Search results for: mechanical test
10872 Predictor Factors in Predictive Model of Soccer Talent Identification among Male Players Aged 14 to 17 Years
Authors: Muhamad Hafiz Ismail, Ahmad H., Nelfianty M. R.
Abstract:
The longitudinal study is conducted to identify predictive factors of soccer talent among male players aged 14 to 17 years. Convenience sampling involving elite respondents (n=20) and sub-elite respondents (n=20) male soccer players. Descriptive statistics were reported as frequencies and percentages. The inferential statistical analysis is used to report the status of reliability, independent samples t-test, paired samples t-test, and multiple regression analysis. Generally, there are differences in mean of height, muscular strength, muscular endurance, cardiovascular endurance, task orientation, cognitive anxiety, self-confidence, juggling skills, short pass skills, long pass skills, dribbling skills, and shooting skills for 20 elite players and sub-elite players. Accordingly, there was a significant difference between pre and post-test for thirteen variables of height, weight, fat percentage, muscle strength, muscle endurance, cardiovascular endurance, flexibility, BMI, task orientation, juggling skills, short pass skills, a long pass skills, and dribbling skills. Based on the first predictive factors (physical), second predictive factors (fitness), third predictive factors (psychological), and fourth predictive factors (skills in playing football) pledged to the soccer talent; four multiple regression models were produced. The first predictive factor (physical) contributed 53.5 percent, supported by height and percentage of fat in soccer talents. The second predictive factor (fitness) contributed 63.2 percent and the third predictive factors (psychology) contributed 66.4 percent of soccer talent. The fourth predictive factors (skills) contributed 59.0 percent of soccer talent. The four multiple regression models could be used as a guide for talent scouting for soccer players of the future.Keywords: soccer talent identification, fitness and physical test, soccer skills test, psychological test
Procedia PDF Downloads 15710871 Stress-Strain Relation for Human Trabecular Bone Based on Nanoindentation Measurements
Authors: Marek Pawlikowski, Krzysztof Jankowski, Konstanty Skalski, Anna Makuch
Abstract:
Nanoindentation or depth-sensing indentation (DSI) technique has proven to be very useful to measure mechanical properties of various tissues at a micro-scale. Bone tissue, both trabecular and cortical one, is one of the most commonly tested tissues by means of DSI. Most often such tests on bone samples are carried out to compare the mechanical properties of lamellar and interlamellar bone, osteonal bone as well as compact and cancellous bone. In the paper, a relation between stress and strain for human trabecular bone is presented. The relation is based on the results of nanoindentation tests. The formulation of a constitutive model for human trabecular bone is based on nanoindentation tests. In the study, the approach proposed by Olivier-Pharr is adapted. The tests were carried out on samples of trabecular tissue extracted from human femoral heads. The heads were harvested during surgeries of artificial hip joint implantation. Before samples preparation, the heads were kept in 95% alcohol in temperature 4 Celsius degrees. The cubic samples cut out of the heads were stored in the same conditions. The dimensions of the specimens were 25 mm x 25 mm x 20 mm. The number of 20 samples have been tested. The age range of donors was between 56 and 83 years old. The tests were conducted with the indenter spherical tip of the diameter 0.200 mm. The maximum load was P = 500 mN and the loading rate 500 mN/min. The data obtained from the DSI tests allows one only to determine bone behoviour in terms of nanoindentation force vs. nanoindentation depth. However, it is more interesting and useful to know the characteristics of trabecular bone in the stress-strain domain. This allows one to simulate trabecular bone behaviour in a more realistic way. The stress-strain curves obtained in the study show relation between the age and the mechanical behaviour of trabecular bone. It was also observed that the bone matrix of trabecular tissue indicates an ability of energy absorption.Keywords: constitutive model, mechanical behaviour, nanoindentation, trabecular bone
Procedia PDF Downloads 22210870 Physico-Mechanical Properties of Dir-Volcanics and Its Use as a Dimension Stone from Kohistan Island Arc, North Pakistan
Authors: Muhammad Nawaz, Waqas Ahmad
Abstract:
Dimension stone is used in construction since prehistoric time; however, its use in the construction has gained significant attention for the last few decades. The present study is designed to investigate the physical and strength properties of volcanic rocks from the Kohistan Island Arc to assess their use as dimension stone. On the basis of the composition, color and texture, five varieties of andesites (MMA, PMA-1, PMA-2, CMA and FMA) and two varieties of agglomerates (AG-1 and AG-2) were identified. These were characterized in terms of their petrography (compositional and textural), physical properties (specific gravity, water absorption, porosity) and strength properties (Unconfined compressive strength and Unconfined tensile strength). Two non-destructive tests (Ultrasonic pulse velocity test and Schmidt Hammer) were conducted and the degree of polishing was evaluated. In addition, correlation analyses were carried out to establish possible relationships among these parameters. The presence of chlorite, epidote, sericite and recrystallized quartz showed the signs of low-grade metamorphism in andesites. The results showed feldspar, amphibole and quartz imparted good physical and strength properties to the samples MMA, CMA, FMA, AG1 and AG2. Whereas, the abundance of alteration products such as chlorite, sericite and epidote in PMA-1 and PMA-2 reduced the physical and strength properties. The unconfined compressive strength showed a strong correlation with ultrasonic pulse velocity, dry density, porosity and water absorption. The values of ultrasonic pulse velocity and Schmidt hammer were considerably affected by the weathering grade. The samples PMA-1 and PMA-2, due to their high water absorption and low strength values, were not recommended for use in load-bearing masonry units and outdoor applications. Whereas, the excellent properties, i.e. high strength and good polishing, the samples, FMA and MMA suggested their use as a decorative and facing stone, in the external pavement, ashlar, rubbles and load-bearing masonry units etc.Keywords: Physico-mechanical properties, Volcanic rocks, Kohistan Island Arc, Pakistan
Procedia PDF Downloads 8210869 Development of Gamma Configuration Stirling Engine Using Polymeric and Metallic Additive Manufacturing for Education
Authors: J. Otegui, M. Agirre, M. A. Cestau, H. Erauskin
Abstract:
The increasing accessibility of mid-priced additive manufacturing (AM) systems offers a chance to incorporate this technology into engineering instruction. Furthermore, AM facilitates the creation of manufacturing designs, enhancing the efficiency of various machines. One example of these machines is the Stirling cycle engine. It encompasses complex thermodynamic machinery, revealing various aspects of mechanical engineering expertise upon closer inspection. In this publication, the application of Stirling Engines fabricated via additive manufacturing techniques will be showcased for the purpose of instructive design and product enhancement. The performance of a Stirling engine's conventional displacer and piston is contrasted. The outcomes of utilizing this instructional tool in teaching are demonstrated.Keywords: 3D printing, additive manufacturing, mechanical design, stirling engine.
