Search results for: collaborative problem solving
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8476

Search results for: collaborative problem solving

7066 Content Based Video Retrieval System Using Principal Object Analysis

Authors: Van Thinh Bui, Anh Tuan Tran, Quoc Viet Ngo, The Bao Pham

Abstract:

Video retrieval is a searching problem on videos or clips based on content in which they are relatively close to an input image or video. The application of this retrieval consists of selecting video in a folder or recognizing a human in security camera. However, some recent approaches have been in challenging problem due to the diversity of video types, frame transitions and camera positions. Besides, that an appropriate measures is selected for the problem is a question. In order to overcome all obstacles, we propose a content-based video retrieval system in some main steps resulting in a good performance. From a main video, we process extracting keyframes and principal objects using Segmentation of Aggregating Superpixels (SAS) algorithm. After that, Speeded Up Robust Features (SURF) are selected from those principal objects. Then, the model “Bag-of-words” in accompanied by SVM classification are applied to obtain the retrieval result. Our system is performed on over 300 videos in diversity from music, history, movie, sports, and natural scene to TV program show. The performance is evaluated in promising comparison to the other approaches.

Keywords: video retrieval, principal objects, keyframe, segmentation of aggregating superpixels, speeded up robust features, bag-of-words, SVM

Procedia PDF Downloads 301
7065 Engineering Study on the Handling of Date Palm Fronds to Reduce Waste and Used as Energy Environmentally Friendly Fuel

Authors: Ayman H. Amer Eissa, Abdul Rahman O. Alghannam

Abstract:

The agricultural crop residuals are considered one of the most important problems faced by the environmental life and farmers in the world. A study was carried out to evaluate the physical characteristics of chopped date palm stalks (fronds and leaflets). These properties are necessary to apply normal design procedures such as pneumatic conveying, fluidization, drying, and combustion. The mechanical treatment by cutting, crushing or chopping and briquetting processes are the primary step and the suitable solution for solving this problem and recycling these residuals to be transformed into useful products. So the aim of the present work to get a high quality for agriculture residues such as date palm stalks (fronds), date palm leaflets briquettes. The results obtained from measuring the mechanical properties (average shear and compressive strength) for date palm stalks at different moisture content (12.63, 33.21 and 60.54%) was (6.4, 4.7 and 3.21MPa) and (3.8, 3.18 and 2.86MPa) respectively. The modulus of elasticity and toughness were evaluated as a function of moisture content. As the moisture content of the stalk regions increased the modulus of elasticity and toughness decreased indicating a reduction in the brittleness of the stalk regions. Chopped date palm stalks (palm fronds), date palm leaflets having moisture content of 8, 10 and 12% and 8, 10 and 12.8% w.b. were dandified into briquettes without binder and with binder (urea-formaldehyde) using a screw press machine. Quality properties for briquettes were durability, compression ratio hardness, bulk density, compression ratio, resiliency, water resistance and gases emission. The optimum quality properties found for briquettes at 8 % moisture content and without binder. Where the highest compression stress and durability were 8.95, 10.39 MPa and 97.06 %, 93.64 % for date palm stalks (palm fronds), date palm leaflets briquettes, respectively. The CO and CO2 emissions for date palm stalks (fronds), date palm leaflets briquettes were less than these for loose residuals.

Keywords: residues, date palm stalks, chopper, briquetting, quality properties

Procedia PDF Downloads 550
7064 Large Time Asymptotic Behavior to Solutions of a Forced Burgers Equation

Authors: Satyanarayana Engu, Ahmed Mohd, V. Murugan

Abstract:

We study the large time asymptotics of solutions to the Cauchy problem for a forced Burgers equation (FBE) with the initial data, which is continuous and summable on R. For which, we first derive explicit solutions of FBE assuming a different class of initial data in terms of Hermite polynomials. Later, by violating this assumption we prove the existence of a solution to the considered Cauchy problem. Finally, we give an asymptotic approximate solution and establish that the error will be of order O(t^(-1/2)) with respect to L^p -norm, where 1≤p≤∞, for large time.

Keywords: Burgers equation, Cole-Hopf transformation, Hermite polynomials, large time asymptotics

Procedia PDF Downloads 334
7063 New Practical and Non-Malleable Elgamal Encryption for E-Voting Protoco

Authors: Karima Djebaili, Lamine Melkemi

Abstract:

Elgamal encryption is a fundamental public-key encryption in cryptography, which is based on the difficulty of discrete logarithm problem and the Diffie-Hellman problem. Supposing the Diffie–Hellman problem is computationally infeasible then Elgamal is secure under a chosen plaintext attack, where security indicates it is difficult for the attacker, given the ciphertext, to restore the whole of the plaintext. However, although it is secure against chosen plaintext attack, Elgamal is absolutely malleable i.e. is not secure against an adaptive chosen ciphertext attack, where the attacker can recover the plaintext. We present a extension on Elgamal encryption which result in non-malleability against adaptive chosen plaintext attack using concatenation and a cryptographic hash function, our evidence utilizes the device of plaintext aware. The algorithm proposed can be used in cryptography voting protocol given its level security. Our protocol protects the confidentiality of voters because each voter encrypts their choice before casting their vote, offers public verifiability using a signing algorithm, the final result is correctly computed using homomorphic property, and works even in the presence of an adversary due to the propriety of non-malleability. Moreover, the protocol prevents some parties colluding to fix the vote results.

