. We first use computer simulation to demonstrate that the cluster effect is a possible source causing the problem of the age parameters not being constant. Next, we show that adding the cluster effect can solve the non-constant problem. We also apply the proposed approach to mortality data from Japan, France, the USA, and Taiwan. The empirical results show that our approach has better-fitting results and smaller mean absolute percentage errors than the Lee–Carter model.

Keywords: mortality improvement, Lee–Carter model, spatial statistics, cluster detection

Procedia PDF Downloads 171
2207 Urban Growth Analysis Using Multi-Temporal Satellite Images, Non-stationary Decomposition Methods and Stochastic Modeling

Authors: Ali Ben Abbes, ImedRiadh Farah, Vincent Barra

Abstract:

Remotely sensed data are a significant source for monitoring and updating databases for land use/cover. Nowadays, changes detection of urban area has been a subject of intensive researches. Timely and accurate data on spatio-temporal changes of urban areas are therefore required. The data extracted from multi-temporal satellite images are usually non-stationary. In fact, the changes evolve in time and space. This paper is an attempt to propose a methodology for changes detection in urban area by combining a non-stationary decomposition method and stochastic modeling. We consider as input of our methodology a sequence of satellite images I1, I2, … In at different periods (t = 1, 2, ..., n). Firstly, a preprocessing of multi-temporal satellite images is applied. (e.g. radiometric, atmospheric and geometric). The systematic study of global urban expansion in our methodology can be approached in two ways: The first considers the urban area as one same object as opposed to non-urban areas (e.g. vegetation, bare soil and water). The objective is to extract the urban mask. The second one aims to obtain a more knowledge of urban area, distinguishing different types of tissue within the urban area. In order to validate our approach, we used a database of Tres Cantos-Madrid in Spain, which is derived from Landsat for a period (from January 2004 to July 2013) by collecting two frames per year at a spatial resolution of 25 meters. The obtained results show the effectiveness of our method.

Keywords: multi-temporal satellite image, urban growth, non-stationary, stochastic model

Procedia PDF Downloads 428
2206 Sensing Study through Resonance Energy and Electron Transfer between Föster Resonance Energy Transfer Pair of Fluorescent Copolymers and Nitro-Compounds

Authors: Vishal Kumar, Soumitra Satapathi

Abstract:

Föster Resonance Energy Transfer (FRET) is a powerful technique used to probe close-range molecular interactions. Physically, the FRET phenomenon manifests as a dipole–dipole interaction between closely juxtaposed fluorescent molecules (10–100 Å). Our effort is to employ this FRET technique to make a prototype device for highly sensitive detection of environment pollutant. Among the most common environmental pollutants, nitroaromatic compounds (NACs) are of particular interest because of their durability and toxicity. That’s why, sensitive and selective detection of small amounts of nitroaromatic explosives, in particular, 2,4,6-trinitrophenol (TNP), 2,4-dinitrotoluene (DNT) and 2,4,6-trinitrotoluene (TNT) has been a critical challenge due to the increasing threat of explosive-based terrorism and the need of environmental monitoring of drinking and waste water. In addition, the excessive utilization of TNP in several other areas such as burn ointment, pesticides, glass and the leather industry resulted in environmental accumulation, and is eventually contaminating the soil and aquatic systems. To the date, high number of elegant methods, including fluorimetry, gas chromatography, mass, ion-mobility and Raman spectrometry have been successfully applied for explosive detection. Among these efforts, fluorescence-quenching methods based on the mechanism of FRET show good assembly flexibility, high selectivity and sensitivity. Here, we report a FRET-based sensor system for the highly selective detection of NACs, such as TNP, DNT and TNT. The sensor system is composed of a copolymer Poly [(N,N-dimethylacrylamide)-co-(Boc-Trp-EMA)] (RP) bearing tryptophan derivative in the side chain as donor and dansyl tagged copolymer P(MMA-co-Dansyl-Ala-HEMA) (DCP) as an acceptor. Initially, the inherent fluorescence of RP copolymer is quenched by non-radiative energy transfer to DCP which only happens once the two molecules are within Förster critical distance (R0). The excellent spectral overlap (Jλ= 6.08×10¹⁴ nm⁴M⁻¹cm⁻¹) between donors’ (RP) emission profile and acceptors’ (DCP) absorption profile makes them an exciting and efficient FRET pair i.e. further confirmed by the high rate of energy transfer from RP to DCP i.e. 0.87 ns⁻¹ and lifetime measurement by time correlated single photon counting (TCSPC) to validate the 64% FRET efficiency. This FRET pair exhibited a specific fluorescence response to NACs such as DNT, TNT and TNP with 5.4, 2.3 and 0.4 µM LODs, respectively. The detection of NACs occurs with high sensitivity by photoluminescence quenching of FRET signal induced by photo-induced electron transfer (PET) from electron-rich FRET pair to electron-deficient NAC molecules. The estimated stern-volmer constant (KSV) values for DNT, TNT and TNP are 6.9 × 10³, 7.0 × 10³ and 1.6 × 104 M⁻¹, respectively. The mechanistic details of molecular interactions are established by time-resolved fluorescence, steady-state fluorescence and absorption spectroscopy confirmed that the sensing process is of mixed type, i.e. both dynamic and static quenching as lifetime of FRET system (0.73 ns) is reduced to 0.55, 0.57 and 0.61 ns DNT, TNT and TNP, respectively. In summary, the simplicity and sensitivity of this novel FRET sensor opens up the possibility of designing optical sensor of various NACs in one single platform for developing multimodal sensor for environmental monitoring and future field based study.

