Search results for: mixed models
7995 Suicide, Help-Seeking and LGBT Youth: A Mixed Methods Study
Authors: Elizabeth McDermott, Elizabeth Hughes, Victoria Rawlings
Abstract:
Globally, suicide is the second leading cause of death among 15–29 year-olds. Young people who identify as lesbian, gay, bisexual and transgender (LGBT) have elevated rates of suicide and self-harm. Despite the increased risk, there is a paucity of research on LGBT help-seeking and suicidality. This is the first national study to investigate LGBT youth help-seeking for suicidal feelings and self-harm. We report on a UK sequential exploratory mixed method study that employed face-to-face and online methods in two stages. Stage one involved 29 online (n=15) and face-to-face (n=14) semi-structured interviews with LGBT youth aged under 25 years old. Stage two utilized an online LGBT youth questionnaire employing a community-based sampling strategy (n=789). We found across the sample that LGBT youth who self-harmed or felt suicidal were reluctant to seek help. Results indicated that participants were normalizing their emotional distress and only asked for help when they reached crisis point and were no longer coping. Those who self-harmed (p<0.001, OR=2.82), had attempted or planned suicide (p<0.05, OR=1.48), or had experience of abuse related to their sexuality or gender (p<0.01, OR=1.80), were most likely to seek help. There were a number of interconnecting reasons that contributed to participants’ problems accessing help. The most prominent of these were: negotiating norms in relation to sexuality, gender, mental health and age; being unable to talk about emotions, and coping and self-reliance. It is crucial that policies and practices that aim to prevent LGBT youth suicide recognize that norms and normalizing processes connected to sexual orientation and gender identity are additional difficulties that LGBT youth have accessing mental health support.Keywords: help-seeking, LGBT, suicide, youth
Procedia PDF Downloads 2767994 Understanding the Nature of Student Conceptions of Mathematics: A Study of Mathematics Students in Higher Education
Authors: Priscilla Eng Lian Murphy
Abstract:
This study examines the nature of student conceptions of mathematics in higher education using quantitative research methods. This study validates the Short Form of Conception of Mathematics survey as well as reveals the epistemological nature of student conceptions of mathematics. Using a random sample of mathematics students in Australia and New Zealand (N=274), this paper highlighted three key findings, of relevance to lecturers in higher education. Firstly, descriptive data shows that mathematics students in Australia and New Zealand reported that mathematics is about numbers and components, models and life. Secondly, models conceptions of mathematics predicted strong examination performances using regression analyses; and thirdly, there is a positive correlation between high mathematics examination scores and cohesive conceptions of mathematics.Keywords: higher education, learning mathematics, mathematics performances, student conceptions of mathematics
Procedia PDF Downloads 2667993 Factors Affecting Harvested Rain Water Quality and Quantity in Yatta Area, Palestine
Authors: Nibal Al-Batsh, Issam Al-Khatib, Subha Ghannam
Abstract:
Yatta is the study area for this research, located 9 km south of Hebron City in the West Bank in Palestine. It has been connected to a water network since 1974 serving nearly 85% of the households. The water network is old and inadequate to meet the needs of the population. The water supply made available to the area is also very limited, estimated to be around 20 l/c.d. Residents are thus forced to rely on water vendors which supply water with a lower quality compared to municipal water while being 400% more expensive. As a cheaper and more reliable alternative, rainwater harvesting is a common practice in the area, with the majority of the households owning at least one cistern. Rainwater harvesting is of great socio-economic importance in areas where water sources are scarce or polluted. The quality of harvested rainwater used for drinking and domestic purposes in the Yatta area was assessed throughout a year long period. A total of 100 water samples were collected from (50 rainfed cisterns) with an average capacity of 69 m3, adjacent to cement-roof catchment with an average area of 145 m2. Samples were analyzed for a number of parameters including: pH, Alkalinity, Hardness, Turbidity, Total Dissolved Solids (TDS), NO3, NH4, chloride and salinity. Microbiological contents such as Total Coliforms (TC) and Fecal Coliforms (FC) bacteria were also analyzed. Results showed that most of the rainwater samples were within WHO and EPA guidelines set for chemical parameters while revealing biological contamination. The pH values of mixed water ranged from 6.9 to 8.74 with a mean value of 7.6. collected Rainwater had lower pH values than mixed water ranging from 7.00 to 7.57 with a mean of 7.21. Rainwater also had lower average values of conductivity (389.11 µScm-1) compared to that of mixed water (463.74 µScm-1) thus indicating lower values of salinity (0.75%). The largest TDS value measured in rainwater was 316 mg/l with a mean of 199.86 mg /l. As far as microbiological quality is concerned, TC and FC were detected in 99%, 52% of collected rainwater samples, respectively. The research also addressed the impact of different socio-economic attributes on rainwater harvesting using information collected through a survey from the area. Results indicated that the majority of homeowners have the primary knowledge necessary to collect and store water in cisterns. Most of the respondents clean both the cisterns and the catchment areas. However, the research also arrives at a conclusion that cleaning is not done in a proper manner. Results show that cisterns with an operating capacity of 69 m3 would provide sufficient water to get through the dry summer months. However, the catchment area must exceed 146 m2 to produce sufficient water to fill a cistern of this size in a year receiving average precipitation.Keywords: rainwater harvesting, runoff coefficient, water quality, microbiological contamination