Procedia PDF Downloads 5110868 Investigation of Mechanical Properties and Wear Behavior of Hot Roller Grades
Authors: Majid Mokhtari, Masoud Bahrami Alamdarlo, Babak Nazari, Hossein Zakerinya, Mehdi Salehi
Abstract:
In this study, microstructure, macro, and microhardness of phases for three grades of cast iron rolls with modified chemical composition using a light microscope (OM) and electron microscopy (SEM) were investigated. The grades were chosen from Chodan Sazan Manufacturing Co. (CSROLL) productions for finishing stands of hot strip mills. The percentage of residual austenite was determined with a ferrite scope magnetic device. Thermal susceptibility testing was also measured. The results show the best oxidation resistance at high temperatures is graphitic high chromium white cast iron alloy. In order to evaluate the final properties of these grades in rolling lines, the results of the Pin on Disk abrasion test showed the superiority of the abrasive behavior of the white chromium graphite cast iron alloy grade sample at the same hardness compared to conventional alloy grades and the enhanced grades.Keywords: hot roller, wear, behavior, microstructure
Procedia PDF Downloads 24110867 A Study of Islamic Stock Indices and Macroeconomic Variables
Authors: Mohammad Irfan
Abstract:
The purpose of this paper is to investigate the relationship among the key macroeconomic variables and Islamic stock market in India. This study is based on the time series data of financial years 2009-2015 to explore the consistency of relationship between macroeconomic variables and Shariah Indices. The ADF (Augmented Dickey–Fuller Test Statistic) and PP (Phillips–Perron Test Statistic) tests are employed to check stationarity of the data. The study depicts the long run relationship between Shariah indices and macroeconomic variables by using the Johansen Co-integration test. BSE Shariah and Nifty Shariah have uni-direct Granger causality. The outcome of VECM is significantly confirming the applicability of best fitted model. Thus, Islamic stock indices are proficiently working for the development of Indian economy. It suggests that by keeping eyes on Islamic stock market which will be more interactive in the future with other macroeconomic variables.Keywords: Indian Shariah Indices, macroeconomic variables, co-integration, Granger causality, vector error correction model (VECM)
Procedia PDF Downloads 28010866 Improvement of the Mechanical Behavior of an Environmental Concrete Based on Demolished
Authors: Larbi Belagraa
Abstract:
The universal need to conserve resources, protect the environment and use energy efficiently must necessarily be felt in the field of concrete technology. The recycling of construction and demolition waste as a source of aggregates for the production of concrete has attracted growing interest from the construction industry. In Algeria, the depletion of natural deposits of aggregates and the difficulties in setting up new quarries; makes it necessary to seek new sources of supply, to meet the need for aggregates for the major projects launched by the Algerian government in the last decades. In this context, this work is a part of the approach to provide answers to concerns about the lack of aggregates for concrete. It also aims to develop the inert fraction of demolition materials and mainly concrete construction demolition waste(C&D) as a source of aggregates for the manufacture of new hydraulic concretes based on recycled aggregates. This experimental study presents the results of physical and mechanical characterizations of natural and recycled aggregates, as well as their influence on the properties of fresh and hardened concrete. The characterization of the materials used has shown that the recycled aggregates have heterogeneity, a high water absorption capacity, and a medium quality hardness. However, the limits prescribed by the standards in force do not disqualify these materials of use for application as recycled aggregate concrete type (RAC). The results obtained from the present study show that acceptable mechanical, compressive, and flexural strengths of RACs are obtained using Superplasticizer SP 45 and 5% replacement of cement with silica fume based on recycled aggregates, compared to those of natural concretes. These mechanical performances demonstrate a characteristic resistance at 28 days in compression within the limits of 30 to 40 MPa without any particular suitable technology .to be adapted in the case.Keywords: recycled aggregates, concrete(RAC), superplasticizer, silica fume, compressive strength
Procedia PDF Downloads 17310865 Green Natural Rubber Composites Reinforced with Synthetic Graphite: Effects of Reinforcing Agent on Film’s Mechanical Properties and Electrical Conductivity
Authors: Veerapat Kitsawat, Muenduen Phisalaphong
Abstract:
Green natural rubber (NR) composites reinforced with synthetic graphite, using alginate as thickening and dispersing agent, were developed to improve mechanical properties and electrical conductivity. The film fabrication was performed using a latex aqueous microdispersion process. The research found that up to 60 parts per hundred rubbers (phr) of graphite could be successfully integrated into the NR matrix without causing agglomeration and phase separation. Accordingly, the mechanical properties, in terms of tensile strength and Young’s modulus of the composite films, were significantly increased, while the elongation at break decreased with higher graphite loading. The reinforcement strongly improved the hydrophilicity of the composite films, resulting in a higher water absorption rate compared to the neat NR film. Moreover, the incorporation of synthetic graphite significantly improved the chemical resistance of the composite films when exposed to toluene. It is demonstrated that the electrical conductivity of the composite films was considerably enhanced with graphite loading. According to the obtained properties, the developed composites offer potential for further development as conductive substrate for electronic applications.Keywords: alginate, composite, graphite, natural rubber