Keywords: FRET, nitroaromatic, stern-Volmer constant, tryptophan and dansyl tagged copolymer

Procedia PDF Downloads 134
2205 Functionalized Carbon-Base Fluorescent Nanoparticles for Emerging Contaminants Targeted Analysis

Authors: Alexander Rodríguez-Hernández, Arnulfo Rojas-Perez, Liz Diaz-Vazquez

Abstract:

The rise in consumerism over the past century has resulted in the creation of higher amounts of plasticizers, personal care products and other chemical substances, which enter and accumulate in water systems. Other sources of pollutants in Neotropical regions experience large inputs of nutrients with these pollutants resulting in eutrophication of water which consume large quantities of oxygen, resulting in high fish mortality. This dilemma has created a need for the development of targeted detection in complex matrices and remediation of emerging contaminants. We have synthesized carbon nanoparticles from macro algae (Ulva fasciata) by oxidizing the graphitic carbon network under extreme acidic conditions. The resulting material was characterized by STEM, yielding a spherical 12 nm average diameter nanoparticles, which can be fixed into a polysaccharide aerogel synthesized from the same macro algae. Spectrophotometer analyses show a pH dependent fluorescent behavior varying from 450-620 nm in aqueous media. Heavily oxidized edges provide for easy functionalization with enzymes for a more targeted analysis and remediation technique. Given the optical properties of the carbon base nanoparticles and the numerous possibilities of functionalization, we have developed a selective and robust targeted bio-detection and bioremediation technique for the treatment of emerging contaminants in complex matrices like estuarine embayment.

Keywords: aerogels, carbon nanoparticles, fluorescent, targeted analysis

Procedia PDF Downloads 243
2204 Fusion Neutron Generator Dosimetry and Applications for Medical, Security, and Industry

Authors: Kaouther Bergaui, Nafaa Reguigui, Charles Gary

Abstract:

Characterization and the applications of deuterium-deuterium (DD) neutron generator developed by Adelphie technology and acquired by the National Centre of Nuclear Science and Technology (NCNST) were presented in this work. We study the performance of the neutron generator in terms of neutron yield, production efficiency, and the ionic current as a function of the acceleration voltage at various RF powers. We provide the design and optimization of the PGNAA chamber and thus give insight into the capabilities of the planned PGNAA facility. Additional non-destructive techniques were studied employing the DD neutron generator, such as PGNAA and neutron radiography: The PGNAA is used for determining the concentration of 10B in Si and SiO2 matrices by using a germanium detector HPGe and the results obtained are compared with PGNAA system using a Sodium Iodide detector (NaI (Tl)); Neutron radiography facility was tested and simulated, using a camera device CCD and simulated by the Monte Carlo code; and the explosive detection system (EDS) also simulated using the Monte Carlo code. The study allows us to show that the new models of DD neutron generators are feasible and that superior-quality neutron beams could be produced and used for various applications. The feasibility of Boron neutron capture therapy (BNCT) for cancer treatment using a neutron generator was assessed by optimizing Beam Shaping Assembly (BSA) on a phantom using Monte-Carlo (MCNP6) simulations.