Procedia PDF Downloads 2867992 Finite Element Modelling of a 3D Woven Composite for Automotive Applications
Authors: Ahmad R. Zamani, Luigi Sanguigno, Angelo R. Maligno
Abstract:
A 3D woven composite, designed for automotive applications, is studied using Abaqus Finite Element (FE) software suite. Python scripts were developed to build FE models of the woven composite in Complete Abaqus Environment (CAE). They can read TexGen or WiseTex files and automatically generate consistent meshes of the fabric and the matrix. A user menu is provided to help define parameters for the FE models, such as type and size of the elements in fabric and matrix as well as the type of matrix-fabric interaction. Node-to-node constraints were imposed to guarantee periodicity of the deformed shapes at the boundaries of the representative volume element of the composite. Tensile loads in three axes and biaxial loads in x-y directions have been applied at different Fibre Volume Fractions (FVFs). A simple damage model was implemented via an Abaqus user material (UMAT) subroutine. Existing tools for homogenization were also used, including voxel mesh generation from TexGen as well as Abaqus Micromechanics plugin. Linear relations between homogenised elastic properties and the FVFs are given. The FE models of composite exhibited balanced behaviour with respect to warp and weft directions in terms of both stiffness and strength.Keywords: 3D woven composite (3DWC), meso-scale finite element model, homogenisation of elastic material properties, Abaqus Python scripting
Procedia PDF Downloads 1467991 Using Infrared Thermography, Photogrammetry and a Remotely Piloted Aircraft System to Create 3D Thermal Models
Authors: C. C. Kruger, P. Van Tonder
Abstract:
Concrete deteriorates over time and the deterioration can be escalated due to multiple factors. When deteriorations are beneath the concrete’s surface, they could be unknown, even more so when they are located at high elevations. Establishing the severity of such defects could prove difficult and therefore the need to find efficient, safe and economical methods to find these defects becomes ever more important. Current methods using thermography to find defects require equipment such as scaffolding to reach these higher elevations. This could become time- consuming and costly. The risks involved with personnel scaffold or abseil to such heights are high. Accordingly, by combining the technologies of a thermal camera and a Remotely Piloted Aerial System it could be used to find better diagnostic methods. The data could then be constructed into a 3D thermal model to easy representation of the resultsKeywords: concrete, infrared thermography, 3D thermal models, diagnostic
Procedia PDF Downloads 1737990 Practice, Observation, and Gender Effects on Students’ Entrepreneurial Skills Development When Teaching through Entrepreneurship Is Adopted: Case of University of Tunis El Manar
Authors: Hajer Chaker Ben Hadj Kacem, Thouraya Slama, Néjiba El Yetim Zribi
Abstract:
This paper analyzes the effects of gender, affiliation, prior work experience, social work, and vicarious learning through family role models on entrepreneurial skills development by students when they have learned through the entrepreneurship method in Tunisia. Authors suggest that these variables enhance the development of students’ entrepreneurial skills when combined with teaching through entrepreneurship. The article assesses the impact of these combinations by comparing their effects on the development of thirteen students’ entrepreneurial competencies, namely entrepreneurial mindset, core self-evaluation, entrepreneurial attitude, entrepreneurial knowledge, creativity, financial literacy, managing ambiguity, marshaling of resources, planning, teaching methods, entrepreneurial teachers, innovative employee, and Entrepreneurial intention. Authors use a two-sample independent t-test to make the comparison, and the results indicate that, when combined with teaching through the entrepreneurship method, students with prior work experience developed better six entrepreneurial skills; students with social work developed better three entrepreneurial skills, men developed better four entrepreneurial skills than women. However, all students developed their entrepreneurial skills through this practical method regardless of their affiliation and their vicarious learning through family role models.Keywords: affiliation, entrepreneurial skills, gender, role models, social work, teaching through entrepreneurship, vicarious learning, work experience
Procedia PDF Downloads 1117989 Comparative Study of Static and Dynamic Bending Forces during 3-Roller Cone Frustum Bending Process
Authors: Mahesh K. Chudasama, Harit K. Raval
Abstract:
3-roller conical bending process is widely used in the industries for manufacturing of conical sections and shells. It involves static as well dynamic bending stages. Analytical models for prediction of bending force during static as well as dynamic bending stage are available in the literature. In this paper, bending forces required for static bending stage and dynamic bending stages have been compared using the analytical models. It is concluded that force required for dynamic bending is very less as compared to the bending force required during the static bending stage.Keywords: analytical modeling, cone frustum, dynamic bending, static bending
Procedia PDF Downloads 3087988 Object-Based Flow Physics for Aerodynamic Modelling in Real-Time Environments
Authors: William J. Crowther, Conor Marsh
Abstract:
