Search results for: dual system
16719 A High Reliable Space-Borne File System with Applications of Device Partition and Intra-Channel Pipeline in Nand Flash
Authors: Xin Li, Ji-Yang Yu, Yue-Hua Niu, Lu-Yuan Wang
Abstract:
As an inevitable chain of the space data acquirement system, space-borne storage system based on Nand Flash has gradually been implemented in spacecraft. In face of massive, parallel and varied data on board, efficient data management become an important issue of storage research. Face to the requirements of high-performance and reliability in Nand Flash storage system, a combination of hardware and file system design can drastically increase system dependability, even for missions with a very long duration. More sophisticated flash storage concepts with advanced operating systems have been researched to improve the reliability of Nand Flash storage system on satellites. In this paper, architecture of file system with multi-channel data acquisition and storage on board is proposed, which obtains large-capacity and high-performance with the combine of intra-channel pipeline and device partition in Nand Flash. Multi-channel data in different rate are stored as independent files with parallel-storage system in device partition, which assures the high-effective and reliable throughput of file treatments. For massive and high-speed data storage, an efficiency assessment model is established to calculate the bandwidth formula of intra-channel pipeline. Information tables designed in Magnetoresistive RAM (MRAM) hold the management of bad block in Nand Flash and the arrangement of file system address for the high-reliability of data storage. During the full-load test, the throughput of 3D PLUS Module 160Gb Nand Flash can reach 120Mbps for store and reach 120Mbps for playback, which efficiently satisfies the requirement of multi-channel data acquisition in Satellite. Compared with previous literature, the results of experiments verify the advantages of the proposed system.Keywords: device partition architecture, intra-channel pipelining, nand flash, parallel storage
Procedia PDF Downloads 28816718 Transversal Connection Strengthening of T Section Beam Bridge with Brace System
Authors: Chen Chen
Abstract:
T section beam bridge has been widely used in China as it is low cost and easy to erect. Some of T section beam bridges only have end diagrams and the adjacent girders are connected by wet-joint along span, which leads to the damage of transversal connection becomes a serious problem in operation and maintenance. This paper presents a brace system to strengthen the transversal connection of T section beam bridge. The strengthening effect was discussed by experiments and finite element analysis. The results show that the proposed brace system can improve load transfer between adjacent girders. Based on experiments and FEA model, displacement of T section beam with proposed brace system reduced 14.9% and 19.1% respectively. Integral rigidity increased 19.4% by static experiments. The transversal connection of T section beam bridge can be improved efficiently.Keywords: experiment, strengthening, T section beam bridge, transversal connection
Procedia PDF Downloads 28216717 An Algorithm of Regulation of Glucose-Insulin Concentration in the Blood
Authors: B. Selma, S. Chouraqui
Abstract:
The pancreas is an elongated organ that extends across the abdomen, below the stomach. In addition, it secretes certain enzymes that aid in food digestion. The pancreas also manufactures hormones responsible for regulating blood glucose levels. In the present paper, we propose a mathematical model to study the homeostasis of glucose and insulin in healthy human, and a simulation of this model, which depicts the physiological events after a meal, will be represented in ordinary humans. The aim of this paper is to design an algorithm which regulates the level of glucose in the blood. The algorithm applied the concept of expert system for performing an algorithm control in the form of an "active" used to prescribe the rate of insulin infusion. By decomposing the system into subsystems, we have developed parametric models of each subsystem by using a forcing function strategy. The results showed a performance of the control system.Keywords: modeling, algorithm, regulation, glucose-insulin, blood, control system
Procedia PDF Downloads 17516716 A Palmprint Identification System Based Multi-Layer Perceptron
Authors: David P. Tantua, Abdulkader Helwan
Abstract:
Biometrics has been recently used for the human identification systems using the biological traits such as the fingerprints and iris scanning. Identification systems based biometrics show great efficiency and accuracy in such human identification applications. However, these types of systems are so far based on some image processing techniques only, which may decrease the efficiency of such applications. Thus, this paper aims to develop a human palmprint identification system using multi-layer perceptron neural network which has the capability to learn using a backpropagation learning algorithms. The developed system uses images obtained from a public database available on the internet (CASIA). The processing system is as follows: image filtering using median filter, image adjustment, image skeletonizing, edge detection using canny operator to extract features, clear unwanted components of the image. The second phase is to feed those processed images into a neural network classifier which will adaptively learn and create a class for each different image. 100 different images are used for training the system. Since this is an identification system, it should be tested with the same images. Therefore, the same 100 images are used for testing it, and any image out of the training set should be unrecognized. The experimental results shows that this developed system has a great accuracy 100% and it can be implemented in real life applications.Keywords: biometrics, biological traits, multi-layer perceptron neural network, image skeletonizing, edge detection using canny operator