Keywords: neutron generator deuterium-deuterium, Monte Carlo method, radiation, neutron flux, neutron activation analysis, born, neutron radiography, explosive detection, BNCT

Procedia PDF Downloads 194
2203 Using Geospatial Analysis to Reconstruct the Thunderstorm Climatology for the Washington DC Metropolitan Region

Authors: Mace Bentley, Zhuojun Duan, Tobias Gerken, Dudley Bonsal, Henry Way, Endre Szakal, Mia Pham, Hunter Donaldson, Chelsea Lang, Hayden Abbott, Leah Wilcynzski

Abstract:

Air pollution has the potential to modify the lifespan and intensity of thunderstorms and the properties of lightning. Using data mining and geovisualization, we investigate how background climate and weather conditions shape variability in urban air pollution and how this, in turn, shapes thunderstorms as measured by the intensity, distribution, and frequency of cloud-to-ground lightning. A spatiotemporal analysis was conducted in order to identify thunderstorms using high-resolution lightning detection network data. Over seven million lightning flashes were used to identify more than 196,000 thunderstorms that occurred between 2006 - 2020 in the Washington, DC Metropolitan Region. Each lightning flash in the dataset was grouped into thunderstorm events by means of a temporal and spatial clustering algorithm. Once the thunderstorm event database was constructed, hourly wind direction, wind speed, and atmospheric thermodynamic data were added to the initiation and dissipation times and locations for the 196,000 identified thunderstorms. Hourly aerosol and air quality data for the thunderstorm initiation times and locations were also incorporated into the dataset. Developing thunderstorm climatologies using a lightning tracking algorithm and lightning detection network data was found to be useful for visualizing the spatial and temporal distribution of urban augmented thunderstorms in the region.

Keywords: lightning, urbanization, thunderstorms, climatology

Procedia PDF Downloads 76
2202 Molecular Epidemiology of Egyptian Biomphalaria Snail: The Identification of Species, Diagnostic of the Parasite in Snails and Host Parasite Relationship

Authors: Hanaa M. Abu El Einin, Ahmed T. Sharaf El- Din

Abstract:

Biomphalaria snails play an integral role in the transmission of Schistosoma mansoni, the causative agent for human schistosomiasis. Two species of Biomphalaria were reported from Egypt, Biomphalaria alexandrina and Biomphalaria glabrata, and later on a hybrid of B. alexandrina and B. glabrata was reported in streams at Nile Delta. All were known to be excellent hosts of S. mansoni. Host-parasite relationship can be viewed in terms of snail susceptibility and parasite infectivity. The objective of this study will highlight the progress that has been made in using molecular approaches to describe the correct identification of snail species that participating in transmission of schistosomiasis, rapid diagnose of infection in addition to susceptibility and resistance type. Snails were identified using of molecular methods involving Randomly Amplified Polymorphic DNA (RAPD), Polymerase Chain Reaction, Restriction Fragment Length Polymorphisms (PCR-RFLP) and Species - specific- PCR. Molecular approaches to diagnose parasite in snails from Egypt: Nested PCR assay and small subunit (SSU) rRNA gene. Also RAPD PCR for study susceptible and resistance phenotype. The results showed that RAPD- PCR, PCR-RFLP and species-specific-PCR techniques were confirmed that: no evidence for the presence of B. glabrata in Egypt, All Biomphalaria snails collected identified as B. alexandrina snail i-e B alexandrinia is a common and no evidence for hybridization with B. glabrata. The adopted specific nested PCR assay revealed much higher sensitivity which enables the detection of S. mansoni infected snails down to 3 days post infection. Nested PCR method for detection of infected snails using S. mansoni fructose -1,6- bisphosphate aldolase (SMALDO) primer, these primers are specific only for S. mansoni and not cross reactive with other schistosomes or molluscan aldolases Nested PCR for such gene is sensitive enough to detect one cercariae. Genetic variations between B. alexandrina strains that are susceptible and resistant to Schistosoma infec¬tion using a RAPD-PCR showed that 39.8% of the examined snails collected from the field were resistant, while 60.2% of these snails showed high infection rates. In conclusion the genetics of the intermediate host plays a more important role in the epidemiological control of schistosomiasis.