Object-based flow simulation allows fast computation of arbitrarily complex aerodynamic models made up of simple objects with limited flow interactions. The proposed approach is universally applicable to objects made from arbitrarily scaled ellipsoid primitives at arbitrary aerodynamic attitude and angular rate. The use of a component-based aerodynamic modelling approach increases efficiency by allowing selective inclusion of different physics models at run-time and allows extensibility through the development of new models. Insight into the numerical stability of the model under first order fixed-time step integration schemes is provided by stability analysis of the drag component. The compute cost of model components and functions is evaluated and compared against numerical benchmarks. Model static outputs are verified against theoretical expectations and dynamic behaviour using falling plate data from the literature. The model is applied to a range of case studies to demonstrate the efficacy of its application in extensibility, ease of use, and low computational cost. Dynamically complex multi-body systems can be implemented in a transparent and efficient manner, and we successfully demonstrate large scenes with hundreds of objects interacting with diverse flow fields.Keywords: aerodynamics, real-time simulation, low-order model, flight dynamics
Procedia PDF Downloads 1037987 Modeling the Effects of Temperature on Ambient Air Quality Using AERMOD
Authors: Mustapha Babatunde, Bassam Tawabini, Ole John Nielson
Abstract:
Air dispersion (AD) models such as AERMOD are important tools for estimating the environmental impacts of air pollutant emissions into the atmosphere from anthropogenic sources. The outcome of these models is significantly linked to the climate condition like air temperature, which is expected to differ in the future due to the global warming phenomenon. With projections from scientific sources of impending changes to the future climate of Saudi Arabia, especially anticipated temperature rise, there is a potential direct impact on the dispersion patterns of air pollutants results from AD models. To our knowledge, no similar studies were carried out in Saudi Arabia to investigate such impact. Therefore, this research investigates the effects of climate temperature change on air quality in the Dammam Metropolitan area, Saudi Arabia, using AERMOD coupled with Station data using Sulphur dioxide (SO₂) – as a model air pollutant. The research uses AERMOD model to predict the SO₂ dispersion trends in the surrounding area. Emissions from five (5) industrial stacks on twenty-eight (28) receptors in the study area were considered for the climate period (2010-2019) and future period of mid-century (2040-2060) under different scenarios of elevated temperature profiles (+1ᵒC, + 3ᵒC and + 5ᵒC) across averaging time periods of 1hr, 4hr and 8hr. Results showed that levels of SO₂ at the receiving sites under current and simulated future climactic condition fall within the allowable limit of WHO and KSA air quality standards. Results also revealed that the projected rise in temperature would only have mild increment on the SO₂ concentration levels. The average increase of SO₂ levels was 0.04%, 0.14%, and 0.23% due to the temperature increase of 1, 3, and 5 degrees, respectively. In conclusion, the outcome of this work elucidates the degree of the effects of global warming and climate changes phenomena on air quality and can help the policymakers in their decision-making, given the significant health challenges associated with ambient air pollution in Saudi Arabia.Keywords: air quality, sulfur dioxide, dispersion models, global warming, KSA
Procedia PDF Downloads 837986 Leveraging SHAP Values for Effective Feature Selection in Peptide Identification
Authors: Sharon Li, Zhonghang Xia
Abstract:
Post-database search is an essential phase in peptide identification using tandem mass spectrometry (MS/MS) to refine peptide-spectrum matches (PSMs) produced by database search engines. These engines frequently face difficulty differentiating between correct and incorrect peptide assignments. Despite advances in statistical and machine learning methods aimed at improving the accuracy of peptide identification, challenges remain in selecting critical features for these models. In this study, two machine learning models—a random forest tree and a support vector machine—were applied to three datasets to enhance PSMs. SHAP values were utilized to determine the significance of each feature within the models. The experimental results indicate that the random forest model consistently outperformed the SVM across all datasets. Further analysis of SHAP values revealed that the importance of features varies depending on the dataset, indicating that a feature's role in model predictions can differ significantly. This variability in feature selection can lead to substantial differences in model performance, with false discovery rate (FDR) differences exceeding 50% between different feature combinations. Through SHAP value analysis, the most effective feature combinations were identified, significantly enhancing model performance.Keywords: peptide identification, SHAP value, feature selection, random forest tree, support vector machine
Procedia PDF Downloads 307985 Interaction of Phytochemicals Present in Green Tea, Honey and Cinnamon to Human Melanocortin 4 Receptor
Authors: Chinmayee Choudhury
Abstract:
