Search results for: Deep Shikha
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2096

Search results for: Deep Shikha

686 Hybrid Thresholding Lifting Dual Tree Complex Wavelet Transform with Wiener Filter for Quality Assurance of Medical Image

Authors: Hilal Naimi, Amelbahahouda Adamou-Mitiche, Lahcene Mitiche

Abstract:

The main problem in the area of medical imaging has been image denoising. The most defying for image denoising is to secure data carrying structures like surfaces and edges in order to achieve good visual quality. Different algorithms with different denoising performances have been proposed in previous decades. More recently, models focused on deep learning have shown a great promise to outperform all traditional approaches. However, these techniques are limited to the necessity of large sample size training and high computational costs. This research proposes a denoising approach basing on LDTCWT (Lifting Dual Tree Complex Wavelet Transform) using Hybrid Thresholding with Wiener filter to enhance the quality image. This research describes the LDTCWT as a type of lifting wavelets remodeling that produce complex coefficients by employing a dual tree of lifting wavelets filters to get its real part and imaginary part. Permits the remodel to produce approximate shift invariance, directionally selective filters and reduces the computation time (properties lacking within the classical wavelets transform). To develop this approach, a hybrid thresholding function is modeled by integrating the Wiener filter into the thresholding function.

Keywords: lifting wavelet transform, image denoising, dual tree complex wavelet transform, wavelet shrinkage, wiener filter

Procedia PDF Downloads 163
685 Cenomanian-Turonian Oceanic Anoxic Event, Palynofacies and Optical Kerogen Analysis in Abu Gharadig Basin, Egypt

Authors: Mohamed Ibrahim, Suzan Kholeif

Abstract:

The Cenomanian-Turonian boundary was a ‘greenhouse’ period. The atmosphere at that time was characterized by high CO₂; in addition, there was the widespread deposition of organic-rich sediments anomalously rich in organic carbon. The sediments, palynological, total organic carbon (TOC), stable carbon and oxygen isotopes (δ¹³C, δ¹⁸O, organic) of the Cenomanian-Turonian Bahariya and basal Abu Roash formations at the southern Tethys margin were studied in two deep wells (AG5 and AG-13), Abu Gharadig Oil Field, North Western Desert, Egypt. Some of the marine (dinoflagellate cysts), as well as the terrestrial palynoflora (spores and pollen grains), reveal extinction and origination patterns that are known elsewhere, although other species may be survived across the Cenomanian-Turonian boundary. This implies control of global changes on the palynoflora, i.e., impact of Oceanic Anoxic Event OAE2 (Bonarelli Event), rather than changes in the local environmental conditions. The basal part of the Abu Roach Formation ('G' and 'F' members, late Cenomanian) shows a positive δ ¹³C excursion of the organic fraction. The TOC is generally high between 2.20 and 3.04 % in the basal Abu Roash Formation: shale of 'G' and carbonate of 'F' members, which indicates that these two members are the main Cretaceous source rocks in the Abu Gharadig Basin and have a type I-II kerogen composition. They are distinguished by an abundance of amorphous organic matter AOM and Chlorococcalean algae, mainly Pediastrum and Scenedesmus, along with subordinate dinoflagellate cysts.

Keywords: oceanic anoxic event, cenomanian-turonian, palynofacies, western desert, Egypt

Procedia PDF Downloads 132
684 Vertical Uplift Capacity of a Group of Equally Spaced Helical Screw Anchors in Sand

Authors: Sanjeev Mukherjee, Satyendra Mittal

Abstract:

This paper presents the experimental investigations on the behaviour of a group of single, double and triple helical screw anchors embedded vertically at the same level in sand. The tests were carried out on one, two, three and four numbers of anchors in sand for different depths of embedment keeping shallow and deep mode of behaviour in mind. The testing program included 48 tests conducted on three model anchors installed in sand whose density kept constant throughout the tests. It was observed that the ultimate pullout load varied significantly with the installation depth of the anchor and the number of anchors. The apparent coefficient of friction (f*) between anchor and soil was also calculated based on the test results. It was found that the apparent coefficient of friction varies between 1.02 and 4.76 for 1, 2, 3, and 4 numbers of single, double and triple helical screw anchors. Plate load tests conducted on model soil showed that the value of ф increases from 35o for virgin soil to 48o for soil with four double screw helical anchors. The graphs of ultimate pullout capacity of a group of two, three and four no. of anchors with respect to one anchor were plotted and design equations have been proposed correlating them. Based on these findings, it has been concluded that the load-displacement relationships for all groups can be reduced to a common curve. A 3-D finite element model, PLAXIS, was used to confirm the results obtained from laboratory tests and the agreement is excellent.

Keywords: apparent coefficient of friction, helical screw anchor, installation depth, plate load test

Procedia PDF Downloads 555
683 INRAM-3DCNN: Multi-Scale Convolutional Neural Network Based on Residual and Attention Module Combined with Multilayer Perceptron for Hyperspectral Image Classification

Authors: Jianhong Xiang, Rui Sun, Linyu Wang

Abstract:

In recent years, due to the continuous improvement of deep learning theory, Convolutional Neural Network (CNN) has played a great superior performance in the research of Hyperspectral Image (HSI) classification. Since HSI has rich spatial-spectral information, only utilizing a single dimensional or single size convolutional kernel will limit the detailed feature information received by CNN, which limits the classification accuracy of HSI. In this paper, we design a multi-scale CNN with MLP based on residual and attention modules (INRAM-3DCNN) for the HSI classification task. We propose to use multiple 3D convolutional kernels to extract the packet feature information and fully learn the spatial-spectral features of HSI while designing residual 3D convolutional branches to avoid the decline of classification accuracy due to network degradation. Secondly, we also design the 2D Inception module with a joint channel attention mechanism to quickly extract key spatial feature information at different scales of HSI and reduce the complexity of the 3D model. Due to the high parallel processing capability and nonlinear global action of the Multilayer Perceptron (MLP), we use it in combination with the previous CNN structure for the final classification process. The experimental results on two HSI datasets show that the proposed INRAM-3DCNN method has superior classification performance and can perform the classification task excellently.