Keywords: Elgamal encryption, non-malleability, plaintext aware, e-voting

Procedia PDF Downloads 451
7062 A Centralized Architecture for Cooperative Air-Sea Vehicles Using UAV-USV

Authors: Salima Bella, Assia Belbachir, Ghalem Belalem

Abstract:

This paper deals with the problem of monitoring and cleaning dirty zones of oceans using unmanned vehicles. We present a centralized cooperative architecture for unmanned aerial vehicles (UAVs) to monitor ocean regions and clean dirty zones with the help of unmanned surface vehicles (USVs). Due to the rapid deployment of these unmanned vehicles, it is convenient to use them in oceanic regions where the water pollution zones are generally unknown. In order to optimize this process, our solution aims to detect and reduce the pollution level of the ocean zones while taking into account the problem of fault tolerance related to these vehicles.

Keywords: centralized architecture, fault tolerance, UAV, USV

Procedia PDF Downloads 329
7061 Truck Scheduling Problem in a Cross-Dock Centre with Fixed Due Dates

Authors: Mohsen S. Sajadieha, Danyar Molavia

Abstract:

In this paper, a truck scheduling problem is investigated at a two-touch cross-docking center with due dates for outbound trucks as a hard constraint. The objective is to minimize the total cost comprising penalty and delivery cost of delayed shipments. The sequence of unloading shipments is considered and is assumed that shipments are sent to shipping dock doors immediately after unloading and a First-In-First-Out (FIFO) policy is considered for loading the shipments. A mixed integer programming model is developed for the proposed model. Two meta-heuristic algorithms including genetic algorithm (GA) and variable neighborhood search (VNS) are developed to solve the problem in medium and large sized scales. The numerical results show that increase in due dates for outbound trucks has a crucial impact on the reduction of penalty costs of delayed shipments. In addition, by increase the due dates, the improvement in the objective function arises on average in comparison with the situation that the cross-dock is multi-touch and shipments are sent to shipping dock doors only after unloading the whole inbound truck.

Keywords: cross-docking, truck scheduling, fixed due date, door assignment

Procedia PDF Downloads 404
7060 Effective Health Promotion Interventions Help Young Children to Maximize Their Future Well-Being by Early Childhood Development

Authors: Nadeesha Sewwandi, Dilini Shashikala, R. Kanapathy, S. Viyasan, R. M. S. Kumara, Duminda Guruge

Abstract:

Early childhood development is important to the emotional, social, and physical development of young children and it has a direct effect on their overall development and on the adult they become. Play is so important to optimal child developments including skill development, social development, imagination, creativity and it fulfills a baby’s inborn need to learn. So, health promotion approach empowers people about the development of early childhood. Play area is a new concept and this study focus how this play areas helps to the development of early childhood of children in rural villages in Sri Lanka. This study was conducted with a children society in a rural village called Welankulama in Sri Lanka. Survey was conducted with children society about emotional, social and physical development of young children (Under age eight) in this village using questionnaires. It described most children under eight years age have poor level of emotional, social and physical development in this village. Then children society wanted to find determinants for this problem and among them they prioritized determinants like parental interactions, learning environment and social interaction and address them using an innovative concept called play area. In this village there is a common place as play area under a big tamarind tree. It consists of a playhouse, innovative playing toys, mobile library, etc. Twice a week children, parents, grandparents gather to this nice place. Collective feeding takes place in this area once a week and it was conducted by several mothers groups in this village. Mostly grandparents taught about handicrafts and this is a very nice place to share their experiences with all. Healthy competitions were conducted in this place through playing to motivate the children. Happy calendar (mood of the children) was marked by children before and after coming to the play area. In terms of results qualitative changes got significant place in this study. By learning about colors and counting through playing the thinking and reasoning skills got developed among children. Children were widening their imagination by means of storytelling. We observed there were good developments of fine and gross motor skills of two differently abled children in this village. Children learn to empathize with other people, sharing, collaboration, team work and following of rules. And also children gain knowledge about fairness, through role playing, obtained insight on the right ways of displaying emotions such as stress, fear, anger, frustration, and develops knowledge of how they can manage their feelings. The reading and writing ability of the children got improved by 83% because of the mobile library. The weight of children got increased by 81% in the village. Happiness was increased by 76% among children in the society. Playing is very important for learning during early childhood period of a person. Health promotion interventions play a major role to the development of early childhood and it help children to adjust to the school setting and even to enhance children’s learning readiness, learning behaviors and problem solving skills.