Human Melanocortin 4 Receptor (HMC4R) is one of the most potential drug targets for the treatment of obesity which controls the appetite. A deletion of the residues 88-92 in HMC4R is sometimes the cause of severe obesity in the humans. In this study, two homology models are constructed for the normal as well as mutated HMC4Rs and some phytochemicals present in Green Tea, Honey and Cinnamon have been docked to them to study their differential binding to the normal and mutated HMC4R as compared to the natural agonist α- MSH. Two homology models have been constructed for the normal as well as mutated HMC4Rs using the Modeller9v7. Some of the phytochemicals present in Green Tea, Honey, and Cinnamon, which have appetite suppressant activities are constructed, minimized and docked to these normal and mutated HMC4R models using ArgusLab 4.0.1. The mode of binding of the phytochemicals with the Normal and Mutated HMC4Rs have been compared. Further, the mode of binding of these phytochemicals with that of the natural agonist α- Melanocyte Stimulating Hormone(α-MSH) to both normal and mutated HMC4Rs have also been studied. It is observed that the phytochemicals Kaempherol, Epigallocatechin-3-gallate (EGCG) present in Green Tea and Honey, Isorhamnetin, Chlorogenic acid, Chrysin, Galangin, Pinocambrin present in Honey, Cinnamaldehyde, Cinnamyl acetate and Cinnamyl alcohol present in Cinnamon have capacity to form more stable complexes with the Mutated HMC4R as compared to α- MSH. So they may be potential agonists of HMC4R to suppress the appetite.Keywords: HMC4R, α-MSH, docking, photochemical, appetite suppressant, homology modelling
Procedia PDF Downloads 1967984 Groupthink: The Dark Side of Team Cohesion
Authors: Farhad Eizakshiri
Abstract:
The potential for groupthink to explain the issues contributing to deterioration of decision-making ability within the unitary team and so to cause poor outcomes attracted a great deal of attention from a variety of disciplines, including psychology, social and organizational studies, political science, and others. Yet what remains unclear is how and why the team members’ strivings for unanimity and cohesion override their motivation to realistically appraise alternative courses of action. In this paper, the findings of a sequential explanatory mixed-methods research containing an experiment with thirty groups of three persons each and interviews with all experimental groups to investigate this issue is reported. The experiment sought to examine how individuals aggregate their views in order to reach a consensual group decision concerning the completion time of a task. The results indicated that groups made better estimates when they had no interaction between members in comparison with the situation that groups collectively agreed on time estimates. To understand the reasons, the qualitative data and informal observations collected during the task were analyzed through conversation analysis, thus leading to four reasons that caused teams to neglect divergent viewpoints and reduce the number of ideas being considered. Reasons found were the concurrence-seeking tendency, pressure on dissenters, self-censorship, and the illusion of invulnerability. It is suggested that understanding the dynamics behind the aforementioned reasons of groupthink will help project teams to avoid making premature group decisions by enhancing careful evaluation of available information and analysis of available decision alternatives and choices.Keywords: groupthink, group decision, cohesiveness, project teams, mixed-methods research
Procedia PDF Downloads 3967983 A System Dynamics Approach to Technological Learning Impact for Cost Estimation of Solar Photovoltaics
Authors: Rong Wang, Sandra Hasanefendic, Elizabeth von Hauff, Bart Bossink
Abstract:
Technological learning and learning curve models have been continuously used to estimate the photovoltaics (PV) cost development over time for the climate mitigation targets. They can integrate a number of technological learning sources which influence the learning process. Yet the accuracy and realistic predictions for cost estimations of PV development are still difficult to achieve. This paper develops four hypothetical-alternative learning curve models by proposing different combinations of technological learning sources, including both local and global technology experience and the knowledge stock. This paper specifically focuses on the non-linear relationship between the costs and technological learning source and their dynamic interaction and uses the system dynamics approach to predict a more accurate PV cost estimation for future development. As the case study, the data from China is gathered and drawn to illustrate that the learning curve model that incorporates both the global and local experience is more accurate and realistic than the other three models for PV cost estimation. Further, absorbing and integrating the global experience into the local industry has a positive impact on PV cost reduction. Although the learning curve model incorporating knowledge stock is not realistic for current PV cost deployment in China, it still plays an effective positive role in future PV cost reduction.Keywords: photovoltaic, system dynamics, technological learning, learning curve
Procedia PDF Downloads 977982 Mathematical Programming Models for Portfolio Optimization Problem: A Review
Authors: Mazura Mokhtar, Adibah Shuib, Daud Mohamad
Abstract:
Portfolio optimization problem has received a lot of attention from both researchers and practitioners over the last six decades. This paper provides an overview of the current state of research in portfolio optimization with the support of mathematical programming techniques. On top of that, this paper also surveys the solution algorithms for solving portfolio optimization models classifying them according to their nature in heuristic and exact methods. To serve these purposes, 40 related articles appearing in the international journal from 2003 to 2013 have been gathered and analyzed. Based on the literature review, it has been observed that stochastic programming and goal programming constitute the highest number of mathematical programming techniques employed to tackle the portfolio optimization problem. It is hoped that the paper can meet the needs of researchers and practitioners for easy references of portfolio optimization.Keywords: portfolio optimization, mathematical programming, multi-objective programming, solution approaches
Procedia PDF Downloads 3507981 Effect of Black Locust Trees on the Nitrogen Dynamics of Black Pine Trees in Shonai Coastal Forest, Japan
Authors: Kazushi Murata, Fabian Watermann, O. B. Herve Gonroudobou, Le Thuy Hang, Toshiro Yamanaka, M. Larry Lopez C.