Procedia PDF Downloads 8210864 An Integrated Experimental and Numerical Approach to Develop an Electronic Instrument to Study Apple Bruise Damage
Authors: Paula Pascoal-Faria, Rúben Pereira, Elodie Pinto, Miguel Belbut, Ana Rosa, Inês Sousa, Nuno Alves
Abstract:
Apple bruise damage from harvesting, handling, transporting and sorting is considered to be the major source of reduced fruit quality, resulting in loss of profits for the entire fruit industry. The three factors which can physically cause fruit bruising are vibration, compression load and impact, the latter being the most common source of bruise damage. Therefore, prediction of the level of damage, stress distribution and deformation of the fruits under external force has become a very important challenge. In this study, experimental and numerical methods were used to better understand the impact caused when an apple is dropped from different heights onto a plastic surface and a conveyor belt. Results showed that the extent of fruit damage is significantly higher for plastic surface, being dependent on the height. In order to support the development of a biomimetic electronic device for the determination of fruit damage, the mechanical properties of the apple fruit were determined using mechanical tests. Preliminary results showed different values for the Young’s modulus according to the zone of the apple tested. Along with the mechanical characterization of the apple fruit, the development of the first two prototypes is discussed and the integration of the results obtained to construct the final element model of the apple is presented. This work will help to reduce significantly the bruise damage of fruits or vegetables during the entire processing which will allow the introduction of exportation destines and consequently an increase in the economic profits in this sector.Keywords: apple, fruit damage, impact during crop and post-crop, mechanical characterization of the apple, numerical evaluation of fruit damage, electronic device
Procedia PDF Downloads 30510863 The Usage of Bridge Estimator for Hegy Seasonal Unit Root Tests
Authors: Huseyin Guler, Cigdem Kosar
Abstract:
The aim of this study is to propose Bridge estimator for seasonal unit root tests. Seasonality is an important factor for many economic time series. Some variables may contain seasonal patterns and forecasts that ignore important seasonal patterns have a high variance. Therefore, it is very important to eliminate seasonality for seasonal macroeconomic data. There are some methods to eliminate the impacts of seasonality in time series. One of them is filtering the data. However, this method leads to undesired consequences in unit root tests, especially if the data is generated by a stochastic seasonal process. Another method to eliminate seasonality is using seasonal dummy variables. Some seasonal patterns may result from stationary seasonal processes, which are modelled using seasonal dummies but if there is a varying and changing seasonal pattern over time, so the seasonal process is non-stationary, deterministic seasonal dummies are inadequate to capture the seasonal process. It is not suitable to use seasonal dummies for modeling such seasonally nonstationary series. Instead of that, it is necessary to take seasonal difference if there are seasonal unit roots in the series. Different alternative methods are proposed in the literature to test seasonal unit roots, such as Dickey, Hazsa, Fuller (DHF) and Hylleberg, Engle, Granger, Yoo (HEGY) tests. HEGY test can be also used to test the seasonal unit root in different frequencies (monthly, quarterly, and semiannual). Another issue in unit root tests is the lag selection. Lagged dependent variables are added to the model in seasonal unit root tests as in the unit root tests to overcome the autocorrelation problem. In this case, it is necessary to choose the lag length and determine any deterministic components (i.e., a constant and trend) first, and then use the proper model to test for seasonal unit roots. However, this two-step procedure might lead size distortions and lack of power in seasonal unit root tests. Recent studies show that Bridge estimators are good in selecting optimal lag length while differentiating nonstationary versus stationary models for nonseasonal data. The advantage of this estimator is the elimination of the two-step nature of conventional unit root tests and this leads a gain in size and power. In this paper, the Bridge estimator is proposed to test seasonal unit roots in a HEGY model. A Monte-Carlo experiment is done to determine the efficiency of this approach and compare the size and power of this method with HEGY test. Since Bridge estimator performs well in model selection, our approach may lead to some gain in terms of size and power over HEGY test.Keywords: bridge estimators, HEGY test, model selection, seasonal unit root
Procedia PDF Downloads 34010862 Cellulose Acetate/Polyacrylic Acid Filled with Nano-Hydroxapatite Composites: Spectroscopic Studies and Search for Biomedical Applications
Authors: E. M. AbdelRazek, G. S. ElBahy, M. A. Allam, A. M. Abdelghany, A. M. Hezma
Abstract:
Polymeric biocomposite of hydroxyapatite/polyacrylic acid were prepared and their thermal and mechanical properties were improved by addition of cellulose acetate. FTIR spectroscopy technique and X-ray diffraction analysis were employed to examine the physical and chemical characteristics of the biocomposites. Scanning electron microscopy shows a uniform distribution of HAp nano-particles through the polymeric matrix of two organic/inorganic composites weight ratios (60/40 and 70/30), at which the material crystallinity reaches a considerable value appropriate for the needed applications were studied and revealed that the HAp nano-particles are uniformly distributed in the polymeric matrix. Kinetic parameters were determined from the weight loss data using non isothermal thermogravimetric analysis (TGA). Also, the main degradation steps were described and discussed. The mechanical properties of composites were evaluated by measuring tensile strength and elastic modulus. The data indicate that the addition of cellulose acetate can make homogeneous composites scaffold significantly resistant to higher stress. Elastic modulus of the composites was also improved by the addition of cellulose acetate, making them more appropriate for bioapplications.Keywords: biocomposite, chemical synthesis, infrared spectroscopy, mechanical properties