Keywords: early childhood development, health promotion approach, play and learning, working with children

Procedia PDF Downloads 139
7059 Implementation of Algorithm K-Means for Grouping District/City in Central Java Based on Macro Economic Indicators

Authors: Nur Aziza Luxfiati

Abstract:

Clustering is partitioning data sets into sub-sets or groups in such a way that elements certain properties have shared property settings with a high level of similarity within one group and a low level of similarity between groups. . The K-Means algorithm is one of thealgorithmsclustering as a grouping tool that is most widely used in scientific and industrial applications because the basic idea of the kalgorithm is-means very simple. In this research, applying the technique of clustering using the k-means algorithm as a method of solving the problem of national development imbalances between regions in Central Java Province based on macroeconomic indicators. The data sample used is secondary data obtained from the Central Java Provincial Statistics Agency regarding macroeconomic indicator data which is part of the publication of the 2019 National Socio-Economic Survey (Susenas) data. score and determine the number of clusters (k) using the elbow method. After the clustering process is carried out, the validation is tested using themethodsBetween-Class Variation (BCV) and Within-Class Variation (WCV). The results showed that detection outlier using z-score normalization showed no outliers. In addition, the results of the clustering test obtained a ratio value that was not high, namely 0.011%. There are two district/city clusters in Central Java Province which have economic similarities based on the variables used, namely the first cluster with a high economic level consisting of 13 districts/cities and theclustersecondwith a low economic level consisting of 22 districts/cities. And in the cluster second, namely, between low economies, the authors grouped districts/cities based on similarities to macroeconomic indicators such as 20 districts of Gross Regional Domestic Product, with a Poverty Depth Index of 19 districts, with 5 districts in Human Development, and as many as Open Unemployment Rate. 10 districts.

Keywords: clustering, K-Means algorithm, macroeconomic indicators, inequality, national development

Procedia PDF Downloads 158
7058 Thai Prosody Problems with First-Year Students

Authors: Jiraporn Adchariyaprasit

Abstract:

Thai language is difficult in all four language skills, especially reading. The first year students may have different abilities in reading, so a teacher is required to find out a student’s reading level so that the teacher can help and support them till they can develop and resolve each problem themselves. This research is aimed to study the prosody problem among Thai students and will be focused on first year Thai students in the second semester. A total of 58 students were involved in this study. Four obstacles were found: 1) Interpretation from what they read and write; 2) Incorrectness Pronunciation of Prosody; 3) Incorrectness in Rhythm of the Poem; Incorrectness of the Thai Poem Pronunciation.

Keywords: pronunciation, prosody, interpretation, Thai language

Procedia PDF Downloads 363
7057 Design of Two-Channel Quadrature Mirror Filter Banks Using a Transformation Approach

Authors: Ju-Hong Lee, Yi-Lin Shieh

Abstract:

Two-dimensional (2-D) quadrature mirror filter (QMF) banks have been widely considered for high-quality coding of image and video data at low bit rates. Without implementing subband coding, a 2-D QMF bank is required to have an exactly linear-phase response without magnitude distortion, i.e., the perfect reconstruction (PR) characteristics. The design problem of 2-D QMF banks with the PR characteristics has been considered in the literature for many years. This paper presents a transformation approach for designing 2-D two-channel QMF banks. Under a suitable one-dimensional (1-D) to two-dimensional (2-D) transformation with a specified decimation/interpolation matrix, the analysis and synthesis filters of the QMF bank are composed of 1-D causal and stable digital allpass filters (DAFs) and possess the 2-D doubly complementary half-band (DC-HB) property. This facilitates the design problem of the two-channel QMF banks by finding the real coefficients of the 1-D recursive DAFs. The design problem is formulated based on the minimax phase approximation for the 1-D DAFs. A novel objective function is then derived to obtain an optimization for 1-D minimax phase approximation. As a result, the problem of minimizing the objective function can be simply solved by using the well-known weighted least-squares (WLS) algorithm in the minimax (L∞) optimal sense. The novelty of the proposed design method is that the design procedure is very simple and the designed 2-D QMF bank achieves perfect magnitude response and possesses satisfactory phase response. Simulation results show that the proposed design method provides much better design performance and much less design complexity as compared with the existing techniques.

Keywords: Quincunx QMF bank, doubly complementary filter, digital allpass filter, WLS algorithm

Procedia PDF Downloads 225
7056 Top-K Shortest Distance as a Similarity Measure

Authors: Andrey Lebedev, Ilya Dmitrenok, JooYoung Lee, Leonard Johard

Abstract:

Top-k shortest path routing problem is an extension of finding the shortest path in a given network. Shortest path is one of the most essential measures as it reveals the relations between two nodes in a network. However, in many real world networks, whose diameters are small, top-k shortest path is more interesting as it contains more information about the network topology. Many variations to compute top-k shortest paths have been studied. In this paper, we apply an efficient top-k shortest distance routing algorithm to the link prediction problem and test its efficacy. We compare the results with other base line and state-of-the-art methods as well as with the shortest path. Then, we also propose a top-k distance based graph matching algorithm.