Keywords: INRAM-3DCNN, residual, channel attention, hyperspectral image classification

Procedia PDF Downloads 79
682 Spatial Integration at the Room-Level of 'Sequina' Slum Area in Alexandria, Egypt

Authors: Ali Essam El Shazly

Abstract:

The slum survey of 'Sequina' area in Alexandria details the building rooms of twenty-building samples according to the integral measure of space syntax. The essence of room organization sets the most integrative 'visitor' domain between the 'inhabitant' wings of less integrated 'parent' than the 'children' structure with visual ring of 'balcony' space. Despite the collective real relative asymmetry of 'pheno-type' aggregation, the relative asymmetry of individual layouts reveals 'geno-type' structure of spatial diversity. The multifunction of rooms optimizes the integral structure of graph and visibility merge, which contrasts with the deep tailing structure of distinctive social domains. The most integrative layout inverts the geno-type into freed rooms of shallow 'inhabitant' domain against the off-centered 'visitor' space, while the most segregated layout further restricts the pheno-type through isolated 'visitor' from 'inhabitant' domains across the 'staircase' public domain. The catalyst 'kitchen & living' spaces demonstrate multi-structural dimensions among the various social domains. The former ranges from most exposed central integrity to the most hidden 'motherhood' territories. The latter, however, mostly integrates at centrality or at the further ringy 'childern' domain. The study concludes social structure of spatial integrity for redevelopment, which is determined through the micro-level survey of rooms with integral dimensions.

Keywords: Alexandria, Sequina slum, spatial integration, space syntax

Procedia PDF Downloads 438
681 Plant Identification Using Convolution Neural Network and Vision Transformer-Based Models

Authors: Virender Singh, Mathew Rees, Simon Hampton, Sivaram Annadurai

Abstract:

Plant identification is a challenging task that aims to identify the family, genus, and species according to plant morphological features. Automated deep learning-based computer vision algorithms are widely used for identifying plants and can help users narrow down the possibilities. However, numerous morphological similarities between and within species render correct classification difficult. In this paper, we tested custom convolution neural network (CNN) and vision transformer (ViT) based models using the PyTorch framework to classify plants. We used a large dataset of 88,000 provided by the Royal Horticultural Society (RHS) and a smaller dataset of 16,000 images from the PlantClef 2015 dataset for classifying plants at genus and species levels, respectively. Our results show that for classifying plants at the genus level, ViT models perform better compared to CNN-based models ResNet50 and ResNet-RS-420 and other state-of-the-art CNN-based models suggested in previous studies on a similar dataset. ViT model achieved top accuracy of 83.3% for classifying plants at the genus level. For classifying plants at the species level, ViT models perform better compared to CNN-based models ResNet50 and ResNet-RS-420, with a top accuracy of 92.5%. We show that the correct set of augmentation techniques plays an important role in classification success. In conclusion, these results could help end users, professionals and the general public alike in identifying plants quicker and with improved accuracy.

Keywords: plant identification, CNN, image processing, vision transformer, classification

Procedia PDF Downloads 103
680 Seismic Activity and Groundwater Behavior at Kalabsha Area, Aswan, Egypt

Authors: S. M. Moustafa, A. Ezzat, Y. S. Taha, G. H. Hassib, S. Hamada

Abstract:

After the occurrence of 14, Nov, 1981 earthquake (M = 5.3), on Kalabska fault, south of Egypt, seismic stations distributed in and around the Kalabsha area, in order to monitoring, recording and studying the seismic activity in the area. In addition of that, from 1989 a number of piezometer wells drilled in the same area, distribed on at the both side of the active faults area and in different water bearing formations, in order to measuring the groundwater parameters (level, temperature, ph, and conductivity) to monitoring the relationship between those parameters and the seismic activity at Kalabsha area. The behavior of groundwater due to seismic activity over the world studied by several scientists i.e. H. Wakita (1979) on Izu-Oshima earthquake (M= 7.0) at Japan, M. E. Contadakis & G.asteriadis (1972), and Evans (1966), they found an anomalies on groundwater measurements prior, co, and post the occurrence of bigger earthquakes, referring to the probability of precursory evidence of impending earthquakes. In Kalabsha area south of Egypt, this study has been done using recorded seismic data, and the measurements of underground water parameters. same phenomena of anomalies founded on groundwater measurements pre, co. and post the occurrence of earthquakes with magnitude bigger than 3, and no systematic regularity exists for epicenter distance, duration of anomalies or time lag between anomalies appear and occurrence of events. Also the results found present strong relation between the groundwater in the upper unconfined aquifer Nubian Sandstone formation, and Kalabsha seismic activity, otherwise no relation between the seismic activities in the area with the deep groundwater in the lower confined aquifer Sandstone.