Procedia PDF Downloads 45710861 Development and Characterization of Biodegradable Films Based on Biopolymer Extracted From Natural Sources
Authors: Dalila Hammiche, Lisa Klaai, Sonia Imzi, Amar Boukerrou
Abstract:
The fight against plastic pollution implies the development of polymers as alternatives to synthetic polymers. Starch is a natural polymer that can easily be plasticized by means of additives. The objective of this work is to develop and characterize biodegradable biofilms based on starch, plasticized by glycerol (20 and 30%). The elaboration of the biofilms was carried out by the casting method under simple conditions. The samples were characterized by infrared spectroscopy analysis with Fourier transform (FTIR), thermogravimetric analysis, and biodegradability test. Infrared spectral analysis showed that the 30% and 20% glycerol films have the same chemical structure and no functional group changes occurred. Thermogravimetric analysis showed that a 30% glycerol film has higher thermal stability than a 20% glycerol film. Biodegradability test showed that the lower the percentage of glycerol, the more easily the biofilm degrades.Keywords: starch, natural sources, FTIR, thermogravimetric analysis, biodegradability test
Procedia PDF Downloads 10210860 Enhancing Academic Achievement of University Student through Stress Management Training: A Study from Southern Punjab, Pakistan
Authors: Rizwana Amin, Afshan Afroze Bhatti
Abstract:
The study was a quasi-experimental pre-post test design including two groups. Data was collected from 127 students through non-probability random sampling from Bahaudin Zakariya University Multan. The groups were given pre-test using perceived stress scale and information about academic achievement was taken by self-report. After screening, 27 participants didn’t meet the criterion. Remaining 100 participants were divided into two groups (experimental and control). Further, 4 students of experimental group denied taking intervention. Then 46 understudies were separated into three subgroups (16, 15 and 15 in each) for training. The experimental groups were given the stress management training, each of experimental group attended one 3-hour training sessions separately while the control group was only given pre-post assessment. The data were analyzed using ANCOVA method (analysis of covariance) t–test. Results of the study indicate that stress training will lead to increased emotional intelligence and academic achievement of students.Keywords: stress, stress management, academic achievement, students
Procedia PDF Downloads 34010859 Study on Parallel Shear Stress of Cement-Wood Composites Using Pinus sp. and Eucalyptus sp. in natura and Treated with CCA
Authors: Rodrigo D. S. Oliveira, Sarah David-Muzel, Maristela Gava, Victor A. De Araujo, Glaucia A. Prates, Juliana Cortez-Barbosa
Abstract:
Improper disposal of treated wood waste is a problem of the timber sector, since this residue is toxic, due to the harmful characteristics of the preservative substances. An environmentally friendly alternative is the use of this waste for the production of cement-wood composites. The aim of this work was to study the possibility of using wood treated with CCA (Chromated Cooper Arsenate) in cement-wood. Specimens of Pinus sp. and Eucalyptus sp. were produced with wood raw in natura and treated with CCA. A test was performed to determine the parallel shear stress of samples after 14 days of drying, according to the Brazilian Standard NBR-7215/97. Based on the analyzed results it is concluded that the use of wood treated with CCA is not feasible in cement-wood production, because the composite samples of treated wood showed lower mechanical strength in shear stress than those with wood in natura.Keywords: waste recovery, wood composites, cement-wood, wood preservation, chromated copper arsenate
Procedia PDF Downloads 62010858 Applicability of the Rapid Estimate of Adult Health Literacy in Medicine (Short Form) among Patients in Dakshina Kannada District, Karnataka, India
Authors: U. P. Rathnakar, Medha Urval, K. Ashok Shenoy
Abstract:
Introduction: There are many tools available for the measurement of health literacy. REALM (Rapid Estimate of Adult Literacy in Medicine) is a very commonly used tool in advanced countries. It comes in two forms-one with 66 words and shorter version (REALM-SF) with seven words. We decided to test the applicability of shorter version of the REALM test among our patients. Methodology: REALM (SF) was tested among 200 patients in a tertiary hospital. Discussion and conclusion: From the analysis of results, when the results of pronunciation indicate adequate levels of HL skills, analysis of comprehension shows that mere reading skills is likely to be misleading. So it is proposed that in Indian population who have adequate reading skills without adequate comprehension the REALM-SF test tool in its present form may not be an ideal testing tool for assessing HL.Keywords: health literacy, REALM, short form, India
Procedia PDF Downloads 46810857 Advantages of Vibration in the GMAW Process for Improving the Quality and Mechanical Properties
Authors: C. A. C. Castro, D. C. Urashima, E. P. Silva, P. M. L. Silva
Abstract:
Since 1920, the industry has almost completely changed the rivets production techniques for the manufacture of permanent welding join production of structures and manufacture of other products. The welding arc is the process more widely used in industries. This is accomplished by the heat of an electric arc which melts the base metal while the molten metal droplets are transferred through the arc to the welding pool, protected from the atmosphere by a gas curtain. The GMAW (Gas metal arc welding) process is influenced by variables such as: Current, polarity, welding speed, electrode, extension, position, moving direction; type of joint, welder's ability, among others. It is remarkable that the knowledge and control of these variables are essential for obtaining satisfactory quality welds, knowing that are interconnected so that changes in one of them requiring changes in one or more of the other to produce the desired results. The optimum values are affected by the type of base metal, the electrode composition, the welding position and the quality requirements. Thus, this paper proposes a new methodology, adding the variable vibration through a mechanism developed for GMAW welding, in order to improve the mechanical and metallurgical properties which does not affect the ability of the welder and enables repeatability of the welds made. For confirmation metallographic analysis and mechanical tests were made.Keywords: vibration, joining, weldability, GMAW
Procedia PDF Downloads 42510856 Development of In Situ Permeability Test Using Constant Discharge Method for Sandy Soils
Authors: A. Rifa’i, Y. Takeshita, M. Komatsu
Abstract:
The post-rain puddles problem that occurs in the first yard of Prambanan Temple are often disturbing visitor activity. A poodle layer and a drainage system has ever built to avoid such a problem, but puddles still didn’t stop appearing after rain. Permeability parameter needs to be determined by using more simple procedure to find exact method of solution. The instrument modelling were proposed according to the development of field permeability testing instrument. This experiment used proposed Constant Discharge method. Constant Discharge method used a tube poured with constant water flow. The procedure were carried out from unsaturated until saturated soil condition. Volumetric water content (θ) were being monitored by soil moisture measurement device. The results were relationship between k and θ which drawn by numerical approach Van Genutchen model. Parameters θr optimum value obtained from the test was at very dry soil. Coefficient of permeability with a density of 19.8 kN/m3 for unsaturated conditions was in range of 3 x 10-6 cm/sec (Sr= 68 %) until 9.98 x 10-4 cm/sec (Sr= 82 %). The equipment and testing procedure developed in this research was quite effective, simple and easy to be implemented on determining field soil permeability coefficient value of sandy soil. Using constant discharge method in proposed permeability test, value of permeability coefficient under unsaturated condition can be obtained without establish soil water characteristic curve.Keywords: constant discharge method, in situ permeability test, sandy soil, unsaturated conditions
Procedia PDF Downloads 38410855 The Influence of Using Soft Knee Pads on Static and Dynamic Balance among Male Athletes and Non-Athletes
Authors: Yaser Kazemzadeh, Keyvan Molanoruzy, Mojtaba Izady
Abstract:
The balance is the key component of motor skills to maintain postural control and the execution of complex skills. The present study was designed to evaluate the impact of soft knee pads on static and dynamic balance of male athletes. For this aim, thirty young athletes in different sport fields with 3 years professional sport training background and thirty healthy young men nonathletic (age: 24.5 ± 2.9, 24.3 ± 2.4, weight: 77.2 ± 4.3 and 80/9 ± 6/3 and height: 175 ± 2/84, 172 ± 5/44 respectively) as subjects selected. Then, subjects in two manner (without knee and with soft knee pads made of neoprene) execute standard error test (BESS) to assess static balance and star test to assess dynamic balance. For analyze of data, t-tests and one-way ANOVA were significant 05/0 ≥ α statistical analysis. The results showed that the use of soft knee significantly reduced error rate in static balance test (p ≥ 0/05). Also, use a soft knee pads decreased score of athlete group and increased score of nonathletic group in star test (p ≥ 0/05). These findings, indicates that use of knees affects static and dynamic balance in athletes and nonathletic in different manner and may increased athletic performance in sports that rely on static balance and decreased performance in sports that rely on dynamic balance.Keywords: static balance, dynamic balance, soft knee, athletic men, non athletic men
Procedia PDF Downloads 29010854 The Design of a Die for the Processing of Aluminum through Equal Channel Angular Pressing
Authors: P. G. F. Siqueira, N. G. S. Almeida, P. M. A. Stemler, P. R. Cetlin, M. T. P. Aguilar
Abstract:
The processing of metals through Equal Channel Angular Pressing (ECAP) leads to their remarkable strengthening. The ECAP dies control the amount of strain imposed on the material through its geometry, especially through the angle between the die channels, and thus the microstructural and mechanical properties evolution of the material. The present study describes the design of an ECAP die whose utilization and maintenance are facilitated, and that also controls the eventual undesired flow of the material during processing. The proposed design was validated through numerical simulations procedures using commercial software. The die was manufactured according to the present design and tested. Tests using aluminum alloys also indicated to be suitable for the processing of higher strength alloys.Keywords: ECAP, mechanical design, numerical methods, SPD
Procedia PDF Downloads 14010853 Enhancement of Recycled Concrete Aggregates Properties by Mechanical Treatment and Verification in Concrete Mixes with Replacement up to 100%
Authors: Iveta Nováková, Martin-Andrè S. Husby, Boy-Arne Buyle
Abstract:
The building industry has one of the most significant contributions to global warming due to the production of building materials, transportation, building activities, and demolition of structures when they reach the end of their life. Implementation of circular material flow and circular economy can significantly reduce greenhouse gasses and simultaneously reduce the need for natural resources. The use of recycled concrete aggregates (RCA) is one of the possibilities for reducing the depletion of raw materials for concrete production. Concrete is the most used building material worldwide, and aggregates constitute 70% of its volume. RCA can replace a certain amount of natural aggregates (NA), and concrete will still perform as required. The aim of this scientific paper is to evaluate RCA properties with and without mechanical treatment. Analysis of RCA itself will be followed by compressive strength of concrete containing various amounts of treated and non-treated RCA. Results showed improvement in compressive strength of the mix with mechanically treated RCA compared to standard RCA, and even the strength of concrete with mechanically treated RCA in dose 50% of coarse aggregates was higher than the reference mix by 4%. Based on obtained results, it can be concluded that integration of RCA in industrial concrete production is feasible, at a replacement ratio of 50% for mechanically treated RCA and 30% if untreated RCA is used, without affecting the compressive strength negatively.Keywords: recycled concrete aggregates, mechanical treatment, aggregate properties, compression strength
Procedia PDF Downloads 24510852 Biophysical Modeling of Anisotropic Brain Tumor Growth
Authors: Mutaz Dwairy
Abstract:
Solid tumors have high interstitial fluid pressure (IFP), high mechanical stress, and low oxygen levels. Solid stresses may induce apoptosis, stimulate the invasiveness and metastasis of cancer cells, and lower their proliferation rate, while oxygen concentration may affect the response of cancer cells to treatment. Although tumors grow in a nonhomogeneous environment, many existing theoretical models assume homogeneous growth and tissue has uniform mechanical properties. For example, the brain consists of three primary materials: white matter, gray matter, and cerebrospinal fluid (CSF). Therefore, tissue inhomogeneity should be considered in the analysis. This study established a physical model based on convection-diffusion equations and continuum mechanics principles. The model considers the geometrical inhomogeneity of the brain by including the three different matters in the analysis: white matter, gray matter, and CSF. The model also considers fluid-solid interaction and explicitly describes the effect of mechanical factors, e.g., solid stresses and IFP, chemical factors, e.g., oxygen concentration, and biological factors, e.g., cancer cell concentration, on growing tumors. In this article, we applied the model on a brain tumor positioned within the white matter, considering the brain inhomogeneity to estimate solid stresses, IFP, the cancer cell concentration, oxygen concentration, and the deformation of the tissues within the neoplasm and the surrounding. Tumor size was estimated at different time points. This model might be clinically crucial for cancer detection and treatment planning by measuring mechanical stresses, IFP, and oxygen levels in the tissue.Keywords: biomechanical model, interstitial fluid pressure, solid stress, tumor microenvironment
Procedia PDF Downloads 4710851 Multi-Index Performance Investigation of Rubberized Reclaimed Asphalt Mixture
Authors: Ling Xu, Giuseppe Loprencipe, Antonio D'Andrea
Abstract:
Asphalt pavement with recycled and sustainable materials has become the most commonly adopted strategy for road construction, including reclaimed asphalt pavement (RAP) and crumb rubber (CR) from waste tires. However, the adhesion and cohesion characteristics of rubberized reclaimed asphalt pavement were still ambiguous, resulting in deteriorated adhesion behavior and life performance. This research investigated the effect of bonding characteristics on rutting resistance and moisture susceptibility of rubberized reclaimed asphalt pavement in terms of two RAP sources with different oxidation levels and two tire rubber with different particle sizes. Firstly, the binder bond strength (BBS) test and bonding failure distinguishment were conducted to analyze the surface behaviors of binder-aggregate interaction. Then, the compatibility and penetration grade of rubberized RAP binder were evaluated by rotational viscosity test and penetration test, respectively. Hamburg wheel track (HWT) test with high-temperature viscoelastic deformation analysis was adopted, which illustrated the rutting resistance. Additionally, a water boiling test was employed to evaluate the moisture susceptibility of the mixture and the texture features were characterized with the statistical parameters of image colors. Finally, the colloid structure model of rubberized RAP binder with surface interaction was proposed, and statistical analysis was established to release the correlation among various indexes. This study concluded that the gel-phase colloid structure and molecular diffusion of the free light fraction would affect the surface interpretation with aggregate, determining the bonding characteristic of rubberized RAP asphalt.Keywords: bonding characteristics, reclaimed asphalt pavement, rubberized asphalt, sustainable material
Procedia PDF Downloads 6210850 Effect of High Intensity Ultrasonic Treatment on the Micro Structure, Corrosion and Mechanical Behavior of ac4c Aluminium Alloy
Authors: A.Farrag Farrag, A. M. El-Aziz Abdel Aziz, W. Khlifa Khlifa
Abstract:
Ultrasonic treatment is a promising process nowadays in the engineering field due to its high efficiency and it is a low-cost process. It enhances mechanical properties, corrosion resistance, and homogeneity of the microstructure. In this study, the effect of ultrasonic treatment and several casting conditions on microstructure, hardness and corrosion behavior of AC4C aluminum alloy was examined. Various ultrasonic treatments of the AC4C alloys were carried out to prepare billets for thixocasting process. Treatment temperatures varied from about 630oC and cooled down to under ultrasonic field. Treatment time was about 90s. A 600-watts ultrasonic system with 19.5 kHz and intensity of 170 W/cm2 was used. Billets were reheated to semisolid state and held for 5 minutes at 582 oC and temperatures (soaking) using high-frequency induction system, then thixocasted using a die casting machine. Microstructures of the thixocast parts were studied using optical and SEM microscopes. On the other hand, two samples were conventionally cast and poured at 634 oC and 750 oC. The microstructure showed a globular none dendritic grains for AC4C with the application of UST at 630-582 oC, Less dendritic grains when the sample was conventionally cast without the application of UST and poured at 624 oC and a fully dendritic microstructure When the sample was cast and poured at 750 oC without UST .The ultrasonic treatment during solidification proved that it has a positive influence on the microstructure as it produced the finest and globular grains thus it is expected to increase the mechanical properties of the alloy. Higher values of corrosion resistance and hardness were recorded for the ultrasound-treated sample in comparison to cast one.Keywords: ultrasonic treatment, aluminum alloys, corrosion behaviour, mechanical behaviour, microstructure
Procedia PDF Downloads 35310849 Electromechanical Reliability of ITO/Ag/ITO Multilayer Coated Pet Substrate for Optoelectronic Application
Authors: D. W. Mohammed, J. Bowen, S. N. Kukureka
Abstract:
Successful design and fabrication of flexible devices for electrode components requires a low sheet resistance, high optical transmittance, high mechanical reliability. Indium tin oxide (ITO) film is currently the predominant transparent conductive oxide (TCO) film in potential applications such as flexible organic light- emitting diodes, flat-panel displays, solar cells, and thin film transistors (TFTs). However ITO films are too brittle and their resistivity is rather high in some cases compared with ITO/Ag/ ITO, and they cannot completely meet flexible optoelectronic device requirements. Therefore, in this work the mechanical properties of ITO /Ag/ITO multilayer film that deposited on Polyethylene terephthalate (PET) compared with the single layered ITO sample were investigated using bending fatigue, twisting fatigue and thermal cycling experiments. The electrical resistance was monitored during the application of mechanical and thermal loads to see the pattern of relationship between the load and the electrical continuity as a consequent of failure. Scanning electron microscopy and atomic force microscopy were used to provide surface characterization of the mechanically-tested samples. The effective embedment of the Ag layer between upper and lower ITO films led to metallic conductivity and superior flexibility to the single ITO electrode, due to the high failure strain of the ductile Ag layer. These results indicate that flexible ITO/Ag/ITO multilayer electrodes are a promising candidate for use as transparent conductor in flexible displays. They provided significantly reduced sheet resistance compared to ITO, and improved bending and twisting properties both as a function of radius, angle and thermal cycling.Keywords: ITO/Ag/ITO multilayer, failure strain, mechanical properties, PET
Procedia PDF Downloads 29610848 The Influence of Contact Models on Discrete Element Modeling of the Ballast Layer Subjected to Cyclic Loading
Authors: Peyman Aela, Lu Zong, Guoqing Jing
Abstract:
Recently, there has been growing interest in numerical modeling of ballast railway tracks. A commonly used mechanistic modeling approach for ballast is the discrete element method (DEM). Up to now, the effects of the contact model on ballast particle behavior have not been precisely examined. In this regard, selecting the appropriate contact model is mainly associated with the particle characteristics and the loading condition. Since ballast is cohesionless material, different contact models, including the linear spring, Hertz-Mindlin, and Hysteretic models, could be used to calculate particle-particle or wall-particle contact forces. Moreover, the simulation of a dynamic test is vital to investigate the effect of damping parameters on the ballast deformation. In this study, ballast box tests were simulated by DEM to examine the influence of different contact models on the mechanical behavior of the ballast layer under cyclic loading. This paper shows how the contact model can affect the deformation and damping of a ballast layer subjected to cyclic loading in a ballast box.Keywords: ballast, contact model, cyclic loading, DEM
Procedia PDF Downloads 19710847 Development and Validation Method for Quantitative Determination of Rifampicin in Human Plasma and Its Application in Bioequivalence Test
Authors: Endang Lukitaningsih, Fathul Jannah, Arief R. Hakim, Ratna D. Puspita, Zullies Ikawati
Abstract:
Rifampicin is a semisynthetic antibiotic derivative of rifamycin B produced by Streptomyces mediterranei. RIF has been used worldwide as first line drug-prescribed throughout tuberculosis therapy. This study aims to develop and to validate an HPLC method couple with a UV detection for determination of rifampicin in spiked human plasma and its application for bioequivalence study. The chromatographic separation was achieved on an RP-C18 column (LachromHitachi, 250 x 4.6 mm., 5μm), utilizing a mobile phase of phosphate buffer/acetonitrile (55:45, v/v, pH 6.8 ± 0.1) at a flow of 1.5 mL/min. Detection was carried out at 337 nm by using spectrophotometer. The developed method was statistically validated for the linearity, accuracy, limit of detection, limit of quantitation, precise and specifity. The specifity of the method was ascertained by comparing chromatograms of blank plasma and plasma containing rifampicin; the matrix and rifampicin were well separated. The limit of detection and limit of quantification were 0.7 µg/mL and 2.3 µg/mL, respectively. The regression curve of standard was linear (r > 0.999) over a range concentration of 20.0 – 100.0 µg/mL. The mean recovery of the method was 96.68 ± 8.06 %. Both intraday and interday precision data showed reproducibility (R.S.D. 2.98% and 1.13 %, respectively). Therefore, the method can be used for routine analysis of rifampicin in human plasma and in bioequivalence study. The