Keywords: biomphalaria, molecular differentiation, parasite detection, schistosomiasis

Procedia PDF Downloads 198
2201 Row Detection and Graph-Based Localization in Tree Nurseries Using a 3D LiDAR

Authors: Ionut Vintu, Stefan Laible, Ruth Schulz

Abstract:

Agricultural robotics has been developing steadily over recent years, with the goal of reducing and even eliminating pesticides used in crops and to increase productivity by taking over human labor. The majority of crops are arranged in rows. The first step towards autonomous robots, capable of driving in fields and performing crop-handling tasks, is for robots to robustly detect the rows of plants. Recent work done towards autonomous driving between plant rows offers big robotic platforms equipped with various expensive sensors as a solution to this problem. These platforms need to be driven over the rows of plants. This approach lacks flexibility and scalability when it comes to the height of plants or distance between rows. This paper proposes instead an algorithm that makes use of cheaper sensors and has a higher variability. The main application is in tree nurseries. Here, plant height can range from a few centimeters to a few meters. Moreover, trees are often removed, leading to gaps within the plant rows. The core idea is to combine row detection algorithms with graph-based localization methods as they are used in SLAM. Nodes in the graph represent the estimated pose of the robot, and the edges embed constraints between these poses or between the robot and certain landmarks. This setup aims to improve individual plant detection and deal with exception handling, like row gaps, which are falsely detected as an end of rows. Four methods were developed for detecting row structures in the fields, all using a point cloud acquired with a 3D LiDAR as an input. Comparing the field coverage and number of damaged plants, the method that uses a local map around the robot proved to perform the best, with 68% covered rows and 25% damaged plants. This method is further used and combined with a graph-based localization algorithm, which uses the local map features to estimate the robot’s position inside the greater field. Testing the upgraded algorithm in a variety of simulated fields shows that the additional information obtained from localization provides a boost in performance over methods that rely purely on perception to navigate. The final algorithm achieved a row coverage of 80% and an accuracy of 27% damaged plants. Future work would focus on achieving a perfect score of 100% covered rows and 0% damaged plants. The main challenges that the algorithm needs to overcome are fields where the height of the plants is too small for the plants to be detected and fields where it is hard to distinguish between individual plants when they are overlapping. The method was also tested on a real robot in a small field with artificial plants. The tests were performed using a small robot platform equipped with wheel encoders, an IMU and an FX10 3D LiDAR. Over ten runs, the system achieved 100% coverage and 0% damaged plants. The framework built within the scope of this work can be further used to integrate data from additional sensors, with the goal of achieving even better results.

Keywords: 3D LiDAR, agricultural robots, graph-based localization, row detection

Procedia PDF Downloads 139
2200 Web Proxy Detection via Bipartite Graphs and One-Mode Projections

Authors: Zhipeng Chen, Peng Zhang, Qingyun Liu, Li Guo

Abstract:

With the Internet becoming the dominant channel for business and life, many IPs are increasingly masked using web proxies for illegal purposes such as propagating malware, impersonate phishing pages to steal sensitive data or redirect victims to other malicious targets. Moreover, as Internet traffic continues to grow in size and complexity, it has become an increasingly challenging task to detect the proxy service due to their dynamic update and high anonymity. In this paper, we present an approach based on behavioral graph analysis to study the behavior similarity of web proxy users. Specifically, we use bipartite graphs to model host communications from network traffic and build one-mode projections of bipartite graphs for discovering social-behavior similarity of web proxy users. Based on the similarity matrices of end-users from the derived one-mode projection graphs, we apply a simple yet effective spectral clustering algorithm to discover the inherent web proxy users behavior clusters. The web proxy URL may vary from time to time. Still, the inherent interest would not. So, based on the intuition, by dint of our private tools implemented by WebDriver, we examine whether the top URLs visited by the web proxy users are web proxies. Our experiment results based on real datasets show that the behavior clusters not only reduce the number of URLs analysis but also provide an effective way to detect the web proxies, especially for the unknown web proxies.