Procedia PDF Downloads 37116715 Nanoscale Metal-Organic Framework Coated Carbon Nitride Nanosheet for Combination Cancer Therapy
Authors: Rui Chen, Jinfeng Zhang, Chun-Sing Lee
Abstract:
In the past couple of decades, nanoscale metal-organic frameworks (NMOFs) have been highlighted as promising delivery platforms for biomedical applications, which combine many potent features such as high loading capacity, progressive biodegradability and low cytotoxicity. While NMOF has been extensively used as carriers for drugs of different modalities, so far there is no report on exploiting the advantages of NMOF for combination therapy. Herein, we prepared core-shell nanoparticles, where each nanoparticle contains a single graphitic-phase carbon nitride (g-C3N4) nanosheet encapsulated by a zeolitic-imidazolate frameworks-8 (ZIF-8) shell. The g-C3N4 nanosheets are effective visible-light photosensitizer for photodynamic therapy (PDT). When hosting DOX (doxorubicin), the as-synthesized core-shell nanoparticles could realize combinational photo-chemo therapy and provide dual-color fluorescence imaging. Therefore, we expect NMOFs-based core-shell nanoparticles could provide a new way to achieve much-enhanced cancer therapy.Keywords: carbon nitride, combination therapy, drug delivery, nanoscale metal-organic frameworks
Procedia PDF Downloads 42116714 Reliability Improvement of Power System Networks Using Adaptive Genetic Algorithm
Authors: Alireza Alesaadi
Abstract:
Reliability analysis is a powerful method for determining the weak points of the electrical networks. In designing of electrical network, it is tried to design the most reliable network with minimal system shutting down, but it is usually associated with increasing the cost. In this paper, using adaptive genetic algorithm, a method was presented that provides the most reliable system with a certain economical cost. Finally, the proposed method is applied to a sample network and results will be analyzed.Keywords: reliability, adaptive genetic algorithm, electrical network, communication engineering
Procedia PDF Downloads 50716713 The Impact of a Sustainable Solar Heating System on the Growth of Strawberry Plants in an Agricultural Greenhouse
Authors: Ilham Ihoume, Rachid Tadili, Nora Arbaoui
Abstract:
The use of solar energy is a crucial tactic in the agricultural industry's plan to decrease greenhouse gas emissions. This clean source of energy can greatly lower the sector's carbon footprint and make a significant impact in the fight against climate change. In this regard, this study examines the effects of a solar-based heating system, in a north-south oriented agricultural greenhouse on the development of strawberry plants during winter. This system relies on the circulation of water as a heat transfer fluid in a closed circuit installed on the greenhouse roof to store heat during the day and release it inside at night. A comparative experimental study was conducted in two greenhouses, one experimental with the solar heating system and the other for control without any heating system. Both greenhouses are located on the terrace of the Solar Energy and Environment Laboratory of the Mohammed V University in Rabat, Morocco. The developed heating system consists of a copper coil inserted in double glazing and placed on the roof of the greenhouse, a water pump circulator, a battery, and a photovoltaic solar panel to power the electrical components. This inexpensive and environmentally friendly system allows the greenhouse to be heated during the winter and improves its microclimate system. This improvement resulted in an increase in the air temperature inside the experimental greenhouse by 6 °C and 8 °C, and a reduction in its relative humidity by 23% and 35% compared to the control greenhouse and the ambient air, respectively, throughout the winter. For the agronomic performance, it was observed that the production was 17 days earlier than in the control greenhouse.Keywords: sustainability, thermal energy storage, solar energy, agriculture greenhouse
Procedia PDF Downloads 8516712 Analysing Maximum Power Point Tracking in a Stand Alone Photovoltaic System
Authors: Osamede Asowata
Abstract:
Optimized gain in respect to output power of stand-alone photovoltaic (PV) systems is one of the major focus of PV in recent times. This is evident in its low carbon emission and efficiency. Power failure or outage from commercial providers, in general, does not promote development to public and private sector; these basically limit the development of industries. The need for a well-structured PV system is of importance for an efficient and cost effective monitoring system. The purpose of this paper is to validate the maximum power point of an off-grid PV system taking into consideration the most effective tilt and orientation angles for PV's in the southern hemisphere. This paper is based on analyzing the system using a solar charger with maximum power point tracking (MPPT) from a pulse width modulation (PWM) perspective. The power conditioning device chosen is a solar charger with MPPT. The practical setup consists of a PV panel that is set to an orientation angle of 0°N, with a corresponding tilt angle of 36°, 26°, and 16°. Preliminary results include regression analysis (normal probability plot) showing the maximum power point in the system as well the best tilt angle for maximum power point tracking.Keywords: poly-crystalline PV panels, solar chargers, tilt and orientation angles, maximum power point tracking, MPPT, Pulse Width Modulation (PWM).