Keywords: seismicity, groundwater, Aswan, Egypt

Procedia PDF Downloads 381
679 A Comparative Analysis of the Performance of COSMO and WRF Models in Quantitative Rainfall Prediction

Authors: Isaac Mugume, Charles Basalirwa, Daniel Waiswa, Mary Nsabagwa, Triphonia Jacob Ngailo, Joachim Reuder, Sch¨attler Ulrich, Musa Semujju

Abstract:

The Numerical weather prediction (NWP) models are considered powerful tools for guiding quantitative rainfall prediction. A couple of NWP models exist and are used at many operational weather prediction centers. This study considers two models namely the Consortium for Small–scale Modeling (COSMO) model and the Weather Research and Forecasting (WRF) model. It compares the models’ ability to predict rainfall over Uganda for the period 21st April 2013 to 10th May 2013 using the root mean square (RMSE) and the mean error (ME). In comparing the performance of the models, this study assesses their ability to predict light rainfall events and extreme rainfall events. All the experiments used the default parameterization configurations and with same horizontal resolution (7 Km). The results show that COSMO model had a tendency of largely predicting no rain which explained its under–prediction. The COSMO model (RMSE: 14.16; ME: -5.91) presented a significantly (p = 0.014) higher magnitude of error compared to the WRF model (RMSE: 11.86; ME: -1.09). However the COSMO model (RMSE: 3.85; ME: 1.39) performed significantly (p = 0.003) better than the WRF model (RMSE: 8.14; ME: 5.30) in simulating light rainfall events. All the models under–predicted extreme rainfall events with the COSMO model (RMSE: 43.63; ME: -39.58) presenting significantly higher error magnitudes than the WRF model (RMSE: 35.14; ME: -26.95). This study recommends additional diagnosis of the models’ treatment of deep convection over the tropics.

Keywords: comparative performance, the COSMO model, the WRF model, light rainfall events, extreme rainfall events

Procedia PDF Downloads 261
678 Conflict, Confusion or Compromise: Violence against Women, A Case Study of Pakistan

Authors: Farhat Jabeen, Syed Asfaq Hussain Bukhari

Abstract:

In the wake of the contemporary period the basic objective of the research paper points out that socio-cultural scenario of Pakistan reveals that gender-based violence is deep rooted in the society irrespective of language and ethnicity. This paper would reconnaissance the possibility reforms in Pakistan for diminishing of violence. Women are not given their due role, rights, and respect. Furthermore, they are treated as chattels. This presentation will cover the socio-customary practices in the context of discrimination, stigmatization, and violence against women. This paper envisages justice in a broader sense of recognition of rights for women, and masculine structure of society, socio-customary practices and discrimination against women are a very serious concern which needs to be understood as a multidimensional problem. The paper will specially focus on understanding the existing obstacles of women in Pakistan in the constitutional scenario. Women stumble across discrimination and human rights manipulations, voluptuous violation and manipulation including domestic viciousness and are disadvantaged by laws, strategies, and programming that do not take their concerns into considerations. This presentation examines the role of honour killings among Pakistani community. This affects their self-assurance and capability to elevation integrity campaign where gender inequalities and discrimination in social, legal domain are to be put right. This paper brings to light the range of practices, laws and legal justice regarding the status of women and also covers attitude towards compensations for murders/killings, domestic violence, rape, adultery, social behavior and recourse to justice.

Keywords: discrimination, cultural, women, violence

Procedia PDF Downloads 324
677 Observations on the Eastern Red Sea Elasmobranchs: Data on Their Distribution and Ecology

Authors: Frappi Sofia, Nicolas Pilcher, Sander DenHaring, Royale Hardenstine, Luis Silva, Collin Williams, Mattie Rodrigue, Vincent Pieriborne, Mohammed Qurban, Carlos M. Duarte

Abstract:

Nowadays, elasmobranch populations are disappearing at a dangerous rate, mainly due to overexploitation, extensive fisheries, as well as climate change. The decline of these species can trigger a cascade effect, which may eventually lead to detrimental impacts on local ecosystems. The Elasmobranch in the Red Sea is facing one of the highest risks of extinction, mainly due to unregulated fisheries activities. Thus, it is of paramount importance to assess their current distribution and unveil their environmental preferences in order to improve conservation measures. Important data have been collected throughout the whole red Sea during the Red Sea Decade Expedition (RSDE) to achieve this goal. Elasmobranch sightings were gathered through the use of submarines, remotely operated underwater vehicles (ROV), scuba diving operations, and helicopter surveys. Over a period of 5 months, we collected 891 sightings, 52 with submarines, 138 with the ROV, 67 with the scuba diving teams, and 634 from helicopters. In total, we observed 657 and 234 individuals from the superorder Batoidea and Selachimorpha, respectively. The most common shark encountered was Iago omanensis, a deep-water shark of the order Carcharhiniformes. To each sighting, data on temperature, salinity density, and dissolved oxygen were integrated to reveal favorable conditions for each species. Additionally, an extensive literature review on elasmobranch research in the Eastern Red Sea has been carried out in order to obtain more data on local populations and to be able to highlight patterns of their distribution.

Keywords: distribution, elasmobranchs, habitat, rays, red sea, sharks

Procedia PDF Downloads 85
676 Effect of Nicotine on the Reinforcing Effects of Cocaine in a Nonhuman Primate Model of Drug Use

Authors: Mia I. Allen, Bernard N. Johnson, Gagan Deep, Yixin Su, Sangeeta Singth, Ashish Kumar, , Michael A. Nader

Abstract:

With no FDA-approved treatments for cocaine use disorders (CUD), research has focused on the behavioral and neuropharmacological effects of cocaine in animal models, with the goal of identifying novel interventions. While the majority of people with CUD also use tobacco/nicotine, the majority of preclinical cocaine research does not include the co-use of nicotine. The present study examined nicotine and cocaine co-use under several conditions of intravenous drug self-administration in monkeys. In Experiment 1, male rhesus monkeys (N=3) self-administered cocaine (0.001-0.1 mg/kg/injection) alone and cocaine+nicotine (0.01-0.03 mg/kg/injection) under a progressive-ratio schedule of reinforcement. When nicotine was added to cocaine, there was a significant leftward shift and significant increase in peak break point. In Experiment 2, socially housed female and male cynomolgus monkeys (N=14) self-administered cocaine under a concurrent drug-vs-food choice schedule. Combining nicotine significantly decreased cocaine choice ED50 values (i.e., shifted the cocaine dose-response curve to the left) in females but not in males. There was no evidence of social rank differences. In delay discounting studies, the co-use of nicotine and cocaine required significantly larger delays to the preferred drug reinforcer to reallocate choice compared with cocaine alone. Overall, these results suggest drug interactions of nicotine and cocaine co-use is not simply a function of potency but rather a fundamentally distinctive condition that should be utilized to better understand the neuropharmacology of CUD and the evaluation of potential treatments.