Keywords: bipartite graph, one-mode projection, clustering, web proxy detection

Procedia PDF Downloads 245
2199 Durian Marker Kit for Durian (Durio zibethinus Murr.) Identity

Authors: Emma K. Sales

Abstract:

Durian is the flagship fruit of Mindanao and there is an abundance of several cultivars with many confusing identities/ names. The project was conducted to develop procedure for reliable and rapid detection and sorting of durian planting materials. Moreover, it is also aimed to establish specific genetic or DNA markers for routine testing and authentication of durian cultivars in question. The project developed molecular procedures for routine testing. SSR primers were also screened and identified for their utility in discriminating durian cultivars collected. Results of the study showed the following accomplishments; 1. Twenty (29) SSR primers were selected and identified based on their ability to discriminate durian cultivars, 2. Optimized and established standard procedure for identification and authentication of Durian cultivars 3. Genetic profile of durian is now available at Biotech Unit. Our results demonstrate the relevance of using molecular techniques in evaluating and identifying durian clones. The most polymorphic primers tested in this study could be useful tools for detecting variation even at the early stage of the plant especially for commercial purposes. The process developed combines the efficiency of the microsatellites development process with the optimization of non-radioactive detection process resulting in a user-friendly protocol that can be performed in two (2) weeks and easily incorporated into laboratories about to start microsatellite development projects. This can be of great importance to extend microsatellite analyses to other crop species where minimal genetic information is currently available. With this, the University can now be a service laboratory for routine testing and authentication of durian clones.

Keywords: DNA, SSR analysis, genotype, genetic diversity, cultivars

Procedia PDF Downloads 454
2198 Clinical Impact of Ultra-Deep Versus Sanger Sequencing Detection of Minority Mutations on the HIV-1 Drug Resistance Genotype Interpretations after Virological Failure

Authors: S. Mohamed, D. Gonzalez, C. Sayada, P. Halfon

Abstract:

Drug resistance mutations are routinely detected using standard Sanger sequencing, which does not detect minor variants with a frequency below 20%. The impact of detecting minor variants generated by ultra-deep sequencing (UDS) on HIV drug-resistance (DR) interpretations has not yet been studied. Fifty HIV-1 patients who experienced virological failure were included in this retrospective study. The HIV-1 UDS protocol allowed the detection and quantification of HIV-1 protease and reverse transcriptase variants related to genotypes A, B, C, E, F, and G. DeepChek®-HIV simplified DR interpretation software was used to compare Sanger sequencing and UDS. The total time required for the UDS protocol was found to be approximately three times longer than Sanger sequencing with equivalent reagent costs. UDS detected all of the mutations found by population sequencing and identified additional resistance variants in all patients. An analysis of DR revealed a total of 643 and 224 clinically relevant mutations by UDS and Sanger sequencing, respectively. Three resistance mutations with > 20% prevalence were detected solely by UDS: A98S (23%), E138A (21%) and V179I (25%). A significant difference in the DR interpretations for 19 antiretroviral drugs was observed between the UDS and Sanger sequencing methods. Y181C and T215Y were the most frequent mutations associated with interpretation differences. A combination of UDS and DeepChek® software for the interpretation of DR results would help clinicians provide suitable treatments. A cut-off of 1% allowed a better characterisation of the viral population by identifying additional resistance mutations and improving the DR interpretation.