Procedia PDF Downloads 17616711 Design of Single Point Mooring Buoy System by Parametric Analysis
Authors: Chul-Hee Jo, Do-Youb Kim, Seok-Jin Cho, Yu-Ho Rho
Abstract:
The Catenary Anchor Leg Mooring (CALM) Single Point Mooring (SPM) buoy system is the most popular and widely used type of offshore loading terminals. SPM buoy mooring systems have been deployed worldwide for a variety of applications, water depths and vessel sizes ranging from small production carriers to Very Large Crude Carriers (VLCCs). Because of safe and easy berthing and un-berthing operations, the SPM buoy mooring system is also preferred for offshore terminals. The SPM buoy consists of a buoy that is permanently moored to the seabed by means of multiple mooring lines. The buoy contains a bearing system that allows a part of it to rotate around the moored geostatic part. When moored to the rotating part of the buoy, a vessel is able to freely weathervane around the buoy. This study was verified the effects of design variables in order to design an SPM buoy mooring system through parametric analysis. The design variables have independent and nonlinear characteristics. Using parametric analysis, this research was found that the fairlead departure angle, wave height and period, chain diameter and line length effect to the mooring top tension, buoy excursion and line layback.Keywords: Single Point Mooring (SPM), Catenary Anchor Leg Mooring(CALM), design variables, parametric analysis, mooring system optimization
Procedia PDF Downloads 39116710 Elastohydrodynamic Lubrication Study Using Discontinuous Finite Volume Method
Authors: Prawal Sinha, Peeyush Singh, Pravir Dutt
Abstract:
Problems in elastohydrodynamic lubrication have attracted a lot of attention in the last few decades. Solving a two-dimensional problem has always been a big challenge. In this paper, a new discontinuous finite volume method (DVM) for two-dimensional point contact Elastohydrodynamic Lubrication (EHL) problem has been developed and analyzed. A complete algorithm has been presented for solving such a problem. The method presented is robust and easily parallelized in MPI architecture. GMRES technique is implemented to solve the matrix obtained after the formulation. A new approach is followed in which discontinuous piecewise polynomials are used for the trail functions. It is natural to assume that the advantages of using discontinuous functions in finite element methods should also apply to finite volume methods. The nature of the discontinuity of the trail function is such that the elements in the corresponding dual partition have the smallest support as compared with the Classical finite volume methods. Film thickness calculation is done using singular quadrature approach. Results obtained have been presented graphically and discussed. This method is well suited for solving EHL point contact problem and can probably be used as commercial software.Keywords: elastohydrodynamic, lubrication, discontinuous finite volume method, GMRES technique
Procedia PDF Downloads 25616709 Texture Identification Using Vision System: A Method to Predict Functionality of a Component
Authors: Varsha Singh, Shraddha Prajapati, M. B. Kiran
Abstract:
Texture identification is useful in predicting the functionality of a component. Many of the existing texture identification methods are of contact in nature, which limits its measuring speed. These contact measurement techniques use a diamond stylus and the diamond stylus being sharp going to damage the surface under inspection and hence these techniques can be used in statistical sampling. Though these contact methods are very accurate, they do not give complete information for full characterization of surface. In this context, the presented method assumes special significance. The method uses a relatively low cost vision system for image acquisition. Software is developed based on wavelet transform, for analyzing texture images. Specimens are made using different manufacturing process (shaping, grinding, milling etc.) During experimentation, the specimens are illuminated using proper lighting and texture images a capture using CCD camera connected to the vision system. The software installed in the vision system processes these images and subsequently identify the texture of manufacturing processes.Keywords: diamond stylus, manufacturing process, texture identification, vision system
Procedia PDF Downloads 28816708 Comparison of Petrophysical Relationship for Soil Water Content Estimation at Peat Soil Area Using GPR Common-Offset Measurements
Authors: Nurul Izzati Abd Karim, Samira Albati Kamaruddin, Rozaimi Che Hasan
Abstract:
The appropriate petrophysical relationship is needed for Soil Water Content (SWC) estimation especially when using Ground Penetrating Radar (GPR). Ground penetrating radar is a geophysical tool that provides indirectly the parameter of SWC. This paper examines the performance of few published petrophysical relationships to obtain SWC estimates from in-situ GPR common- offset survey measurements with gravimetric measurements at peat soil area. Gravimetric measurements were conducted to support of GPR measurements for the accuracy assessment. Further, GPR with dual frequencies (250MHhz and 700MHz) were used in the survey measurements to obtain the dielectric permittivity. Three empirical equations (i.e., Roth’s equation, Schaap’s equation and Idi’s equation) were selected for the study, used to compute the soil water content from dielectric permittivity of the GPR profile. The results indicate that Schaap’s equation provides strong correlation with SWC as measured by GPR data sets and gravimetric measurements.Keywords: common-offset measurements, ground penetrating radar, petrophysical relationship, soil water content
Procedia PDF Downloads 25116707 Fuzzy Availability Analysis of a Battery Production System
Authors: Merve Uzuner Sahin, Kumru D. Atalay, Berna Dengiz
Abstract:
In today’s competitive market, there are many alternative products that can be used in similar manner and purpose. Therefore, the utility of the product is an important issue for the preferability of the brand. This utility could be measured in terms of its functionality, durability, reliability. These all are affected by the system capabilities. Reliability is an important system design criteria for the manufacturers to be able to have high availability. Availability is the probability that a system (or a component) is operating properly to its function at a specific point in time or a specific period of times. System availability provides valuable input to estimate the production rate for the company to realize the production plan. When considering only the corrective maintenance downtime of the system, mean time between failure (MTBF) and mean time to repair (MTTR) are used to obtain system availability. Also, the MTBF and MTTR values are important measures to improve system performance by adopting suitable maintenance strategies for reliability engineers and practitioners working in a system. Failure and repair time probability distributions of each component in the system should be known for the conventional availability analysis. However, generally, companies do not have statistics or quality control departments to store such a large amount of data. Real events or situations are defined deterministically instead of using stochastic data for the complete description of real systems. A fuzzy set is an alternative theory which is used to analyze the uncertainty and vagueness in real systems. The aim of this study is to present a novel approach to compute system availability using representation of MTBF and MTTR in fuzzy numbers. Based on the experience in the system, it is decided to choose 3 different spread of MTBF and MTTR such as 15%, 20% and 25% to obtain lower and upper limits of the fuzzy numbers. To the best of our knowledge, the proposed method is the first application that is used fuzzy MTBF and fuzzy MTTR for fuzzy system availability estimation. This method is easy to apply in any repairable production system by practitioners working in industry. It is provided that the reliability engineers/managers/practitioners could analyze the system performance in a more consistent and logical manner based on fuzzy availability. This paper presents a real case study of a repairable multi-stage production line in lead-acid battery production factory in Turkey. The following is focusing on the considered wet-charging battery process which has a higher production level than the other types of battery. In this system, system components could exist only in two states, working or failed, and it is assumed that when a component in the system fails, it becomes as good as new after repair. Instead of classical methods, using fuzzy set theory and obtaining intervals for these measures would be very useful for system managers, practitioners to analyze system qualifications to find better results for their working conditions. Thus, much more detailed information about system characteristics is obtained.Keywords: availability analysis, battery production system, fuzzy sets, triangular fuzzy numbers (TFNs)
Procedia PDF Downloads 22416706 Creating a Virtual Perception for Upper Limb Rehabilitation
Authors: Nina Robson, Kenneth John Faller II, Vishalkumar Ahir, Arthur Ricardo Deps Miguel Ferreira, John Buchanan, Amarnath Banerjee
Abstract:
This paper describes the development of a virtual-reality system ARWED, which will be used in physical rehabilitation of patients with reduced upper extremity mobility to increase limb Active Range of Motion (AROM). The ARWED system performs a symmetric reflection and real-time mapping of the patient’s healthy limb on to their most affected limb, tapping into the mirror neuron system and facilitating the initial learning phase. Using the ARWED, future experiments will test the extension of the action-observation priming effect linked to the mirror-neuron system on healthy subjects and then stroke patients.Keywords: physical rehabilitation, mirror neuron, virtual reality, stroke therapy
Procedia PDF Downloads 43016705 A Robust and Adaptive Unscented Kalman Filter for the Air Fine Alignment of the Strapdown Inertial Navigation System/GPS
Authors: Jian Shi, Baoguo Yu, Haonan Jia, Meng Liu, Ping Huang
Abstract:
Adapting to the flexibility of war, a large number of guided weapons launch from aircraft. Therefore, the inertial navigation system loaded in the weapon needs to undergo an alignment process in the air. This article proposes the following methods to the problem of inaccurate modeling of the system under large misalignment angles, the accuracy reduction of filtering caused by outliers, and the noise changes in GPS signals: first, considering the large misalignment errors of Strapdown Inertial Navigation System (SINS)/GPS, a more accurate model is made rather than to make a small-angle approximation, and the Unscented Kalman Filter (UKF) algorithms are used to estimate the state; then, taking into account the impact of GPS noise changes on the fine alignment algorithm, the innovation adaptive filtering algorithm is introduced to estimate the GPS’s noise in real-time; at the same time, in order to improve the anti-interference ability of the air fine alignment algorithm, a robust filtering algorithm based on outlier detection is combined with the air fine alignment algorithm to improve the robustness of the algorithm. The algorithm can improve the alignment accuracy and robustness under interference conditions, which is verified by simulation.Keywords: air alignment, fine alignment, inertial navigation system, integrated navigation system, UKF
Procedia PDF Downloads 16516704 SEAWIZARD-Multiplex AI-Enabled Graphene Based Lab-On-Chip Sensing Platform for Heavy Metal Ions Monitoring on Marine Water
Authors: M. Moreno, M. Alique, D. Otero, C. Delgado, P. Lacharmoise, L. Gracia, L. Pires, A. Moya
Abstract:
Marine environments are increasingly threatened by heavy metal contamination, including mercury (Hg), lead (Pb), and cadmium (Cd), posing significant risks to ecosystems and human health. Traditional monitoring techniques often fail to provide the spatial and temporal resolution needed for real-time detection of these contaminants, especially in remote or harsh environments. SEAWIZARD addresses these challenges by leveraging the flexibility, adaptability, and cost-effectiveness of printed electronics, with the integration of microfluidics to develop a compact, portable, and reusable sensor platform designed specifically for real-time monitoring of heavy metal ions in seawater. The SEAWIZARD sensor is a multiparametric Lab-on-Chip (LoC) device, a miniaturized system that integrates several laboratory functions into a single chip, drastically reducing sample volumes and improving adaptability. This platform integrates three printed graphene electrodes for the simultaneous detection of Hg, Cd and Pb via square wave voltammetry. These electrodes share the reference and the counter electrodes to improve space efficiency. Additionally, it integrates printed pH and temperature sensors to correct environmental interferences that may impact the accuracy of metal detection. The pH sensor is based on a carbon electrode with iridium oxide electrodeposited while the temperature sensor is graphene based. A protective dielectric layer is printed on top of the sensor to safeguard it in harsh marine conditions. The use of flexible polyethylene terephthalate (PET) as the substrate enables the sensor to conform to various surfaces and operate in challenging environments. One of the key innovations of SEAWIZARD is its integrated microfluidic layer, fabricated from cyclic olefin copolymer (COC). This microfluidic component allows a controlled flow of seawater over the sensing area, allowing for significant improved detection limits compared to direct water sampling. The system’s dual-channel design separates the detection of heavy metals from the measurement of pH and temperature, ensuring that each parameter is measured under optimal conditions. In addition, the temperature sensor is finely tuned with a serpentine-shaped microfluidic channel to ensure precise thermal measurements. SEAWIZARD also incorporates custom electronics that allow for wireless data transmission via Bluetooth, facilitating rapid data collection and user interface integration. Embedded artificial intelligence further enhances the platform by providing an automated alarm system, capable of detecting predefined metal concentration thresholds and issuing warnings when limits are exceeded. This predictive feature enables early warnings of potential environmental disasters, such as industrial spills or toxic levels of heavy metal pollutants, making SEAWIZARD not just a detection tool, but a comprehensive monitoring and early intervention system. In conclusion, SEAWIZARD represents a significant advancement in printed electronics applied to environmental sensing. By combining flexible, low-cost materials with advanced microfluidics, custom electronics, and AI-driven intelligence, SEAWIZARD offers a highly adaptable and scalable solution for real-time, high-resolution monitoring of heavy metals in marine environments. Its compact and portable design makes it an accessible, user-friendly tool with the potential to transform water quality monitoring practices and provide critical data to protect marine ecosystems from contamination-related risks.Keywords: lab-on-chip, printed electronics, real-time monitoring, microfluidics, heavy metal contamination
Procedia PDF Downloads 2716703 Literary Theatre and Embodied Theatre: A Practice-Based Research in Exploring the Authorship of a Performance
Authors: Rahul Bishnoi
Abstract:
Theatre, as Ann Ubersfld calls it, is a paradox. At once, it is both a literary work and a physical representation. Theatre as a text is eternal, reproducible, and identical while as a performance, theatre is momentary and never identical to the previous performances. In this dual existence of theatre, who is the author? Is the author the playwright who writes the dramatic text, or the director who orchestrates the performance, or the actor who embodies the text? From the poststructuralist lens of Barthes, the author is dead. Barthes’ argument of discrete temporality, i.e. the author is the before, and the text is the after, does not hold true for theatre. A published literary work is written, edited, printed, distributed and then gets consumed by the reader. On the other hand, theatrical production is immediate; an actor performs and the audience witnesses it instantaneously. Time, so to speak, does not separate the author, the text, and the reader anymore. The question of authorship gets further complicated in Augusto Boal’s “Theatre of the Oppressed” movement where the audience is a direct participant like the actors in the performance. In this research, through an experimental performance, the duality of theatre is explored with the authorship discourse. And the conventional definition of authorship is subjected to additional complexity by erasing the distinction between an actor and the audience. The design/methodology of the experimental performance is as follows: The audience will be asked to produce a text under an anonymous virtual alias. The text, as it is being produced, will be read and performed by the actor. The audience who are also collectively “authoring” the text, will watch this performance and write further until everyone has contributed with one input each. The cycle of writing, reading, performing, witnessing, and writing will continue until the end. The intention is to create a dynamic system of writing/reading with the embodiment of the text through the actor. The actor is giving up the power to the audience to write the spoken word, stage instruction and direction while still keeping the agency of interpreting that input and performing in the chosen manner. This rapid conversation between the actor and the audience also creates a conversion of authorship. The main conclusion of this study is a perspective on the nature of dynamic authorship of theatre containing a critical enquiry of the collaboratively produced text, an individually performed act, and a collectively witnessed event. Using practice as a methodology, this paper contests the poststructuralist notion of the author as merely a ‘scriptor’ and breaks it further by involving the audience in the authorship as well.Keywords: practice based research, performance studies, post-humanism, Avant-garde art, theatre
Procedia PDF Downloads 10816702 Clarifier Dialogue Interface to resolve linguistic ambiguities in E-Learning Environment
Authors: Dalila Souilem, Salma Boumiza, Abdelkarim Abdelkader
Abstract:
The Clarifier Dialogue Interface (CDI) is a part of an online teaching system based on human-machine communication in learning situation. This interface used in the system during the learning action specifically in the evaluation step, to clarify ambiguities in the learner's response. The CDI can generate patterns allowing access to an information system, using the selectors associated with lexical units. To instantiate these patterns, the user request (especially learner’s response), must be analyzed and interpreted to deduce the canonical form, the semantic form and the subject of the sentence. For the efficiency of this interface at the interpretation level, a set of substitution operators is carried out in order to extend the possibilities of manipulation with a natural language. A second approach that will be presented in this paper focuses on the object languages with new prospects such as combination of natural language with techniques of handling information system in the area of online education. So all operators, the CDI and other interfaces associated to the domain expertise and teaching strategies will be unified using FRAME representation form.Keywords: dialogue, e-learning, FRAME, information system, natural language
Procedia PDF Downloads 37616701 Investigations into Effect of Neural Network Predictive Control of UPFC for Improving Transient Stability Performance of Multimachine Power System
Authors: Sheela Tiwari, R. Naresh, R. Jha
Abstract:
The paper presents an investigation into the effect of neural network predictive control of UPFC on the transient stability performance of a multi-machine power system. The proposed controller consists of a neural network model of the test system. This model is used to predict the future control inputs using the damped Gauss-Newton method which employs ‘backtracking’ as the line search method for step selection. The benchmark 2 area, 4 machine system that mimics the behavior of large power systems is taken as the test system for the study and is subjected to three phase short circuit faults at different locations over a wide range of operating conditions. The simulation results clearly establish the robustness of the proposed controller to the fault location, an increase in the critical clearing time for the circuit breakers and an improved damping of the power oscillations as compared to the conventional PI controller.Keywords: identification, neural networks, predictive control, transient stability, UPFC
Procedia PDF Downloads 37016700 Design and Implementation of a Cross-Network Security Management System
Authors: Zhiyong Shan, Preethi Santhanam, Vinod Namboodiri, Rajiv Bagai
Abstract:
In recent years, the emerging network worms and attacks have distributive characteristics, which can spread globally in a very short time. Security management crossing networks to co-defense network-wide attacks and improve the efficiency of security administration is urgently needed. We propose a hierarchical distributed network security management system (HD-NSMS), which can integrate security management across multiple networks. First, we describe the system in macrostructure and microstructure; then discuss three key problems when building HD-NSMS: device model, alert mechanism, and emergency response mechanism; lastly, we describe the implementation of HD-NSMS. The paper is valuable for implementing NSMS in that it derives from a practical network security management system (NSMS).Keywords: network security management, device organization, emergency response, cross-network
Procedia PDF Downloads 16716699 Finite Element Simulation for Preliminary Study on Microorganism Detection System
Authors: Muhammad Rosli Abdullah, Noor Hasmiza Harun
Abstract:
A microorganism detection system has a potential to be used with the advancement in a biosensor development. The detection system requires an optical sensing system, microfluidic device and biological reagent. Although, the biosensors are available in the market, a label free and a lab-on-chip approach will promote a flexible solution. As a preliminary study of microorganism detection, three mechanisms such as Total Internal Reflection (TIR), Micro Fluidic Channel (MFC) and magnetic-electric field propagation were study and simulated. The objective are to identify the TIR angle, MFC parabolic flow and the wavelength for the microorganism detection. The simulation result indicates that evanescent wave is achieved when TIR angle > 42°, the corner and centre of a parabolic velocity are 0.02 m/s and 0.06 m/s respectively, and a higher energy distribution of a perfect electromagnetic scattering with dipole resonance radiation occurs at 500 nm. This simulation is beneficial to determine the components of the microorganism detection system that does not rely on classical microbiological, immunological and genetic methods which are laborious, time-consuming procedures and confined to specialized laboratories with expensive instrumentation equipment.Keywords: microorganism, microfluidic, total internal reflection, lab on chip
Procedia PDF Downloads 27516698 Performance Evaluation of Adsorption Refrigerating Systems
Authors: Nadia Allouache, Omar Rahli
Abstract:
Many promising technologies have been developed to harness the sun's energy. These technologies help in economizing energy and environmental protection. The solar refrigerating systems are one of these important technologies. In addition to environmental benefits and energy saving, adsorption refrigerating systems have many advantages such as lack of moving parts, simplicity of construction and low operating costs. The work aimed to establish the main factors that affect the performances of an adsorption refrigerating system using different geometries of adsorbers and different adsorbent-adsorbate pairs. The numerical modeling of the heat and mass transfer in the system, using various working pairs, such as: activated carbon-ammonia, calcium chlorid-ammonia, activated carbon fiber- methanol and activated carbon AC35-methanol, show that the adsorber design can influence the system performances; The thermal performances of system are better in the annular configuration case. An optimal value of generating temperature is observed in annular adsorber case for which the thermal performance of the cooling system is maximal. While in the plate adsorber, above a certain value of generating temperature, the performance of the system remains almost constant. The environmental conditions such as solar radiation and pressure have a great influence in the system efficiency, and the choice of the working pair depends on the environmental conditions and the geometry of the adsorber.Keywords: adsorber geometry, numerical modeling, optimal environmental conditions, working pairs.