Keywords: polydrug use, animal models, nonhuman primates, behavioral pharmacology, drug self-administration

Procedia PDF Downloads 87
675 Force Measurement for E-Cadherin-Mediated Intercellular Adhesion Probed by Protein Micropattern and Traction Force Microscopy

Authors: Chieh-Chung Tsou, Chun-Min Lo, Yeh-Shiu Chu

Abstract:

Cell’s mechanical forces provide important physical cues in regulation of proper cellular functions, such as cell differentiation, proliferation and migration. It is believed that adhesive forces generated by cell-cell interaction are able to transmit to the interior of cell through filamentous cortical cytoskeleton. Prominent among other membrane receptors, Cadherins are prototypical adhesive molecules able to generate remarkable forces to regulate intercellular adhesion. However, the mechanistic steps of mechano-transduction in Cadherin-mediated adhesion remain very controversial. We are interested in understanding how Cadherin protein complexes enable force generation and transmission at cell-cell contact in the initial stage of intercellular adhesion. For providing a better control of time, space, and substrate stiffness, in this study, a combination of protein micropattern, micropipette manipulation, and traction force microscopy is used. Pair micropattern with different forms confines cell spreading area and the gaps in pairs varied from 2 to 8 microns are applied for monitoring the forces that cell pairs generated, measured by traction force microscopy. Moreover, cell clones obtained from epithelial cells undergone genome editing are used to score the importance for known components of Cadherin complexes in force generation. We believe that our results from this combinatory mechanobiological method will provide deep insights on understanding the biophysical principle governing mechano- transduction of Cadherin-mediated intercellular adhesion.

Keywords: cadherin, intercellular adhesion, protein micropattern, traction force microscopy

Procedia PDF Downloads 251
674 Effects of Green Walnut Husk and Olive Pomace Extracts on Growth of Tomato Plants and Root-Knot Nematode (Meloidogyne incognita)

Authors: Yasemin Kavdir, Ugur Gozel

Abstract:

This study was conducted to determine the nematicidal activity of green walnut husk (GWH) and olive pomace (OP) extracts against root-knot nematode (Meloidogyne incognita). Aqueous extracts of GWH and OP were mixed with sandy loam soil at the rates of 0, 6,12,18,24, 60 and 120 ml kg-1. All pots were arranged in a randomized complete block design and replicated four times under controlled atmosphere conditions. Tomato seedlings were grown in sterilized soil then they were transplanted to pots. Inoculation was done by pouring the 20 ml suspension including 1000 M. incognita juvenile pot-1 into 3 cm deep hole made around the base of the plant root. Tomato root and shoot growth and nematode populations have been determined. In general, both GWH and OP extracts resulted in better growth parameters compared to the control plants. However, GWH extract was the most effective in improving growth parameters. Applications of 24 ml kg-1 OP extract enhanced plant growth compared to other OP treatments while 60 ml kg-1 application rate had the lowest nematode number and root galling. In this study, applications of GWH and OP extracts reduced the number of Meloidogyne incognita and root galling compared to control soils. Additionally GWH and OP extracts can be used safely for tomato growth. It could be concluded that OP and GWH extracts used as organic amendments showed promising nematicidal activity in the control of M. incognita. This research was supported by TUBİTAK Grant Number 214O422.

Keywords: olive pomace, green walnut husk, Meloidogyne incognita, tomato, soil, extract

Procedia PDF Downloads 182
673 Integrated Free Space Optical Communication and Optical Sensor Network System with Artificial Intelligence Techniques

Authors: Yibeltal Chanie Manie, Zebider Asire Munyelet

Abstract:

5G and 6G technology offers enhanced quality of service with high data transmission rates, which necessitates the implementation of the Internet of Things (IoT) in 5G/6G architecture. In this paper, we proposed the integration of free space optical communication (FSO) with fiber sensor networks for IoT applications. Recently, free-space optical communications (FSO) are gaining popularity as an effective alternative technology to the limited availability of radio frequency (RF) spectrum. FSO is gaining popularity due to flexibility, high achievable optical bandwidth, and low power consumption in several applications of communications, such as disaster recovery, last-mile connectivity, drones, surveillance, backhaul, and satellite communications. Hence, high-speed FSO is an optimal choice for wireless networks to satisfy the full potential of 5G/6G technology, offering 100 Gbit/s or more speed in IoT applications. Moreover, machine learning must be integrated into the design, planning, and optimization of future optical wireless communication networks in order to actualize this vision of intelligent processing and operation. In addition, fiber sensors are important to achieve real-time, accurate, and smart monitoring in IoT applications. Moreover, we proposed deep learning techniques to estimate the strain changes and peak wavelength of multiple Fiber Bragg grating (FBG) sensors using only the spectrum of FBGs obtained from the real experiment.

Keywords: optical sensor, artificial Intelligence, Internet of Things, free-space optics

Procedia PDF Downloads 63
672 Towards an African Model: A Survey of Social Enterprises in South Africa

Authors: Kerryn Krige, Kerrin Myers

Abstract:

Social entrepreneurship offers the opportunity to simultaneously address both social and economic inequality in South Africa. Its appeal across racial groups, its attractiveness to young people, its applicability in rural and peri-urban markets, and its acceleration in middle income, large-business economies suits the South African context. However, the potential to deliver much-needed developmental benefits has not been realised because the social entrepreneurship debate lacks evidence as to who social entrepreneurs are, their goals and operations and the socio-economic results they achieve. As a result, policy development has been stunted, and legislative barriers and red tape remain. Social entrepreneurs are isolated from the mainstream economy, and struggle to access funding because of limitations in legislative and organisational structures. The objective of the study is to strengthen the ecosystem for social entrepreneurship in South Africa by producing robust, policy-rich information from and about social enterprises currently in operation across the country. The study employs a quantitative survey methodology, using online and telephonic data collection methods. A purposive sample of 1000 social enterprises was included in the first large-scale study of social entrepreneurship in South Africa. The results offer deep insight into the characteristics of social enterprises; the activities they undertake and the markets they serve; their modes of operation and funding sources as well as key challenges and support systems. The results contribute towards developing a model of social enterprise in the African context.