Abstract:
Aims: Black pine coastal forests play an important role as a windbreak and as a natural barrier to sand and salt spray inland in Japan. The recent invasion of N₂-fxing black locust (Robinia pseudoacacia) trees in these forests is expected to have a nutritional contribution to black pine trees growth. Thus, the effect of this new source of N on black pine trees' N assimilation needs to be assessed. Methods: In order to evaluate this contribution, tree-ring isotopic composition (δ¹⁵N) and nitrogen content (%N) of black pine (Pinus thunbergii) trees in a pure stand (BPP) and a mixed stand (BPM) with black locust (BL) trees were measured for the period 2000–2019 for BPP and BL and 1990–2019 for BPM. The same measurements were conducted in plant tissues and in soil samples. Results: The tree ring δ15N values showed that for the last 30 years, BPM trees gradually switched from BPP to BL-derived soil N starting in the 1990s, becoming the dominant N source from 2000 as no significant diference was found between BPM and BL tree ring δ¹⁵N values from 2000 to 2019. No difference in root and sapwood BPM and BL δ¹⁵N values were found, but BPM foliage (−2.1‰) was different to BPP (−4.4‰) and BL (−0.3‰), which is related to the different N assimilation pathways between BP and BL. Conclusions: Based on the results of this study, the assimilation of BL-derived N inferred from the BPM tissues' δ¹⁵N values is the result of an increase in soil bioavailable N with a higher δ¹⁵N value.Keywords: nitrogen-15, N₂-fxing species, mixed stand, soil, tree rings
Procedia PDF Downloads 667980 Reliability Evaluation of a Payment Model in Mobile E-Commerce Using Colored Petri Net
Authors: Abdolghader Pourali, Mohammad V. Malakooti, Muhammad Hussein Yektaie
Abstract:
A mobile payment system in mobile e-commerce generally have high security so that the user can trust it for doing business deals, sales, paying financial transactions, etc. in the mobile payment system. Since an architecture or payment model in e-commerce only shows the way of interaction and collaboration among users and mortgagers and does not present any evaluation of effectiveness and confidence about financial transactions to stakeholders. In this paper, we try to present a detailed assessment of the reliability of a mobile payment model in the mobile e-commerce using formal models and colored Petri nets. Finally, we demonstrate that the reliability of this system has high value (case study: a secure payment model in mobile commerce.Keywords: reliability, colored Petri net, assessment, payment models, m-commerce
Procedia PDF Downloads 5387979 Applying Arima Data Mining Techniques to ERP to Generate Sales Demand Forecasting: A Case Study
Authors: Ghaleb Y. Abbasi, Israa Abu Rumman
Abstract:
This paper modeled sales history archived from 2012 to 2015 bulked in monthly bins for five products for a medical supply company in Jordan. The sales forecasts and extracted consistent patterns in the sales demand history from the Enterprise Resource Planning (ERP) system were used to predict future forecasting and generate sales demand forecasting using time series analysis statistical technique called Auto Regressive Integrated Moving Average (ARIMA). This was used to model and estimate realistic sales demand patterns and predict future forecasting to decide the best models for five products. Analysis revealed that the current replenishment system indicated inventory overstocking.Keywords: ARIMA models, sales demand forecasting, time series, R code
Procedia PDF Downloads 3867978 Little RAGNER: Toward Lightweight, Generative, Named Entity Recognition through Prompt Engineering, and Multi-Level Retrieval Augmented Generation
Authors: Sean W. T. Bayly, Daniel Glover, Don Horrell, Simon Horrocks, Barnes Callum, Stuart Gibson, Mac Misuira
Abstract:
We assess suitability of recent, ∼7B parameter, instruction-tuned Language Models for Generative Named Entity Recognition (GNER). Alongside Retrieval Augmented Generation (RAG), and supported by task-specific prompting, our proposed Multi-Level Information Retrieval method achieves notable improvements over finetuned entity-level and sentence-level methods. We conclude that language models directed toward this task are highly capable when distinguishing between positive classes (precision). However, smaller models seem to struggle to find all entities (recall). Poorly defined classes such as ”Miscellaneous” exhibit substantial declines in performance, likely due to the ambiguity it introduces to the prompt. This is partially resolved through a self-verification method using engineered prompts containing knowledge of the stricter class definitions, particularly in areas where their boundaries are in danger of overlapping, such as the conflation between the location ”Britain” and the nationality ”British”. Finally, we explore correlations between model performance on the GNER task with performance on relevant academic benchmarks.Keywords: generative named entity recognition, information retrieval, lightweight artificial intelligence, prompt engineering, personal information identification, retrieval augmented generation, self verification
Procedia PDF Downloads 497977 Advances in Machine Learning and Deep Learning Techniques for Image Classification and Clustering
Authors: R. Nandhini, Gaurab Mudbhari
Abstract:
Ranging from the field of health care to self-driving cars, machine learning and deep learning algorithms have revolutionized the field with the proper utilization of images and visual-oriented data. Segmentation, regression, classification, clustering, dimensionality reduction, etc., are some of the Machine Learning tasks that helped Machine Learning and Deep Learning models to become state-of-the-art models for the field where images are key datasets. Among these tasks, classification and clustering are essential but difficult because of the intricate and high-dimensional characteristics of image data. This finding examines and assesses advanced techniques in supervised classification and unsupervised clustering for image datasets, emphasizing the relative efficiency of Convolutional Neural Networks (CNNs), Vision Transformers (ViTs), Deep Embedded Clustering (DEC), and self-supervised learning approaches. Due to the distinctive structural attributes present in images, conventional methods often fail to effectively capture spatial patterns, resulting in the development of models that utilize more advanced architectures and attention mechanisms. In image classification, we investigated both