Keywords: graph matching, link prediction, shortest path, similarity

Procedia PDF Downloads 358
7055 The Need for Embodiment Perspectives and Somatic Methods in Social Work Curriculum: Lessons Learned from a Decade of Developing a Program to Support College Students Who Exited the State Foster Care System

Authors: Yvonne A. Unrau

Abstract:

Social work education is a competency-based curriculum that relies mostly on cognitive frameworks and problem-solving models. Absent from the curriculum is knowledge and skills that draw from an embodiment perspective, especially somatic practice methods. Embodiment broadly encompasses the understanding that biological, political, historical, and social factors impact human development via changes to the nervous system. In the past 20 years, research has well-established that unresolved traumatic events, especially during childhood, negatively impacts long-term health and well-being. Furthermore, traumatic stress compromises cognitive processing and activates reflexive action such as ‘fight’ or ‘flight,’ which are the focus of somatic methods. The main objective of this paper is to show how embodiment perspectives and somatic methods can enhance social work practice overall. Using an exploratory approach, the author shares a decade-long journey that involved creating an education-support program for college students who exited the state foster care system. Personal experience, program outcomes and case study narratives revealed that ‘classical’ social work methods were insufficient to fully address the complex needs of college students who were living with complex traumatic stressors. The paper chronicles select case study scenarios and key program development milestones over a 10-year period to show the benefit of incorporating embodiment perspectives in social work practice. The lessons reveal that there is an immediate need for social work curriculum to include embodiment perspectives so that social workers may be equipped to respond competently to their many clients who live with unresolved trauma.

Keywords: social work practice, social work curriculum, embodiment, traumatic stress

Procedia PDF Downloads 124
7054 To Design an Architectural Model for On-Shore Oil Monitoring Using Wireless Sensor Network System

Authors: Saurabh Shukla, G. N. Pandey

Abstract:

In recent times, oil exploration and monitoring in on-shore areas have gained much importance considering the fact that in India the oil import is 62 percent of the total imports. Thus, architectural model like wireless sensor network to monitor on-shore deep sea oil well is being developed to get better estimate of the oil prospects. The problem we are facing nowadays that we have very few restricted areas of oil left today. Countries like India don’t have much large areas and resources for oil and this problem with most of the countries that’s why it has become a major problem when we are talking about oil exploration in on-shore areas also the increase of oil prices has further ignited the problem. For this the use of wireless network system having relative simplicity, smallness in size and affordable cost of wireless sensor nodes permit heavy deployment in on-shore places for monitoring oil wells. Deployment of wireless sensor network in large areas will surely reduce the cost it will be very much cost effective. The objective of this system is to send real time information of oil monitoring to the regulatory and welfare authorities so that suitable action could be taken. This system architecture is composed of sensor network, processing/transmission unit and a server. This wireless sensor network system could remotely monitor the real time data of oil exploration and monitoring condition in the identified areas. For wireless sensor networks, the systems are wireless, have scarce power, are real-time, utilize sensors and actuators as interfaces, have dynamically changing sets of resources, aggregate behaviour is important and location is critical. In this system a communication is done between the server and remotely placed sensors. The server gives the real time oil exploration and monitoring conditions to the welfare authorities.

Keywords: sensor, wireless sensor network, oil, sensor, on-shore level

Procedia PDF Downloads 446
7053 ACOPIN: An ACO Algorithm with TSP Approach for Clustering Proteins in Protein Interaction Networks

Authors: Jamaludin Sallim, Rozlina Mohamed, Roslina Abdul Hamid

Abstract:

In this paper, we proposed an Ant Colony Optimization (ACO) algorithm together with Traveling Salesman Problem (TSP) approach to investigate the clustering problem in Protein Interaction Networks (PIN). We named this combination as ACOPIN. The purpose of this work is two-fold. First, to test the efficacy of ACO in clustering PIN and second, to propose the simple generalization of the ACO algorithm that might allow its application in clustering proteins in PIN. We split this paper to three main sections. First, we describe the PIN and clustering proteins in PIN. Second, we discuss the steps involved in each phase of ACO algorithm. Finally, we present some results of the investigation with the clustering patterns.

Keywords: ant colony optimization algorithm, searching algorithm, protein functional module, protein interaction network

Procedia PDF Downloads 612
7052 Brain Atrophy in Alzheimer's Patients

Authors: Tansa Nisan Gunerhan

Abstract:

Dementia comes in different forms, including Alzheimer's disease. The most common dementia diagnosis among elderly individuals is Alzheimer's disease. On average, for patients with Alzheimer’s, life expectancy is around 4-8 years after the diagnosis; however, expectancy can go as high as twenty years or more, depending on the shrinkage of the brain. Normally, along with aging, the brain shrinks at some level but doesn’t lose a vast amount of neurons. However, Alzheimer's patients' neurons are destroyed rapidly; hence problems with loss of memory, communication, and other metabolic activities begin. The toxic changes in the brain affect the stability of the neurons. Beta-amyloid and tau are two proteins that are believed to play a role in the development of Alzheimer's disease through their toxic changes. Beta-amyloid is a protein that is produced in the brain and is normally broken down and removed from the body. However, in people with Alzheimer's disease, the production of beta-amyloid increases, and it begins to accumulate in the brain. These plaques are thought to disrupt communication between nerve cells and may contribute to the death of brain cells. Tau is a protein that helps to stabilize microtubules, which are essential for the transportation of nutrients and other substances within brain cells. In people with Alzheimer's disease, tau becomes abnormal and begins to accumulate inside brain cells, forming neurofibrillary tangles. These tangles disrupt the normal functioning of brain cells and may contribute to their death, forming amyloid plaques which are deposits of a protein called amyloid-beta that build up between nerve cells in the brain. The accumulation of amyloid plaques and neurofibrillary tangles in the brain is thought to contribute to the shrinkage of brain tissue. As the brain shrinks, the size of the brain may decrease, leading to a reduction in brain volume. Brain atrophy in Alzheimer's disease is often accompanied by changes in the structure and function of brain cells and the connections between them, leading to a decline in brain function. These toxic changes that accumulate can cause symptoms such as memory loss, difficulty with thinking and problem-solving, and changes in behavior and personality.