Keywords: social enterprise, key characteristics, challenges and enablers, towards an African model

Procedia PDF Downloads 307
671 IoT-Based Early Identification of Guava (Psidium guajava) Leaves and Fruits Diseases

Authors: Daudi S. Simbeye, Mbazingwa E. Mkiramweni

Abstract:

Plant diseases have the potential to drastically diminish the quantity and quality of agricultural products. Guava (Psidium guajava), sometimes known as the apple of the tropics, is one of the most widely cultivated fruits in tropical regions. Monitoring plant health and diagnosing illnesses is an essential matter for sustainable agriculture, requiring the inspection of visually evident patterns on plant leaves and fruits. Due to minor variations in the symptoms of various guava illnesses, a professional opinion is required for disease diagnosis. Due to improper pesticide application by farmers, erroneous diagnoses may result in economic losses. This study proposes a method that uses artificial intelligence (AI) to detect and classify the most widespread guava plant by comparing images of its leaves and fruits to datasets. ESP32 CAM is responsible for data collection, which includes images of guava leaves and fruits. By comparing the datasets, these image formats are used as datasets to help in the diagnosis of plant diseases through the leaves and fruits, which is vital for the development of an effective automated agricultural system. The system test yielded the most accurate identification findings (99 percent accuracy in differentiating four guava fruit diseases (Canker, Mummification, Dot, and Rust) from healthy fruit). The proposed model has been interfaced with a mobile application to be used by smartphones to make a quick and responsible judgment, which can help the farmers instantly detect and prevent future production losses by enabling them to take precautions beforehand.

Keywords: early identification, guava plants, fruit diseases, deep learning

Procedia PDF Downloads 76
670 Robotic Arm-Automated Spray Painting with One-Shot Object Detection and Region-Based Path Optimization

Authors: Iqraq Kamal, Akmal Razif, Sivadas Chandra Sekaran, Ahmad Syazwan Hisaburi

Abstract:

Painting plays a crucial role in the aerospace manufacturing industry, serving both protective and cosmetic purposes for components. However, the traditional manual painting method is time-consuming and labor-intensive, posing challenges for the sector in achieving higher efficiency. Additionally, the current automated robot path planning has been a bottleneck for spray painting processes, as typical manual teaching methods are time-consuming, error-prone, and skill-dependent. Therefore, it is essential to develop automated tool path planning methods to replace manual ones, reducing costs and improving product quality. Focusing on flat panel painting in aerospace manufacturing, this study aims to address issues related to unreliable part identification techniques caused by the high-mixture, low-volume nature of the industry. The proposed solution involves using a spray gun and a UR10 robotic arm with a vision system that utilizes one-shot object detection (OS2D) to identify parts accurately. Additionally, the research optimizes path planning by concentrating on the region of interest—specifically, the identified part, rather than uniformly covering the entire painting tray.

Keywords: aerospace manufacturing, one-shot object detection, automated spray painting, vision-based path optimization, deep learning, automation, robotic arm

Procedia PDF Downloads 82
669 Thermal Maturity and Hydrocarbon Generation Histories of the Silurian Tannezuft Shale Formation, Ghadames Basin, Northwestern Libya

Authors: Emir Borovac, Sedat İnan

Abstract:

The Silurian Tannezuft Formation within the Ghadames Basin of Northwestern Libya, like other Silurian shales in North Africa and the Middle East, represents a significant prospect for unconventional hydrocarbon exploration. Unlike the more popular and extensively studied Sirt Basin, the Ghadames Basin remains underexplored, presenting untapped potential that warrants further investigation. This study focuses on the thermal maturity and hydrocarbon generation histories of the Tannezuft shales, utilizing calibrated basin modeling approaches. The Tannezuft shales are organic-rich and primarily contain Type II kerogen, especially in the basal layer, which contains up to 10 wt. % TOC, leading to its designation as ‘hot shale’. The research integrates geological, geochemical, and basin modeling data to elucidate the unconventional hydrocarbon potential of this formation, which is crucial given the global demand for energy and the need for new resources. By employing PetroMod software from Schlumberger, calibrated modeling results simulate hydrocarbon generation and migration within the Tannezuft shales. The findings suggest dual-phase hydrocarbon generation from the Lower Silurian Tannezuft source rock, related to deep burial prior to Hercynian orogeny and subsequent Alpine orogeny events. The Ghadames Basin's tectonic history, including major Hercynian and Alpine orogenies, has significantly influenced the generation, migration, and preservation of hydrocarbons, making the Ghadames Basin a promising area for further exploration.