CNNs and ViTs. One of the most promising models, which is very much known for its ability to detect spatial hierarchies, is CNN, and it serves as a core model in our study. On the other hand, ViT is another model that also serves as a core model, reflecting a modern classification method that uses a self-attention mechanism which makes them more robust as this self-attention mechanism allows them to lean global dependencies in images without relying on convolutional layers. This paper evaluates the performance of these two architectures based on accuracy, precision, recall, and F1-score across different image datasets, analyzing their appropriateness for various categories of images. In the domain of clustering, we assess DEC, Variational Autoencoders (VAEs), and conventional clustering techniques like k-means, which are used on embeddings derived from CNN models. DEC, a prominent model in the field of clustering, has gained the attention of many ML engineers because of its ability to combine feature learning and clustering into a single framework and its main goal is to improve clustering quality through better feature representation. VAEs, on the other hand, are pretty well known for using latent embeddings for grouping similar images without requiring for prior label by utilizing the probabilistic clustering method.Keywords: machine learning, deep learning, image classification, image clustering
Procedia PDF Downloads 177976 The Use of Drones in Measuring Environmental Impacts of the Forest Garden Approach
Authors: Andrew J. Zacharias
Abstract:
The forest garden approach (FGA) was established by Trees for the Future (TREES) over the organization’s 30 years of agroforestry projects in Sub-Saharan Africa. This method transforms traditional agricultural systems into highly managed gardens that produce food and marketable products year-round. The effects of the FGA on food security, dietary diversity, and economic resilience have been measured closely, and TREES has begun to closely monitor the environmental impacts through the use of sensors mounted on unmanned aerial vehicles, commonly known as 'drones'. These drones collect thousands of pictures to create 3-D models in both the visible and the near-infrared wavelengths. Analysis of these models provides TREES with quantitative and qualitative evidence of improvements to the annual above-ground biomass and leaf area indices, as measured in-situ using NDVI calculations.Keywords: agroforestry, biomass, drones, NDVI
Procedia PDF Downloads 1587975 An Adjusted Network Information Criterion for Model Selection in Statistical Neural Network Models
Authors: Christopher Godwin Udomboso, Angela Unna Chukwu, Isaac Kwame Dontwi
Abstract:
In selecting a Statistical Neural Network model, the Network Information Criterion (NIC) has been observed to be sample biased, because it does not account for sample sizes. The selection of a model from a set of fitted candidate models requires objective data-driven criteria. In this paper, we derived and investigated the Adjusted Network Information Criterion (ANIC), based on Kullback’s symmetric divergence, which has been designed to be an asymptotically unbiased estimator of the expected Kullback-Leibler information of a fitted model. The analyses show that on a general note, the ANIC improves model selection in more sample sizes than does the NIC.Keywords: statistical neural network, network information criterion, adjusted network, information criterion, transfer function
Procedia PDF Downloads 5707974 Experimental Parameters’ Effects on the Electrical Discharge Machining Performances
Authors: Asmae Tafraouti, Yasmina Layouni, Pascal Kleimann
Abstract:
The growing market for Microsystems (MST) and Micro-Electromechanical Systems (MEMS) is driving the research for alternative manufacturing techniques to microelectronics-based technologies, which are generally expensive and time-consuming. Hot-embossing and micro-injection modeling of thermoplastics appear to be industrially viable processes. However, both require the use of master models, usually made in hard materials such as steel. These master models cannot be fabricated using standard microelectronics processes. Thus, other micromachining processes are used, such as laser machining or micro-electrical discharge machining (µEDM). In this work, µEDM has been used. The principle of µEDM is based on the use of a thin cylindrical micro-tool that erodes the workpiece surface. The two electrodes are immersed in a dielectric with a distance of a few micrometers (gap). When an electrical voltage is applied between the two electrodes, electrical discharges are generated, which cause material machining. In order to produce master models with high resolution and smooth surfaces, it is necessary to well control the discharge mechanism. However, several problems are encountered, such as a random electrical discharge process, the fluctuation of the discharge energy, the electrodes' polarity inversion, and the wear of the micro-tool. The effect of different parameters, such as the applied voltage, the working capacitor, the micro-tool diameter, and the initial gap, has been studied. This analysis helps to improve the machining performances, such as the workpiece surface condition and the lateral crater's gap.Keywords: craters, electrical discharges, micro-electrical discharge machining, microsystems
Procedia PDF Downloads 767973 Production and Distribution Network Planning Optimization: A Case Study of Large Cement Company
Authors: Lokendra Kumar Devangan, Ajay Mishra
Abstract:
This paper describes the implementation of a large-scale SAS/OR model with significant pre-processing, scenario analysis, and post-processing work done using SAS. A large cement manufacturer with ten geographically distributed manufacturing plants for two variants of cement, around 400 warehouses serving as transshipment points, and several thousand distributor locations generating demand needed to optimize this multi-echelon, multi-modal transport supply chain separately for planning and allocation purposes. For monthly planning as well as daily allocation, the demand is deterministic. Rail and road networks connect any two points in this supply chain, creating tens of thousands of such connections. Constraints include the plant’s production capacity, transportation capacity, and rail wagon batch size constraints. Each demand point has a minimum and maximum for shipments received. Price varies at demand locations due to local factors. A large mixed integer programming model built using proc OPTMODEL decides production at plants, demand fulfilled at each location, and the shipment route to demand locations to maximize the profit contribution. Using base SAS, we did significant pre-processing of data and created inputs for the optimization. Using outputs generated by OPTMODEL and other processing completed using base SAS, we generated several reports that went into their enterprise system and created tables for easy consumption of the optimization results by operations.Keywords: production planning, mixed integer optimization, network model, network optimization