Procedia PDF Downloads 7816697 A Study of Hamilton-Jacobi-Bellman Equation Systems Arising in Differential Game Models of Changing Society
Authors: Weihua Ruan, Kuan-Chou Chen
Abstract:
This paper is concerned with a system of Hamilton-Jacobi-Bellman equations coupled with an autonomous dynamical system. The mathematical system arises in the differential game formulation of political economy models as an infinite-horizon continuous-time differential game with discounted instantaneous payoff rates and continuously and discretely varying state variables. The existence of a weak solution of the PDE system is proven and a computational scheme of approximate solution is developed for a class of such systems. A model of democratization is mathematically analyzed as an illustration of application.Keywords: Hamilton-Jacobi-Bellman equations, infinite-horizon differential games, continuous and discrete state variables, political-economy models
Procedia PDF Downloads 37516696 The AI Method and System for Analyzing Wound Status in Wound Care Nursing
Authors: Ho-Hsin Lee, Yue-Min Jiang, Shu-Hui Tsai, Jian-Ren Chen, Mei-Yu XU, Wen-Tien Wu
Abstract:
This project presents an AI-based method and system for wound status analysis. The system uses a three-in-one sensor device to analyze wound status, including color, temperature, and a 3D sensor to provide wound information up to 2mm below the surface, such as redness, heat, and blood circulation information. The system has a 90% accuracy rate, requiring only one manual correction in 70% of cases, with a one-second delay. The system also provides an offline application that allows for manual correction of the wound bed range using color-based guidance to estimate wound bed size with 96% accuracy and a maximum of one manual correction in 96% of cases, with a one-second delay. Additionally, AI-assisted wound bed range selection achieves 100% of cases without manual intervention, with an accuracy rate of 76%, while AI-based wound tissue type classification achieves an 85.3% accuracy rate for five categories. The AI system also includes similar case search and expert recommendation capabilities. For AI-assisted wound range selection, the system uses WIFI6 technology, increasing data transmission speeds by 22 times. The project aims to save up to 64% of the time required for human wound record keeping and reduce the estimated time to assess wound status by 96%, with an 80% accuracy rate. Overall, the proposed AI method and system integrate multiple sensors to provide accurate wound information and offer offline and online AI-assisted wound bed size estimation and wound tissue type classification. The system decreases delay time to one second, reduces the number of manual corrections required, saves time on wound record keeping, and increases data transmission speed, all of which have the potential to significantly improve wound care and management efficiency and accuracy.Keywords: wound status analysis, AI-based system, multi-sensor integration, color-based guidance
Procedia PDF Downloads 11316695 Evaluation of the Notifiable Diseases Surveillance System, South, Haiti, 2022
Authors: Djeamsly Salomon
Abstract:
Background: Epidemiological surveillance is a dynamic national system used to observe all aspects of the evolution of priority health problems, through: collection, analysis, systematic interpretation of information, and dissemination of results with necessary recommendations. The study was conducted to assess the mandatory disease surveillance system in the Sud Department. Methods: A study was conducted from March to May 2021 with key players involved in surveillance at the level of health institutions in the department . The CDC's 2021 updated guideline was used to evaluate the system. We collected information about the operation, attributes, and usefulness of the surveillance system using interviewer-administered questionnaires. Epi-Info7.2 and Excel 2016 were used to generate the mean, frequencies and proportions. Results: Of 30 participants, 23 (77%) were women. The average age was 39 years[30-56]. 25 (83%) had training in epidemiological surveillance. (50%) of the forms checked were signed by the supervisor. Collection tools were available at (80%). Knowledge of at least 7 notifiable diseases was high (100%). Among the respondents, 29 declared that the collection tools were simple, 27 had already filled in a notification form. The maximum time taken to fill out a form was 10 minutes. The feedback between the different levels was done at (60%). Conclusion: The surveillance system is useful, simple, acceptable, representative, flexible, stable and responsive. The data generated was of high quality. However, it is threatened by the lack of supervision of sentinel sites, lack of investigation and weak feedback. This evaluation demonstrated the urgent need to improve supervision in the sites and to feedback information. Strengthen epidemiological surveillance.Keywords: evaluation, notifiable diseases, surveillance, system
Procedia PDF Downloads 7716694 A Forward-Looking View of the Intellectual Capital Accounting Information System
Authors: Rbiha Salsabil Ketitni
Abstract:
The entire company is a series of information among themselves so that each information serves several events and activities, and the latter is nothing but a large set of data or huge data. The enormity of information leads to the possibility of losing it sometimes, and this possibility must be avoided in the institution, especially the information that has a significant impact on it. In most cases, to avoid the loss of this information and to be relatively correct, information systems are used. At present, it is impossible to have a company that does not have information systems, as the latter works to organize the information as well as to preserve it and even saves time for its owner and this is the result of the speed of its mission. This study aims to provide an idea of an accounting information system that opens a forward-looking study for its manufacture and development by researchers, scientists, and professionals. This is the result of most individuals seeing a great contradiction between the work of an information system for moral capital and does not provide real values when measured, and its disclosure in financial reports is not distinguished by transparency.Keywords: accounting, intellectual capital, intellectual capital accounting, information system
Procedia PDF Downloads 8016693 Productivity Improvement of Faffa Food Share Company Using a Computerized Maintenance Management System
Authors: Gadisa Alemayehu, Muralidhar Avvari, Atkilt Mulu G.