Keywords: HIV-1, ultra-deep sequencing, Sanger sequencing, drug resistance

Procedia PDF Downloads 336
2197 A Gradient Orientation Based Efficient Linear Interpolation Method

Authors: S. Khan, A. Khan, Abdul R. Soomrani, Raja F. Zafar, A. Waqas, G. Akbar

Abstract:

This paper proposes a low-complexity image interpolation method. Image interpolation is used to convert a low dimension video/image to high dimension video/image. The objective of a good interpolation method is to upscale an image in such a way that it provides better edge preservation at the cost of very low complexity so that real-time processing of video frames can be made possible. However, low complexity methods tend to provide real-time interpolation at the cost of blurring, jagging and other artifacts due to errors in slope calculation. Non-linear methods, on the other hand, provide better edge preservation, but at the cost of high complexity and hence they can be considered very far from having real-time interpolation. The proposed method is a linear method that uses gradient orientation for slope calculation, unlike conventional linear methods that uses the contrast of nearby pixels. Prewitt edge detection is applied to separate uniform regions and edges. Simple line averaging is applied to unknown uniform regions, whereas unknown edge pixels are interpolated after calculation of slopes using gradient orientations of neighboring known edge pixels. As a post-processing step, bilateral filter is applied to interpolated edge regions in order to enhance the interpolated edges.

Keywords: edge detection, gradient orientation, image upscaling, linear interpolation, slope tracing

Procedia PDF Downloads 260
2196 Anomaly Detection in Financial Markets Using Tucker Decomposition

Authors: Salma Krafessi

Abstract:

The financial markets have a multifaceted, intricate environment, and enormous volumes of data are produced every day. To find investment possibilities, possible fraudulent activity, and market oddities, accurate anomaly identification in this data is essential. Conventional methods for detecting anomalies frequently fail to capture the complex organization of financial data. In order to improve the identification of abnormalities in financial time series data, this study presents Tucker Decomposition as a reliable multi-way analysis approach. We start by gathering closing prices for the S&P 500 index across a number of decades. The information is converted to a three-dimensional tensor format, which contains internal characteristics and temporal sequences in a sliding window structure. The tensor is then broken down using Tucker Decomposition into a core tensor and matching factor matrices, allowing latent patterns and relationships in the data to be captured. A possible sign of abnormalities is the reconstruction error from Tucker's Decomposition. We are able to identify large deviations that indicate unusual behavior by setting a statistical threshold. A thorough examination that contrasts the Tucker-based method with traditional anomaly detection approaches validates our methodology. The outcomes demonstrate the superiority of Tucker's Decomposition in identifying intricate and subtle abnormalities that are otherwise missed. This work opens the door for more research into multi-way data analysis approaches across a range of disciplines and emphasizes the value of tensor-based methods in financial analysis.

Keywords: tucker decomposition, financial markets, financial engineering, artificial intelligence, decomposition models

Procedia PDF Downloads 69
2195 Comparison of Serological and Molecular Diagnosis of Cerebral Toxoplasmosis in Blood and Cerebrospinal Fluid in HIV Infected Patients

Authors: Berredjem Hajira, Benlaifa Meriem, Becheker Imene, Bardi Rafika, Djebar Med Reda

Abstract:

Recent acquired or reactivation T.gondii infection is a serious complication in HIV patients. Classical serological diagnosis relies on the detection of anti-Toxoplasma immunoglobulin ; however, serology may be unreliable in HIV immunodeficient patients who fail to produce significant titers of specific antibodies. PCR assays allow a rapid diagnosis of Toxoplasma infection. In this study, we compared the value of the PCR for diagnosing active toxoplasmosis in cerebrospinal fluid and blood samples from HIV patients. Anti-Toxoplasma antibodies IgG and IgM titers were determined by ELISA. In parallel, nested PCR targeting B1 gene and conventional PCR-ELISA targeting P30 gene were used to detect T. gondii DNA in 25 blood samples and 12 cerebrospinal fluid samples from patients in whom toxoplasmic encephalitis was confirmed by clinical investigations. A total of 15 negative controls were used. Serology did not contribute to confirm toxoplasmic infection, as IgG and IgM titers decreased early. Only 8 out 25 blood samples and 5 out 12 cerebrospinal fluid samples PCRs yielded a positive result. 5 patients with confirmed toxoplasmosis had positive PCR results in either blood or cerebrospinal fluid samples. However, conventional nested B1 PCR gave best results than the P30 gene one for the detection of T.gondii DNA in both samples. All samples from control patients were negative. This study demonstrates the unusefulness of the serological tests and the high sensitivity and specificity of PCR in the diagnosis of toxoplasmic encephalitis in HIV patients.