Procedia PDF Downloads 717972 Electrical Load Estimation Using Estimated Fuzzy Linear Parameters
Authors: Bader Alkandari, Jamal Y. Madouh, Ahmad M. Alkandari, Anwar A. Alnaqi
Abstract:
A new formulation of fuzzy linear estimation problem is presented. It is formulated as a linear programming problem. The objective is to minimize the spread of the data points, taking into consideration the type of the membership function of the fuzzy parameters to satisfy the constraints on each measurement point and to insure that the original membership is included in the estimated membership. Different models are developed for a fuzzy triangular membership. The proposed models are applied to different examples from the area of fuzzy linear regression and finally to different examples for estimating the electrical load on a busbar. It had been found that the proposed technique is more suited for electrical load estimation, since the nature of the load is characterized by the uncertainty and vagueness.Keywords: fuzzy regression, load estimation, fuzzy linear parameters, electrical load estimation
Procedia PDF Downloads 5427971 Finite Element-Based Stability Analysis of Roadside Settlements Slopes from Barpak to Yamagaun through Laprak Village of Gorkha, an Epicentral Location after the 7.8Mw 2015 Barpak, Gorkha, Nepal Earthquake
Authors: N. P. Bhandary, R. C. Tiwari, R. Yatabe
Abstract:
The research employs finite element method to evaluate the stability of roadside settlements slopes from Barpak to Yamagaon through Laprak village of Gorkha, Nepal after the 7.8Mw 2015 Barpak, Gorkha, Nepal earthquake. It includes three major villages of Gorkha, i.e., Barpak, Laprak and Yamagaun that were devastated by 2015 Gorkhas’ earthquake. The road head distance from the Barpak to Laprak and Laprak to Yamagaun are about 14 and 29km respectively. The epicentral distance of main shock of magnitude 7.8 and aftershock of magnitude 6.6 were respectively 7 and 11 kilometers (South-East) far from the Barpak village nearer to Laprak and Yamagaon. It is also believed that the epicenter of the main shock as said until now was not in the Barpak village, it was somewhere near to the Yamagaun village. The chaos that they had experienced during the earthquake in the Yamagaun was much more higher than the Barpak. In this context, we have carried out a detailed study to investigate the stability of Yamagaun settlements slope as a case study, where ground fissures, ground settlement, multiple cracks and toe failures are the most severe. In this regard, the stability issues of existing settlements and proposed road alignment, on the Yamagaon village slope are addressed, which is surrounded by many newly activated landslides. Looking at the importance of this issue, field survey is carried out to understand the behavior of ground fissures and multiple failure characteristics of the slopes. The results suggest that the Yamgaun slope in Profile 2-2, 3-3 and 4-4 are not safe enough for infrastructure development even in the normal soil slope conditions as per 2, 3 and 4 material models; however, the slope seems quite safe for at Profile 1-1 for all 4 material models. The result also indicates that the first three profiles are marginally safe for 2, 3 and 4 material models respectively. The Profile 4-4 is not safe enough for all 4 material models. Thus, Profile 4-4 needs a special care to make the slope stable.Keywords: earthquake, finite element method, landslide, stability
Procedia PDF Downloads 3487970 Time-Dependent Reliability Analysis of Corrosion Affected Cast Iron Pipes with Mixed Mode Fracture
Authors: Chun-Qing Li, Guoyang Fu, Wei Yang
Abstract:
A significant portion of current water networks is made of cast iron pipes. Due to aging and deterioration with corrosion being the most predominant mechanism, the failure rate of cast iron pipes is very high. Although considerable research has been carried out in the past few decades, most are on the effect of corrosion on the structural capacity of pipes using strength theory as the failure criterion. This paper presents a reliability-based methodology for the assessment of corrosion affected cast iron pipe cracking failures. A nonlinear limit state function taking into account all three fracture modes is proposed for brittle metal pipes with mixed mode fracture. A stochastic model of the load effect is developed, and time-dependent reliability method is employed to quantify the probability of failure and predict the remaining service life. A case study is carried out using the proposed methodology, followed by sensitivity analysis to investigate the effects of the random variables on the probability of failure. It has been found that the larger the inclination angle or the Mode I fracture toughness is, the smaller the probability of pipe failure is. It has also been found that the multiplying and exponential coefficients k and n in the power law corrosion model and the internal pressure have the most influence on the probability of failure for cast iron pipes. The methodology presented in this paper can assist pipe engineers and asset managers in developing a risk-informed and cost-effective strategy for better management of corrosion-affected pipelines.Keywords: corrosion, inclined surface cracks, pressurized cast iron pipes, stress intensity
Procedia PDF Downloads 3227969 Investigation of Failure Mechanisms of Composite Laminates with Delamination and Repaired with Bolts
Authors: Shuxin Li, Peihao Song, Haixiao Hu, Dongfeng Cao
Abstract:
The interactive deformation and failure mechanisms, including local bucking/delamination propagation and global bucking, are investigated in this paper with numerical simulation and validation with experimental results. Three dimensional numerical models using ABAQUS brick elements combined with cohesive elements and contact elements are developed to simulate the deformation and failure characteristics of composite laminates with and without delamination under compressive loading. The zero-thickness cohesive elements are inserted on the possible path of delamination propagation, and the inter-laminate behavior is characterized by the mixed-mode traction-separation law. The numerical simulations identified the complex feature of interaction among local buckling and/or delamination propagation and final global bucking for composite laminates with delamination under compressive loading. Firstly there is an interaction between the local buckling and delamination propagation, i.e., local buckling induces delamination propagation, and then delamination growth further enhances the local buckling. Secondly, the interaction between the out-plan deformation caused by local buckling and the global bucking deformation results in final failure of the composite laminates. The simulation results are validated by the good agreement with the experimental results published in the literature. The numerical simulation validated with experimental results revealed that the degradation of the load capacity, in particular of the compressive strength of composite structures with delamination, is mainly attributed to the combined local buckling/delamination propagation effects. Consequently, a simple field-bolt repair approach that can hinder the local buckling and prevent delamination growth is explored. The analysis and simulation results demonstrated field-bolt repair could effectively restore compressive strength of composite laminates with delamination.Keywords: cohesive elements, composite laminates, delamination, local and global bucking, field-bolt repair
Procedia PDF Downloads 1207968 Application of Adaptive Architecture in Building Technologies: A Case Study of Neuhoff Site in Nashville, Tennessee
Authors: Shohreh Moshiri, Hossein Alimohammadi
Abstract:
Building construction has a great impact on climate change. Adaptive design strategies were developed to provide new life and purpose to old buildings and create new environments with economic benefits to meet resident needs. The role of smart material systems is undeniable in providing adaptivity of the architectural environments and their effects on creating better adaptive building environments. In this research, a case study named Neuhoff site located near Cumberland River in the Germantown neighborhood in the city of Nashville, Tennessee, was considered. This building in the early 1920s was constructed as a meat-packing facility and then served as a mixed-use space; however, New City has partnered with world-class architects to reinvent this site to be changed to mixed-use waterfront development. The future office space will be designed with LEED certification as a goal. Environmentally friendly sensitive materials and designs will offer for all adaptive reuse of the building. The smart materials and their applications, especially in the field of building technology and architecture, were emphasized in providing a renovation plan for the site. The advantages and qualities of smart material systems were targeted to explore in this research on the field of architecture. Also, this research helps to understand better the effects of smart material systems on the construction and design processes, exploration of the way to make architecture with better adaptive characteristics, plus provide optimal environmental situations for the users, which reflect on the climatic, structural, and architectural performances.Keywords: adaptive architecture, building technology, case study, smart material systems
Procedia PDF Downloads 737967 A Bathtub Curve from Nonparametric Model
Authors: Eduardo C. Guardia, Jose W. M. Lima, Afonso H. M. Santos
Abstract:
This paper presents a nonparametric method to obtain the hazard rate “Bathtub curve” for power system components. The model is a mixture of the three known phases of a component life, the decreasing failure rate (DFR), the constant failure rate (CFR) and the increasing failure rate (IFR) represented by three parametric Weibull models. The parameters are obtained from a simultaneous fitting process of the model to the Kernel nonparametric hazard rate curve. From the Weibull parameters and failure rate curves the useful lifetime and the characteristic lifetime were defined. To demonstrate the model the historic time-to-failure of distribution transformers were used as an example. The resulted “Bathtub curve” shows the failure rate for the equipment lifetime which can be applied in economic and replacement decision models.Keywords: bathtub curve, failure analysis, lifetime estimation, parameter estimation, Weibull distribution
Procedia PDF Downloads 4467966 Influence of Loudness Compression on Hearing with Bone Anchored Hearing Implants
Authors: Anja Kurz, Marc Flynn, Tobias Good, Marco Caversaccio, Martin Kompis
Abstract:
Bone Anchored Hearing Implants (BAHI) are routinely used in patients with conductive or mixed hearing loss, e.g. if conventional air conduction hearing aids cannot be used. New sound processors and new fitting software now allow the adjustment of parameters such as loudness compression ratios or maximum power output separately. Today it is unclear, how the choice of these parameters influences aided speech understanding in BAHI users. In this prospective experimental study, the effect of varying the compression ratio and lowering the maximum power output in a BAHI were investigated. Twelve experienced adult subjects with a mixed hearing loss participated in this study. Four different compression ratios (1.0; 1.3; 1.6; 2.0) were tested along with two different maximum power output settings, resulting in a total of eight different programs. Each participant tested each program during two weeks. A blinded Latin square design was used to minimize bias. For each of the eight programs, speech understanding in quiet and in noise was assessed. For speech in quiet, the Freiburg number test and the Freiburg monosyllabic word test at 50, 65, and 80 dB SPL were used. For speech in noise, the Oldenburg sentence test was administered. Speech understanding in quiet and in noise was improved significantly in the aided condition in any program, when compared to the unaided condition. However, no significant differences were found between any of the eight programs. In contrast, on a subjective level there was a significant preference for medium compression ratios of 1.3 to 1.6 and higher maximum power output.Keywords: Bone Anchored Hearing Implant, baha, compression, maximum power output, speech understanding
Procedia PDF Downloads 387