Keywords: tanezzuft formation, ghadames basin, silurian hot shale, unconventional hydrocarbon

Procedia PDF Downloads 26
668 Maintaining Minority Languages; Evidence from Italy

Authors: Carmela Perta

Abstract:

Following the example of both International and European legislation, on 15 December 1999 the national law 482/99 Regulations regarding the protection of historic language minorities was approved, providing a national framework for the preservation and renaissance of minority languages «The Italian Republic sustains the language and culture of people speaking Albanian, Catalan, German, Greek, Slovene, Croatian, French, Francoprovençal, Friulan, Ladin, Occitan and Sard». The legislation made it possible to use these languages in education, in public offices, in local government, in the judicial system, in mass media, and allowed for the reinstatement of place and personal names. However, several practical problems have emerged, particularly those concerning the variety that should be used in education, in official documents and in other formal domains, i.e. the local variety, the standard of reference (if there is any), or an over regional koinè. In minority settings, it might seem eminently sensible to use the ready made standard of reference, accepting the Ausbausprache, rather than the language as practice, that is the local variety. However, this process seems to be pointless, as is demonstrated by the results of a fieldwork that was carried out in a small town in the South of Italy where members speak Faetar, the local variety of Francoprovençal. Here the language is largely used by the community members in all domains, moreover a deep sense of loyalty towards the variety they use and a manifested minority identity can be observed analysing the speakers’ attitudes. However, these positive attitudes are towards the vehicle for their distinctive history and culture, and not for an “external” standard, a system which local authorities and planners are trying to introduce in the community. In other words, according to the speakers' reactions, there is little point in struggling to maintain a language, if what is conserved is not the group’s language but another.

Keywords: maintenance, minority languages, endangered languages, francoprovençal

Procedia PDF Downloads 435
667 Cryptographic Resource Allocation Algorithm Based on Deep Reinforcement Learning

Authors: Xu Jie

Abstract:

As a key network security method, cryptographic services must fully cope with problems such as the wide variety of cryptographic algorithms, high concurrency requirements, random job crossovers, and instantaneous surges in workloads. Its complexity and dynamics also make it difficult for traditional static security policies to cope with the ever-changing situation. Cyber Threats and Environment. Traditional resource scheduling algorithms are inadequate when facing complex decision-making problems in dynamic environments. A network cryptographic resource allocation algorithm based on reinforcement learning is proposed, aiming to optimize task energy consumption, migration cost, and fitness of differentiated services (including user, data, and task security) by modeling the multi-job collaborative cryptographic service scheduling problem as a multi-objective optimized job flow scheduling problem and using a multi-agent reinforcement learning method, efficient scheduling and optimal configuration of cryptographic service resources are achieved. By introducing reinforcement learning, resource allocation strategies can be adjusted in real-time in a dynamic environment, improving resource utilization and achieving load balancing. Experimental results show that this algorithm has significant advantages in path planning length, system delay and network load balancing and effectively solves the problem of complex resource scheduling in cryptographic services.

Keywords: cloud computing, cryptography on-demand service, reinforcement learning, workflow scheduling

Procedia PDF Downloads 12
666 The Uruguayan Left Wing from the XX to XXI Century: International Dimensions

Authors: Anton Andreev

Abstract:

With the collapse of the Soviet Union and the collapse of a large part of the socialist regimes, left-wing parties all over the world entered the space of crisis, of problems with ideology, identity, with the definition of its goals and objectives. First of all, we can say that the communist parties actually lost their foundation. In 1992, despite the victory of left-wing forces, a Broad Front in which was the winner in the struggle against dictatorship plunged into a deep crisis, the nature of which is looking for a new platform, a new foundation, new goals. Thus, in the late 20th century, the party has revised theoretical beliefs and positions. Radical communist ideology was moderated to social reformism. Modern leftist movement in Uruguay is a movement of moderate reform. Left forces suggest going through successive changes. Changes in ideology and ideas have influenced to the understanding of foreign policy. After the collapse of the Soviet Union Broad Front has changed the direction of its diplomacy from the orientation to the Soviet state to support the USA policy. Government formed by Broad Front, supported the integration processes in the South America. Uruguay was developing the cooperation in the framework of MERCOSUR and began to create relationship with the new centers of power in world political space. Uruguay in the early 21st century is a country that starts to play important role in the international arena. Elections of 26 October 2014 should answer the question of support of internal policy of a Broad Front, as well as of the support of the diplomatic work of the "Left" governments of the country.

Keywords: Uruguay, broad front, Vazquez, international dimensions

Procedia PDF Downloads 354
665 Generation Mechanism of Opto-Acoustic Wave from in vivo Imaging Agent

Authors: Hiroyuki Aoki

Abstract:

The optoacoustic effect is the energy conversion phenomenon from light to sound. In recent years, this optoacoustic effect has been utilized for an imaging agent to visualize a tumor site in a living body. The optoacoustic imaging agent absorbs the light and emits the sound signal. The sound wave can propagate in a living organism with a small energy loss; therefore, the optoacoustic imaging method enables the molecular imaging of the deep inside of the body. In order to improve the imaging quality of the optoacoustic method, the more signal intensity is desired; however, it has been difficult to enhance the signal intensity of the optoacoustic imaging agent because the fundamental mechanism of the signal generation is unclear. This study deals with the mechanism to generate the sound wave signal from the optoacoustic imaging agent following the light absorption by experimental and theoretical approaches. The optoacoustic signal efficiency for the nano-particles consisting of metal and polymer were compared, and it was found that the polymer particle was better. The heat generation and transfer process for optoacoustic agents of metal and polymer were theoretically examined. It was found that heat generated in the metal particle rapidly transferred to the water medium, whereas the heat in the polymer particle was confined in itself. The confined heat in the small particle induces the massive volume expansion, resulting in the large optoacoustic signal for the polymeric particle agent. Thus, we showed that heat confinement is a crucial factor in designing the highly efficient optoacoustic imaging agent.