Keywords: cerebrospinal fluid, HIV, Toxoplasmosis, PCR

Procedia PDF Downloads 379
2194 A Theoretical Framework: The Influence of Luxury Companies' Corporate Social Activities on Consumer Purchase Intention

Authors: Kveta Olsanova, Gina Cook, Marija Zlatic

Abstract:

This paper discusses the theoretical framework suggesting the dependencies between luxury brands’ CSR (Corporate Social Responsibility) variables and the purchase intention of luxury shoppers. The framework is based on a literature review and in-depth individual interviews with a sample of luxury users and buyers. The measures of the model are based on existing research and the authors' qualitative research results. The model suggests that purchase intention in the luxury segment is dependent on the luxury values (symbolic, experiential, functional and social), individual sustainable dimension (composed of societal, environmental and economic variables) and awareness of the brand’s CSR, the last two relationships being potentially moderated by certain conditions such as demographics and general attitudes towards CSR and sustainability. The model’s output is in the formulation of several hypotheses, to be tested in an upcoming quantitative study. The qualitative phase indicated that the perceived symbolic, functional and experiential value dimensions of luxury brands were stronger drivers of purchase intention compared to the sustainable dimension. The contribution of the research consists of highlighting CSR’s impact on customer purchase intent as a potential implication for luxury brand management due to two aspects: (i) consumer awareness of the existing CSR activities of luxury brands is low, and this might be challenged by the demands of Gen Z entrants into the lux industry as they are known for their positive approach to CSR; (ii) the UN’s SDGs will bring CSR to the attention of all industries, including currently 'CSR silent' segments represented by luxury. Our research should contribute to incorporation of strategic CSR into the policies and strategies of the luxury segment by providing evidence that luxury customers do care.

Keywords: CSR, luxury shoppers, purchase intention, sustainability

Procedia PDF Downloads 148
2193 Proposal Method of Prediction of the Early Stages of Dementia Using IoT and Magnet Sensors

Authors: João Filipe Papel, Tatsuji Munaka

Abstract:

With society's aging and the number of elderly with dementia rising, researchers have been actively studying how to support the elderly in the early stages of dementia with the objective of allowing them to have a better life quality and as much as possible independence. To make this possible, most researchers in this field are using the Internet Of Things to monitor the elderly activities and assist them in performing them. The most common sensor used to monitor the elderly activities is the Camera sensor due to its easy installation and configuration. The other commonly used sensor is the sound sensor. However, we need to consider privacy when using these sensors. This research aims to develop a system capable of predicting the early stages of dementia based on monitoring and controlling the elderly activities of daily living. To make this system possible, some issues need to be addressed. First, the issue related to elderly privacy when trying to detect their Activities of Daily Living. Privacy when performing detection and monitoring Activities of Daily Living it's a serious concern. One of the purposes of this research is to achieve this detection and monitoring without putting the privacy of the elderly at risk. To make this possible, the study focuses on using an approach based on using Magnet Sensors to collect binary data. The second is to use the data collected by monitoring Activities of Daily Living to predict the early stages of Dementia. To make this possible, the research team suggests developing a proprietary ontology combined with both data-driven and knowledge-driven.

Keywords: dementia, activity recognition, magnet sensors, ontology, data driven and knowledge driven, IoT, activities of daily living

Procedia PDF Downloads 105
2192 Diagnosis of Induction Machine Faults by DWT

Authors: Hamidreza Akbari

Abstract:

In this paper, for detection of inclined eccentricity in an induction motor, time–frequency analysis of the stator startup current is carried out. For this purpose, the discrete wavelet transform is used. Data are obtained from simulations, using winding function approach. The results show the validity of the approach for detecting the fault and discriminating with respect to other faults.

Keywords: induction machine, fault, DWT, electric

Procedia PDF Downloads 350