Keywords: Alzheimer, amyloid-beta, brain atrophy, neuron, shrinkage

Procedia PDF Downloads 95
7051 Analysis of Potential Flow around Two-Dimensional Body by Surface Panel Method and Vortex Lattice Method

Authors: M. Abir Hossain, M. Shahjada Tarafder

Abstract:

This paper deals with the analysis of potential flow past two-dimensional body by discretizing the body into panels where the Laplace equation was applied to each panel. The Laplace equation was solved at each panel by applying the boundary conditions. The boundary condition was applied at each panel to mathematically formulate the problem and then convert the problem into a computer-solvable problem. Kutta condition was applied at both the leading and trailing edges to see whether the condition is satisfied or not. Another approach that is applied for the analysis is Vortex Lattice Method (VLM). A vortex ring is considered at each control point. Using the Biot-Savart Law the strength at each control point is calculated and hence the pressure differentials are measured. For the comparison of the analytic result with the experimental result, different NACA section hydrofoil is used. The analytic result of NACA 0012 and NACA 0015 are compared with the experimental result of Abbott and Doenhoff and found significant conformity with the achieved result.

Keywords: Kutta condition, Law of Biot-Savart, pressure differentials, potential flow, vortex lattice method

Procedia PDF Downloads 190
7050 Optimization Approach to Integrated Production-Inventory-Routing Problem for Oxygen Supply Chains

Authors: Yena Lee, Vassilis M. Charitopoulos, Karthik Thyagarajan, Ian Morris, Jose M. Pinto, Lazaros G. Papageorgiou

Abstract:

With globalisation, the need to have better coordination of production and distribution decisions has become increasingly important for industrial gas companies in order to remain competitive in the marketplace. In this work, we investigate a problem that integrates production, inventory, and routing decisions in a liquid oxygen supply chain. The oxygen supply chain consists of production facilities, external third-party suppliers, and multiple customers, including hospitals and industrial customers. The product produced by the plants or sourced from the competitors, i.e., third-party suppliers, is distributed by a fleet of heterogenous vehicles to satisfy customer demands. The objective is to minimise the total operating cost involving production, third-party, and transportation costs. The key decisions for production include production and inventory levels and product amount from third-party suppliers. In contrast, the distribution decisions involve customer allocation, delivery timing, delivery amount, and vehicle routing. The optimisation of the coordinated production, inventory, and routing decisions is a challenging problem, especially when dealing with large-size problems. Thus, we present a two-stage procedure to solve the integrated problem efficiently. First, the problem is formulated as a mixed-integer linear programming (MILP) model by simplifying the routing component. The solution from the first-stage MILP model yields the optimal customer allocation, production and inventory levels, and delivery timing and amount. Then, we fix the previous decisions and solve a detailed routing. In the second stage, we propose a column generation scheme to address the computational complexity of the resulting detailed routing problem. A case study considering a real-life oxygen supply chain in the UK is presented to illustrate the capability of the proposed models and solution method. Furthermore, a comparison of the solutions from the proposed approach with the corresponding solutions provided by existing metaheuristic techniques (e.g., guided local search and tabu search algorithms) is presented to evaluate the efficiency.

Keywords: production planning, inventory routing, column generation, mixed-integer linear programming

Procedia PDF Downloads 112
7049 Computational, Human, and Material Modalities: An Augmented Reality Workflow for Building form Found Textile Structures

Authors: James Forren

Abstract:

This research paper details a recent demonstrator project in which digital form found textile structures were built by human craftspersons wearing augmented reality (AR) head-worn displays (HWDs). The project utilized a wet-state natural fiber / cementitious matrix composite to generate minimal bending shapes in tension which, when cured and rotated, performed as minimal-bending compression members. The significance of the project is that it synthesizes computational structural simulations with visually guided handcraft production. Computational and physical form-finding methods with textiles are well characterized in the development of architectural form. One difficulty, however, is physically building computer simulations: often requiring complicated digital fabrication workflows. However, AR HWDs have been used to build a complex digital form from bricks, wood, plastic, and steel without digital fabrication devices. These projects utilize, instead, the tacit knowledge motor schema of the human craftsperson. Computational simulations offer unprecedented speed and performance in solving complex structural problems. Human craftspersons possess highly efficient complex spatial reasoning motor schemas. And textiles offer efficient form-generating possibilities for individual structural members and overall structural forms. This project proposes that the synthesis of these three modalities of structural problem-solving – computational, human, and material - may not only develop efficient structural form but offer further creative potentialities when the respective intelligence of each modality is productively leveraged. The project methodology pertains to its three modalities of production: 1) computational, 2) human, and 3) material. A proprietary three-dimensional graphic statics simulator generated a three-legged arch as a wireframe model. This wireframe was discretized into nine modules, three modules per leg. Each module was modeled as a woven matrix of one-inch diameter chords. And each woven matrix was transmitted to a holographic engine running on HWDs. Craftspersons wearing the HWDs then wove wet cementitious chords within a simple falsework frame to match the minimal bending form displayed in front of them. Once the woven components cured, they were demounted from the frame. The components were then assembled into a full structure using the holographically displayed computational model as a guide. The assembled structure was approximately eighteen feet in diameter and ten feet in height and matched the holographic model to under an inch of tolerance. The construction validated the computational simulation of the minimal bending form as it was dimensionally stable for a ten-day period, after which it was disassembled. The demonstrator illustrated the facility with which computationally derived, a structurally stable form could be achieved by the holographically guided, complex three-dimensional motor schema of the human craftsperson. However, the workflow traveled unidirectionally from computer to human to material: failing to fully leverage the intelligence of each modality. Subsequent research – a workshop testing human interaction with a physics engine simulation of string networks; and research on the use of HWDs to capture hand gestures in weaving seeks to develop further interactivity with rope and chord towards a bi-directional workflow within full-scale building environments.

Keywords: augmented reality, cementitious composites, computational form finding, textile structures

Procedia PDF Downloads 175
7048 Minimizing Total Completion Time in No-Wait Flowshops with Setup Times

Authors: Ali Allahverdi

Abstract:

The m-machine no-wait flowshop scheduling problem is addressed in this paper. The objective is to minimize total completion time subject to the constraint that the makespan value is not greater than a certain value. Setup times are treated as separate from processing times. Several recent algorithms are adapted and proposed for the problem. An extensive computational analysis has been conducted for the evaluation of the proposed algorithms. The computational analysis indicates that the best proposed algorithm performs significantly better than the earlier existing best algorithm.

Keywords: scheduling, no-wait flowshop, algorithm, setup times, total completion time, makespan

Procedia PDF Downloads 340
7047 Solving Mean Field Problems: A Survey of Numerical Methods and Applications

Authors: Amal Machtalay

Abstract:

In this survey, we aim to review the rapidly growing literature on numerical methods to solve different forms of mean field problems, namely mean field games (MFG), mean field controls (MFC), potential MFGs, and master equations, as well as their corresponding recent applications. Here, we distinguish two families of numerical methods: iterative methods based on mesh generation and those called mesh-free, normally related to neural networking and learning frameworks.

Keywords: mean-field games, numerical schemes, partial differential equations, complex systems, machine learning

Procedia PDF Downloads 113
7046 Integrated Genetic-A* Graph Search Algorithm Decision Model for Evaluating Cost and Quality of School Renovation Strategies

Authors: Yu-Ching Cheng, Yi-Kai Juan, Daniel Castro

Abstract:

Energy consumption of buildings has been an increasing concern for researchers and practitioners in the last decade. Sustainable building renovation can reduce energy consumption and carbon dioxide emissions; meanwhile, it also can extend existing buildings useful life and facilitate environmental sustainability while providing social and economic benefits to the society. School buildings are different from other designed spaces as they are more crowded and host the largest portion of daily activities and occupants. Strategies that focus on reducing energy use but also improve the students’ learning environment becomes a significant subject in sustainable school buildings development. A decision model is developed in this study to solve complicated and large-scale combinational, discrete and determinate problems such as school renovation projects. The task of this model is to automatically search for the most cost-effective (lower cost and higher quality) renovation strategies. In this study, the search process of optimal school building renovation solutions is by nature a large-scale zero-one programming determinate problem. A* is suitable for solving deterministic problems due to its stable and effective search process, and genetic algorithms (GA) provides opportunities to acquire global optimal solutions in a short time via its indeterminate search process based on probability. These two algorithms are combined in this study to consider trade-offs between renovation cost and improved quality, this decision model is able to evaluate current school environmental conditions and suggest an optimal scheme of sustainable school buildings renovation strategies. Through adoption of this decision model, school managers can overcome existing limitations and transform school buildings into spaces more beneficial to students and friendly to the environment.

Keywords: decision model, school buildings, sustainable renovation, genetic algorithm, A* search algorithm

Procedia PDF Downloads 118
7045 Immersive Learning in University Classrooms

Authors: Raminder Kaur

Abstract:

This paper considers the emerging area of integrating Virtual Reality (VR) technologies into the teaching of Visual Anthropology, Research Methods, and the Anthropology of Contemporary India in the University of Sussex. If deployed in a critical and self-reflexive manner, there are several advantages to VR-based immersive learning: (i) Based on data available for British schools, it has been noted that ‘Learning through experience can boost knowledge retention by up to 75%’. (ii) It can tutor students to learn with and from virtual worlds, devising new collaborative methods where suited. (iii) It can foster inclusive learning by aiding students with SEN and disabilities who may not be able to explore such areas in the physical world. (iv) It can inspire and instill confidence in students with anxieties about approaching new subjects, realms, or regions. (v) It augments our provision of ‘smart classrooms’ synchronised to the kinds of emerging immersive learning environments that students come from in schools.