Keywords: nano-particle, opto-acoustic effect, in vivo imaging, molecular imaging

Procedia PDF Downloads 131
664 From Bureaucracy to Organizational Learning Model: An Organizational Change Process Study

Authors: Vania Helena Tonussi Vidal, Ester Eliane Jeunon

Abstract:

This article aims to analyze the change processes of management related bureaucracy and learning organization model. The theoretical framework was based on Beer and Nohria (2001) model, identified as E and O Theory. Based on this theory the empirical research was conducted in connection with six key dimensions: goal, leadership, focus, process, reward systems and consulting. We used a case study of an educational Institution located in Barbacena, Minas Gerais. This traditional center of technical knowledge for long time adopted the bureaucratic way of management. After many changes in a business model, as the creation of graduate and undergraduate courses they decided to make a deep change in management model that is our research focus. The data were collected through semi-structured interviews with director, managers and courses supervisors. The analysis were processed by the procedures of Collective Subject Discourse (CSD) method, develop by Lefèvre & Lefèvre (2000), Results showed the incremental growing of management model toward a learning organization. Many impacts could be seeing. As negative factors we have: people resistance; poor information about the planning and implementation process; old politics inside the new model and so on. Positive impacts are: new procedures in human resources, mainly related to manager skills and empowerment; structure downsizing, open discussions channel; integrated information system. The process is still under construction and now great stimulus is done to managers and employee commitment in the process.

Keywords: bureaucracy, organizational learning, organizational change, E and O theory

Procedia PDF Downloads 434
663 Defining Death and Dying in Relation to Information Technology and Advances in Biomedicine

Authors: Evangelos Koumparoudis

Abstract:

The definition of death is a deep philosophical question, and no single meaning can be ascribed to it. This essay focuses on the ontological, epistemological, and ethical aspects of death and dying in view of technological progress in information technology and biomedicine. It starts with the ad hoc 1968 Harvard committee that proposed that the criterion for the definition of death be irreversible coma and then refers to the debate over the whole brain death formula, emphasizing the integrated function of the organism and higher brain formula, taking consciousness and personality as essential human characteristics. It follows with the contribution of information technology in personalized and precision medicine and anti-aging measures aimed at life prolongation. It also touches on the possibility of the creation of human-machine hybrids and how this raises ontological and ethical issues that concern the “cyborgization” of human beings and the conception of the organism and personhood based on a post/transhumanist essence, and, furthermore, if sentient AI capable of autonomous decision-making that might even surpass human intelligence (singularity, superintelligence) deserves moral or legal personhood. Finally, there is the question as to whether death and dying should be redefined at a transcendent level, which is reinforced by already-existing technologies of “virtual after-” life and the possibility of uploading human minds. In the last section, I refer to the current (and future) applications of nanomedicine in diagnostics, therapeutics, implants, and tissue engineering as well as the aspiration to “immortality” by cryonics. The definition of death is reformulated since age and disease elimination may be realized, and the criterion of irreversibility may be challenged.

Keywords: death, posthumanism, infomedicine, nanomedicine, cryonics

Procedia PDF Downloads 70
662 Modern Well Logs Technology to Improve Geological Model for Libyan Deep Sand Stone Reservoir

Authors: Tarek S. Duzan, Fisal Ben Ammer, Mohamed Sula

Abstract:

In some places within Sirt Basin-Libya, it has been noticed that seismic data below pre-upper cretaceous unconformity (PUK) is hopeless to resolve the large-scale structural features and is unable to fully determine reservoir delineation. Seismic artifacts (multiples) are observed in the reservoir zone (Nubian Formation) below PUK, which complicate the process of seismic interpretation. The nature of the unconformity and the structures below are still ambiguous and not fully understood which generates a significant gap in characterizing the geometry of the reservoir, the uncertainty accompanied with lack of reliable seismic data creates difficulties in building a robust geological model. High resolution dipmeter is highly useful in steeply dipping zones. This paper uses FMl and OBMl borehole images (dipmeter) to analyze the structures below the PUK unconformity from two wells drilled recently in the North Gialo field (a mature reservoir). In addition, borehole images introduce new evidences that the PUK unconformity is angular and the bedding planes within the Nubian formation (below PUK) are significantly titled. Structural dips extracted from high resolution borehole images are used to construct a new geological model by the utilization of latest software technology. Therefore, it is important to use the advance well logs technology such as FMI-HD for any future drilling and up-date the existing model in order to minimize the structural uncertainty.

Keywords: FMI (formation micro imager), OBMI (oil base mud imager), UBI (ultra sonic borehole imager), nub sandstone reservoir in North gialo

Procedia PDF Downloads 319
661 Shallow Water Lidar System in Measuring Erosion Rate of Coarse-Grained Materials

Authors: Ghada S. Ellithy, John. W. Murphy, Maureen K. Corcoran

Abstract:

Erosion rate of soils during a levee or dam overtopping event is a major component in risk assessment evaluation of breach time and downstream consequences. The mechanism and evolution of dam or levee breach caused by overtopping erosion is a complicated process and difficult to measure during overflow due to accessibility and quickly changing conditions. In this paper, the results of a flume erosion tests are presented and discussed. The tests are conducted on a coarse-grained material with a median grain size D50 of 5 mm in a 1-m (3-ft) wide flume under varying flow rates. Each test is performed by compacting the soil mix r to its near optimum moisture and dry density as determined from standard Proctor test in a box embedded in the flume floor. The box measures 0.45 m wide x 1.2 m long x 0.25 m deep. The material is tested several times at varying hydraulic loading to determine the erosion rate after equal time intervals. The water depth, velocity are measured at each hydraulic loading, and the acting bed shear is calculated. A shallow water lidar (SWL) system was utilized to record the progress of soil erodibility and water depth along the scanned profiles of the tested box. SWL is a non-contact system that transmits laser pulses from above the water and records the time-delay between top and bottom reflections. Results from the SWL scans are compared with before and after manual measurements to determine the erosion rate of the soil mix and other erosion parameters.