Abstract:
Since 1962 EC, the Faffa Food Share Company has been producing and supplying flour (famix) and value-added flour (baby food) in Ethiopia. It meets nearly all of the country's total flour demand, both for relief and commercial markets. However, it is incompetent in the international market due to a poor maintenance management system. The results of recorded documents and stopwatches revealed that frequent failure machines, as well as a poor maintenance management system, cause increased production downtimes, resulting in a 29.19 percent decrease in production from the planned production. As a result, the current study's goal is to recommend newly developed software for use in and as a Computerized Maintenance Management System (CMMS). As a result, the system increases machine reliability and decreases the frequency of equipment failure, reducing breakdown time and maintenance costs. The company's overall manufacturing performance improved by 4.45 percent, particularly after the implementation of the CMMS.Keywords: CMMS, manufacturing performance, delivery, availability, flexibility, Faffa Food Share Company
Procedia PDF Downloads 13416692 Performance Analysis on the Smoke Management System of the Weiwuying Center for the Arts Using Hot Smoke Tests
Authors: K. H. Yang, T. C. Yeh, P. S. Lu, F. C. Yang, T. Y. Wu, W. J. Sung
Abstract:
In this study, a series of full-scale hot smoke tests has been conducted to validate the performances of the smoke management system in the WWY center for arts before grand opening. Totaled 19 scenarios has been established and experimented with fire sizes ranging from 2 MW to 10 MW. The measured ASET data provided by the smoke management system experimentation were compared with the computer-simulated RSET values for egress during the design phase. The experimental result indicated that this system could successfully provide a safety margin of 200% and ensure a safe evacuation in case of fire in the WWY project, including worst-cases and fail-safe scenarios. The methodology developed and results obtained in this project can provide a useful reference for future applications, such as for the large-scale indoor sports dome and arena, stadium, shopping malls, airport terminals, and stations or tunnels for railway and subway systems.Keywords: building hot smoke tests, performance-based smoke management system designs, full-scale experimental validation, tenable condition criteria
Procedia PDF Downloads 44316691 Improved Performance of Cooperative Scheme in the Cellular and Broadcasting System
Authors: Hyun-Jee Yang, Bit-Na Kwon, Yong-Jun Kim, Hyoung-Kyu Song
Abstract:
In the cooperative transmission scheme, both the cellular system and broadcasting system are composed. Two cellular base stations (CBSs) communicating with a user in the cell edge use cooperative transmission scheme in the conventional scheme. In the case that the distance between two CBSs and the user is distant, the conventional scheme does not guarantee the quality of the communication because the channel condition is bad. Therefore, if the distance between CBSs and a user is distant, the performance of the conventional scheme is decreased. Also, the bad channel condition has bad effects on the performance. The proposed scheme uses two relays to communicate well with CBSs when the channel condition between CBSs and the user is poor. Using the relay in the high attenuation environment can obtain both advantages of the high bit error rate (BER) and throughput performance.Keywords: cooperative communications, diversity gain, OFDM, interworking system
Procedia PDF Downloads 57316690 Influence of Insulation System Methods on Dissipation Factor and Voltage Endurance
Authors: Farzad Yavari, Hamid Chegini, Saeed Lotfi
Abstract:
This paper reviews the comparison of Resin Rich (RR) and Vacuum Pressure Impregnation (VPI) insulation system qualities for stator bar of rotating electrical machines. Voltage endurance and tangent delta are two diagnostic tests to determine the quality of insulation systems. The paper describes the trend of dissipation factor while performing voltage endurance test for different stator bar samples made with RR and VPI insulation system methods. Some samples were made with the same strands and insulation thickness but with different main wall material to prove the influence of insulation system methods on stator bar quality. Also, some of the samples were subjected to voltage at the temperature of their insulation class, and their dissipation factor changes were measured and studied.Keywords: VPI, resin rich, insulation, stator bar, dissipation factor, voltage endurance
Procedia PDF Downloads 195