Keywords: virtual reality, anthropology, immersive learning, university

Procedia PDF Downloads 82
7044 Source Identification Model Based on Label Propagation and Graph Ordinary Differential Equations

Authors: Fuyuan Ma, Yuhan Wang, Junhe Zhang, Ying Wang

Abstract:

Identifying the sources of information dissemination is a pivotal task in the study of collective behaviors in networks, enabling us to discern and intercept the critical pathways through which information propagates from its origins. This allows for the control of the information’s dissemination impact in its early stages. Numerous methods for source detection rely on pre-existing, underlying propagation models as prior knowledge. Current models that eschew prior knowledge attempt to harness label propagation algorithms to model the statistical characteristics of propagation states or employ Graph Neural Networks (GNNs) for deep reverse modeling of the diffusion process. These approaches are either deficient in modeling the propagation patterns of information or are constrained by the over-smoothing problem inherent in GNNs, which limits the stacking of sufficient model depth to excavate global propagation patterns. Consequently, we introduce the ODESI model. Initially, the model employs a label propagation algorithm to delineate the distribution density of infected states within a graph structure and extends the representation of infected states from integers to state vectors, which serve as the initial states of nodes. Subsequently, the model constructs a deep architecture based on GNNs-coupled Ordinary Differential Equations (ODEs) to model the global propagation patterns of continuous propagation processes. Addressing the challenges associated with solving ODEs on graphs, we approximate the analytical solutions to reduce computational costs. Finally, we conduct simulation experiments on two real-world social network datasets, and the results affirm the efficacy of our proposed ODESI model in source identification tasks.

Keywords: source identification, ordinary differential equations, label propagation, complex networks

Procedia PDF Downloads 20
7043 A Comprehensive Study of a Hybrid System Integrated Solid Oxide Fuel cell, Gas Turbine, Organic Rankine Cycle with Compressed air Energy Storage

Authors: Taiheng Zhang, Hongbin Zhao

Abstract:

Compressed air energy storage become increasingly vital for solving intermittency problem of some renewable energies. In this study, a new hybrid system on a combination of compressed air energy storage (CAES), solid oxide fuel cell (SOFC), gas turbine (GT), and organic Rankine cycle (ORC) is proposed. In the new system, excess electricity during off-peak time is utilized to compress air. Then, the compressed air is stored in compressed air storage tank. During peak time, the compressed air enters the cathode of SOFC directly instead of combustion chamber of traditional CAES. There is no air compressor consumption of SOFC-GT in peak demand, so SOFC- GT can generate power with high-efficiency. In addition, the waste heat of exhaust from GT is recovered by applying an ORC. Three different organic working fluid (R123, R601, R601a) of ORC are chosen to evaluate system performance. Based on Aspen plus and Engineering Equation Solver (EES) software, energy and exergoeconomic analysis are used to access the viability of the combined system. Besides, the effect of two parameters (fuel flow and ORC turbine inlet pressure) on energy efficiency is studied. The effect of low-price electricity at off-peak hours on thermodynamic criteria (total unit exergy cost of products and total cost rate) is also investigated. Furthermore, for three different organic working fluids, the results of round-trip efficiency, exergy efficiency, and exergoeconomic factors are calculated and compared. Based on thermodynamic performance and exergoeconomic performance of different organic working fluids, the best suitable working fluid will be chosen. In conclusion, this study can provide important guidance for system efficiency improvement and viability.

Keywords: CAES, SOFC, ORC, energy and exergoeconomic analysis, organic working fluids

Procedia PDF Downloads 123
7042 Comparing Friction Force Between Track and Spline Using graphite, Mos2, PTFE, and Silicon Dry Lubricant

Authors: M. De Maaijer, Wenxuan Shi, , Dolores Pose, Ditmar, F. Barati

Abstract:

Friction has several detrimental effects on Blind performance, Therefore Ziptak company as the leading company in the blind manufacturing sector, start investigating on how to conquer this problem in next generation of blinds. This problem is more sever in extremely sever condition. Although in these condition Ziptrak suggest not to use the blind, working on blind and its associated parts was the priority of Ziptrak company. The purpose of this article is to measure the effects of lubrication process on reducing friction force between spline and track especially at windy conditions Four different lubricants were implicated to measure their efficiency on reducing friction force.