Keywords: coarse-grained materials, erosion rate, LIDAR system, soil erosion

Procedia PDF Downloads 112
660 Spiritual Warriors: Christian Testimony and Psychotherapy in Ritual Abuse Memoir

Authors: Jocelyn Cohen

Abstract:

This paper identifies a powerful synchronicity of two traditions of life-story writing in the autobiographies of ritual abuse (RA) survivors, the Christian conversion narrative and the memoir of healing from childhood sexual trauma. Using methodologies from literary studies, history, and psychology, a close reading of three RA memoirs sheds light on a taboo and deeply suspect form of violence. Treatment of RA survivors and the unique role of psychotherapists, in particular, deserve far greater attention from multi-disciplinary scholars. Each story reflects salient characteristics of the Christian conversion narrative, a genre which originated in the US in the early 19th century with the serendipitous confluence of the simultaneous emergence of print culture and the basic structures of evangelicalism during the Second Great Awakening. The impulse of writing is thus to give testimony against the sin they witnessed and endured as young children during ritual violence perpetrated within the church. Importantly, RA is seen as an inherent if obscure aspect of Christian discourse itself, not in opposition to it, and not as an aberration. In RA's memoir, healing comes in part from the Christian narrative praxis of personal redemption, framed as prevailing in a war between good and evil. In other words, storytelling itself affects the healing, much as it does by means of each writer’s 'talking cure,' in the relationship with a psychotherapist who guides her through a repair of the life-story through the excavation of traumatic memories and their integration into the writer’s psyche. Integrating literary techniques into the psychotherapeutic relationship, therapists leverage the deep linguistic structures that clients possess as a resource to aid in their healing.

Keywords: memoir, psychotherapy, religion, trauma

Procedia PDF Downloads 124
659 Effective Student Engaging Strategies to Enhance Academic Learning in Middle Eastern Classrooms: An Action Research Approach

Authors: Anjum Afrooze

Abstract:

The curriculum at General Sciences department in Prince Sultan University includes ‘Physical science’ for Computer Science, Information Technology and Business courses. Students are apathetic towards Physical Science and question, as to, ‘How this course is related to their majors?’ English is not a native language for the students and also for many instructors. More than sixty percent of the students come from institutions where English is not the medium of instruction, which makes student learning and academic achievement challenging. After observing the less enthusiastic student cohort for two consecutive semesters, the instructor was keen to find effective strategies to enhance learning and further encourage deep learning by engaging students in different tasks to empower them with necessary skills and motivate them. This study is participatory action research, in which instructor designs effective tasks to engage students in their learning. The study is conducted through two semesters with a total of 200 students. The effectiveness of this approach is studied using questionnaire at the end of each semester and teacher observation. Major outcomes of this study were overall improvement in students attitude towards science learning, enhancement of multiple skills like note taking, problem solving, language proficiency and also fortifying confidence. This process transformed instructor into engaging and reflecting practitioner. Also, these strategies were implemented by other instructors teaching the course and proved effective in opening a path to changes in related areas of the course curriculum. However, refinement in the strategies could be done based on student evaluation and instructors observation.

Keywords: group activity, language proficiency, reasoning skills, science learning

Procedia PDF Downloads 145
658 Efficient DNN Training on Heterogeneous Clusters with Pipeline Parallelism

Authors: Lizhi Ma, Dan Liu

Abstract:

Pipeline parallelism has been widely used to accelerate distributed deep learning to alleviate GPU memory bottlenecks and to ensure that models can be trained and deployed smoothly under limited graphics memory conditions. However, in highly heterogeneous distributed clusters, traditional model partitioning methods are not able to achieve load balancing. The overlap of communication and computation is also a big challenge. In this paper, HePipe is proposed, an efficient pipeline parallel training method for highly heterogeneous clusters. According to the characteristics of the neural network model pipeline training task, oriented to the 2-level heterogeneous cluster computing topology, a training method based on the 2-level stage division of neural network modeling and partitioning is designed to improve the parallelism. Additionally, a multi-forward 1F1B scheduling strategy is designed to accelerate the training time of each stage by executing the computation units in advance to maximize the overlap between the forward propagation communication and backward propagation computation. Finally, a dynamic recomputation strategy based on task memory requirement prediction is proposed to improve the fitness ratio of task and memory, which improves the throughput of the cluster and solves the memory shortfall problem caused by memory differences in heterogeneous clusters. The empirical results show that HePipe improves the training speed by 1.6×−2.2× over the existing asynchronous pipeline baselines.

Keywords: pipeline parallelism, heterogeneous cluster, model training, 2-level stage partitioning

Procedia PDF Downloads 18
657 HLB Disease Detection in Omani Lime Trees using Hyperspectral Imaging Based Techniques

Authors: Jacintha Menezes, Ramalingam Dharmalingam, Palaiahnakote Shivakumara

Abstract:

In the recent years, Omani acid lime cultivation and production has been affected by Citrus greening or Huanglongbing (HLB) disease. HLB disease is one of the most destructive diseases for citrus, with no remedies or countermeasures to stop the disease. Currently used Polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay (ELISA) HLB detection tests require lengthy and labor-intensive laboratory procedures. Furthermore, the equipment and staff needed to carry out the laboratory procedures are frequently specialized hence making them a less optimal solution for the detection of the disease. The current research uses hyperspectral imaging technology for automatic detection of citrus trees with HLB disease. Omani citrus tree leaf images were captured through portable Specim IQ hyperspectral camera. The research considered healthy, nutrition deficient, and HLB infected leaf samples based on the Polymerase chain reaction (PCR) test. The highresolution image samples were sliced to into sub cubes. The sub cubes were further processed to obtain RGB images with spatial features. Similarly, RGB spectral slices were obtained through a moving window on the wavelength. The resized spectral-Spatial RGB images were given to Convolution Neural Networks for deep features extraction. The current research was able to classify a given sample to the appropriate class with 92.86% accuracy indicating the effectiveness of the proposed techniques. The significant bands with a difference in three types of leaves are found to be 560nm, 678nm, 726 nm and 750nm.

Keywords: huanglongbing (HLB), hyperspectral imaging (HSI), · omani citrus, CNN

Procedia PDF Downloads 80