validated method was successfully applied in pharmacokinetic and bioequivalence study of rifampicin tablet in a limited number of subjects (under an Ethical Clearance No. KE/FK/6201/EC/2015). The mean values of Cmax, Tmax, AUC(0-24) and AUC(o-∞) for the test formulation of rifampicin were 5.81 ± 0.88 µg/mL, 1.25 hour, 29.16 ± 4.05 µg/mL. h. and 29.41 ± 4.07 µg/mL. h., respectively. Meanwhile for the reference formulation, the values were 5.04 ± 0.54 µg/mL, 1.31 hour, 27.20 ± 3.98 µg/mL.h. and 27.49 ± 4.01 µg/mL.h. From bioequivalence study, the 90% CIs for the test formulation/reference formulation ratio for the logarithmic transformations of Cmax and AUC(0-24) were 97.96-129.48% and 99.13-120.02%, respectively. According to the bioequivamence test guidelines of the European Commission-European Medicines Agency, it can be concluded that the test formulation of rifampicin is bioequivalence with the reference formulation.Keywords: validation, HPLC, plasma, bioequivalence
Procedia PDF Downloads 29110846 The Effectschemical Treatment on Alkyl Phenol Modified Sisal Fiber Reinforced Epoxy Composite
Authors: Rajesh Panda, Jimi Tjong, Sanjay K. Nayak, Mohini M. Sain
Abstract:
The aim of this manuscript was to evaluate the effect of chemical treatment of sisal fibre on the mechanical and viscoelastic properties of bio based epoxy/fibre composites. The composite samples were manufactured through a vacuum infusion process by adding alkyl phenols from cashew nutshell liquid (CSNL). Changes in the chemical structure of the sisal fibres resulting from the treatments were analyzed by Fourier transform infrared spectroscopy (FTIR). Both alkali and silane treatments produced enhancements in the mechanical properties of sisal fibre bundles. The alkali treatment, when combined with the silane treatment, the mechanical properties of epoxy composites notably improved (13%) in comparison to untreated sisal fibre reinforced composites.This was attributed to an enhanced fibre/matrix interface. The incorporation of CSNL into the sisal/epoxy composite enhanced the fibre-matrix interfacial properties because of the addition of -OH groups to the epoxy matrix. The incorporation of sisal fibre imparts stiffness to the epoxy matrix.Keywords: phenalkamine, sisal fiber, vacuum infusion, cashew nutshell liquid, cashew nutshell liquid (CSNL)
Procedia PDF Downloads 28510845 Behavioral Assessment of the Role of Brain 5-HT4 Receptors on the Memory and Cognitive Performance in a Rat Model of Alzheimer Disease
Authors: Siamak Shahidi, Nasrin Hashemi-Firouzi, Sara Soleimani-Asl, Alireza Komaki
Abstract:
Introduction: Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive memory and cognitive performance. Recently, an involvement of the serotonergic system and their receptors are suspected in the AD progression. In the present behavioral study, the effects of BIMU (selective 5-HT4 receptor agonist) on cognition and memory in the rat model of AD was investigated. Material and Methods: The animal model of the AD was induced by intracerebroventricular (Icv) injection of amyloid beta (Aβ) in adult male Wistar rats. Animals were divided into experimental groups included control, sham, Aβ, Aβ +BIMU groups. The treatment substances were icv injected (1 μg/μL) for thirty consecutive days. Then, novel object recognition (NOR) and passive avoidance learning (PAL) tests were applied to investigate memory and cognitive performance. Results: Aβ decrease the discrimination index of NOR test. Also, it increases the time spent in the dark compartment during PAL test, as compared with sham and control groups. In addition, compared to Aβ groups, BIMU significantly increased the discrimination index of NOR test and decreased the time spent in the dark compartment of PAL test. Conclusion: These findings suggest that 5-HT4 receptor activation prevents progression of memory and cognitive impairment in a rat model of AD.Keywords: Alzheimer disease, cognition, memory, serotonin receptors
Procedia PDF Downloads 13210844 Neutronic Calculations for Central Test Loop in Heavy Water Research Reactor
Authors: Hadi Shamoradifar, Behzad Teimuri, Parviz Parvaresh, Saeed Mohammadi
Abstract:
One of the experimental facilities of the heavy water research reactor is the central test loop (C.T.L). It is located along the central axial line of the vessel, and therefore will highly affect the neutronic parameters of the reactor, so from the neutronics point of view, C.T.L is the most important facility. It is mainly designed for fuel testing, thought other applications such as radioisotope production and neutron activation, can be imagine for it. All of the simulations were performed by MCNPX2.6. As a first step towards C.T.L analysis, the effect of D2O-filled, H2O-filled, and He-filled C.T.L on the effective multiplication factor (Keff.), have been evaluated. According to results, H2O-filled C.T.L has a higher thermal neutron, while He-filled C.T.L includes more resonance neutrons. In the next step thermal and total axial neutron fluxes, were calculated and used as the comparison parameters. The core without C.T.L (C.T.L replaced by heavy water) is selected as the reference case, and the effect of all other cases is calculated according to that.Keywords: heavy water reactor, neutronic calculations, central test loop, neutron activation
Procedia PDF Downloads 36310843 BLDC Motor Design Considering Core Loss Caused by Welding
Authors: Hyun-Seok Hong, In-Gun Kim, Ye-Jun Oh, Ju Lee
Abstract:
This paper deals with the effects of welding performed for the manufacture of laminations in a stator in the case of prototype motors that are manufactured in small quantity. As a result of performing the no-load test for an IPM (interior permanent magnet)-type BLDC (blushless direct current) motor manufactured by welding both inside and outside of the stator, it was found that more DC input than expected was provided. To verify the effects of welding, a stator was re-manufactured by bonding, and DC inputs provided during the no-load test were compared.Keywords: welding, stator, Eddy current, BLDC
Procedia PDF Downloads 563