Keywords: libricant, ziptrak, blind, spline

Procedia PDF Downloads 84
7041 Strategic Workplace Security: The Role of Malware and the Threat of Internal Vulnerability

Authors: Modesta E. Ezema, Christopher C. Ezema, Christian C. Ugwu, Udoka F. Eze, Florence M. Babalola

Abstract:

Some employees knowingly or unknowingly contribute to loss of data and also expose data to threat in the process of getting their jobs done. Many organizations today are faced with the challenges of how to secure their data as cyber criminals constantly devise new ways of attacking the organization’s secret data. However, this paper enlists the latest strategies that must be put in place in order to protect these important data from being attacked in a collaborative work place. It also introduces us to Advanced Persistent Threats (APTs) and how it works. The empirical study was conducted to collect data from the employee in data centers on how data could be protected from malicious codes and cyber criminals and their responses are highly considered to help checkmate the activities of malicious code and cyber criminals in our work places.

Keywords: data, employee, malware, work place

Procedia PDF Downloads 383
7040 A New 3D Shape Descriptor Based on Multi-Resolution and Multi-Block CS-LBP

Authors: Nihad Karim Chowdhury, Mohammad Sanaullah Chowdhury, Muhammed Jamshed Alam Patwary, Rubel Biswas

Abstract:

In content-based 3D shape retrieval system, achieving high search performance has become an important research problem. A challenging aspect of this problem is to find an effective shape descriptor which can discriminate similar shapes adequately. To address this problem, we propose a new shape descriptor for 3D shape models by combining multi-resolution with multi-block center-symmetric local binary pattern operator. Given an arbitrary 3D shape, we first apply pose normalization, and generate a set of multi-viewed 2D rendered images. Second, we apply Gaussian multi-resolution filter to generate several levels of images from each of 2D rendered image. Then, overlapped sub-images are computed for each image level of a multi-resolution image. Our unique multi-block CS-LBP comes next. It allows the center to be composed of m-by-n rectangular pixels, instead of a single pixel. This process is repeated for all the 2D rendered images, derived from both ‘depth-buffer’ and ‘silhouette’ rendering. Finally, we concatenate all the features vectors into one dimensional histogram as our proposed 3D shape descriptor. Through several experiments, we demonstrate that our proposed 3D shape descriptor outperform the previous methods by using a benchmark dataset.

Keywords: 3D shape retrieval, 3D shape descriptor, CS-LBP, overlapped sub-images

Procedia PDF Downloads 445
7039 Technology of Thermal Spray Coating Machining

Authors: Jana Petrů, Tomáš Zlámal, Robert Čep, Lenka Čepová

Abstract:

This article is focused on the thermal spray coating machining issue. Those are irreplaceable in many areas of nowadays industrial branches such as aerospace industry, mostly thanks to their excellent qualities in production and also in renovation of machinery parts. The principals of thermal spraying and elementary diversification are described in introduction. Plasma coating method of composite materials -cermets- is described more thoroughly. The second part describes thermal spray coating machining and grinding in detail. This part contains suggestion of appropriate grinding tool and assessment of cutting conditions used for grinding a given part. Conclusion describes a problem which occurred while grinding a cermet thermal spray coating with a specially designed grindstone and a way to solve this problem.

Keywords: coating, aerospace, plasma, grinding

Procedia PDF Downloads 555
7038 Differences and Similarities between Concepts of Good, Great, and Leading Teacher

Authors: Vilma Zydziunaite, Vaida Jurgile, Roman Balandiuk

Abstract:

Good, great, and leading teachers are experienced and respected role models, who are innovative, organized, collaborative, trustworthy, and confident facilitators of learning. They model integrity, have strong interpersonal and communication skills, display the highest level of professionalism, a commitment to students, and expertise, and demonstrate a passion for student learning while taking the initiative as influential change agents. Usually, we call them teacher(s) leaders by integrating three notions such as good, great, and leading in a one-teacher leader. Here are described essences of three concepts: ‘good teacher,’ ‘great teacher,’ and teacher leader’ as they are inseparable in teaching practices, teacher’s professional life, and educational interactions with students, fellow teachers, school administration, students’ families and school communities.

Keywords: great teacher, good teacher, leading teacher, school, student

Procedia PDF Downloads 147
7037 Interactive Winding Geometry Design of Power Transformers

Authors: Paffrath Meinhard, Zhou Yayun, Guo Yiqing, Ertl Harald

Abstract:

Winding geometry design is an important part of power transformer electrical design. Conventionally, the winding geometry is designed manually, which is a time-consuming job because it involves many iteration steps in order to meet all cost, manufacturing and electrical requirements. Here a method is presented which automatically generates the winding geometry for given user parameters and allows the user to interactively set and change parameters. To achieve this goal, the winding problem is transferred to a mixed integer nonlinear optimization problem. The relevant geometrical design parameters are defined as optimization variables. The cost and other requirements are modeled as constraints. For the solution, a stochastic ant colony optimization algorithm is applied. It is well-known, that an optimizer can get stuck in a local minimum. For the winding problem, we present efficient strategies to come out of local minima, furthermore a reduced variable search range helps to accelerate the solution process. Numerical examples show that the optimization result is delivered within seconds such that the user can interactively change the variable search area and constraints to improve the design.

Keywords: ant colony optimization, mixed integer nonlinear programming, power transformer, winding design

Procedia PDF Downloads 380