Search results for: groundwater and mine water monitoring
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11630

Search results for: groundwater and mine water monitoring

10250 Occurrence of Antibiotics of Veterinary Use in Water of the Lake Titicaca: Its Environmental Implication and Human Health

Authors: Franz Zirena Vilca, Nestor Cahui Galarza, Walter Alejandro Zamalloa Cuba, Edith Tello Palma, Teofilo Donaires Flores, Valdemar Luiz Tornisielo

Abstract:

The production of rainbow trout in the Lake Titicaca represents an important economic activity for Peru. The city of Puno is responsible for 83% of this production, so the use of antibiotics within the aquaculture system is not alien to this reality. Meanwhile, the waters of Lake Titicaca represent an important source for the supply of drinking water for 80% of the population of the Puno city. In this paper, twelve antibiotics for veterinary use were monitored in water samples during two seasons: dry (July 2015) and rainy (February 2016), water samples from trout production systems, near the water catching point in the lake and drinking water in the city house of Puno were considered. The samples were analyzed using liquid chromatography coupled to mass spectrometry and solid online phase extraction (On-line SPE-LC-MS/MS), all samples analyzed showed concentrations of Ciprofloxacin up to 65.2 ng L⁻¹ at the rainy season. On the other hand, 63% of water samples from the dry season and 36 % from the rainy season showed Chlortetracycline up to 8.7 and 6.1 ng L⁻¹, respectively. The presence of residues of veterinary antibiotics in drinking water means a serious health risk for 80% of the population of Puno since all these people are supplied from this source.

Keywords: chromatography, DNA damage, environmental risk, water pollution

Procedia PDF Downloads 232
10249 Heavy Metal Pollution Status in the Water of River Benue along Ibi, Taraba State, Nigeria

Authors: I. O. Oyatayo, K. T. Oyatayo, B. Mamman

Abstract:

This study was aimed at the assessment of heavy metal pollution of the water in river Benue along Ibi, Taraba State, Nigeria. Water samples were collected at ten sampling points over a distance of 100 meters each. The following water quality parameters were determined: TDS, copper, zinc, chromium, iron, mercury, nickel, and manganese, and the results were compared with the Nigerian Standard for Drinking Water Quality (NSDWQ) and WHO maximum permitted limits. The water quality analysis was conducted using the atomic absorption spectrophotometer (Model: 01-0960-00) at 510 nm. The mean value concentrations of copper, zinc, chromium, nickel, mercury, and mercury are within the permissible limits, while that of iron is above the limit. The summary of ANOVA single-factor statistics with a specified rejection level at α 0.05 is insignificant. The study concludes that the quality of water from river Benue along Ibi is deteriorating and unfit for human consumption. It was recommended that residents of the study area should be enlightened on the effects of indiscriminate dumping of waste and the proper handling and application of fertilizer and herbicides, as some of these end up in the river via surface runoff.

Keywords: heavy, metal, pollution, river, Ibi

Procedia PDF Downloads 53
10248 An Assessment on the Effect of Participation of Rural Woman on Sustainable Rural Water Supply in Yemen

Authors: Afrah Saad Mohsen Al-Mahfadi

Abstract:

In rural areas of developing countries, participation of all stakeholders in water supply projects is an important step towards further development. As most of the beneficiaries are women, it is important that they should be involved to achieve successful and sustainable water supply projects. Women are responsible for the management of water both inside and outside home, and often spend more than six-hours a day fetching drinking water from distant water sources. The problem is that rural women play a role of little importance in the water supply projects’ phases in rural Yemen. Therefore, this research aimed at analyzing the different reasons of their lack of participation in projects and in what way a full participation -if achieved- could contribute to sustainable water supply projects in the rural mountainous areas in Yemen. Four water supply projects were selected as a case study in Al-Della'a Alaala sub-district in the Al-Mahweet governorate, two of them were implemented by the Social Fund and Development (SFD), while others were implemented by the General Authority for Rural Water Supply Projects (GARWSSP). Furthermore, the successful Al-Galba project, which is located in Badan district in Ibb governorate, was selected for comparison. The rural women's active participation in water projects have potential consequences including continuity and maintenance improvement, equipment security, and improvement in the overall health and education status of these areas. The majority of respondents taking part in GARWSSP projects estimated that there is no reason to involve women in the project activities. In the comparison project - in which a woman worked as a supervisor and implemented the project – all respondents indicated that the participation of women is vital for sustainability. Therefore, the results of this research are intended to stimulate rural women's participation in the mountainous areas of Yemen.

Keywords: assessment, rural woman, sustainability, water management

Procedia PDF Downloads 696
10247 Sustainable Rehabilitation of Concrete Buildings in Iran: Harnessing Sunlight and Navigating Limited Water Resources

Authors: Amin Khamoosh, Hamed Faramarzifar

Abstract:

In the capital of Iran, Tehran, numerous buildings constructed when extreme climates were not prevalent now face the need for rehabilitation, typically within their first decade. Our data delves into the performance metrics and economic advantages of sustainable rehabilitation practices compared to traditional methods. With a focus on the scarcity of water resources, we specifically scrutinize water-efficient techniques throughout construction, rehabilitation, and usage. Examining design elements that optimize natural light while efficiently managing heat transmission is crucial, given the reliance on water for cooling devices in this region. The data aims to present a comprehensive strategy, addressing immediate structural concerns while harmonizing with Iran's unique environmental conditions.

Keywords: sustainable rehabilitation, concrete buildings, iran, solar energy, water-efficient techniques

Procedia PDF Downloads 57
10246 Monitoring Prospective Sites for Water Harvesting Structures Using Remote Sensing and Geographic Information Systems-Based Modeling in Egypt

Authors: Shereif. H. Mahmoud

Abstract:

Egypt has limited water resources, and it will be under water stress by the year 2030. Therefore, Egypt should consider natural and non-conventional water resources to overcome such a problem. Rain harvesting is one solution. This Paper presents a geographic information system (GIS) methodology - based on decision support system (DSS) that uses remote sensing data, filed survey, and GIS to identify potential RWH areas. The input into the DSS includes a map of rainfall surplus, slope, potential runoff coefficient (PRC), land cover/use, soil texture. In addition, the outputs are map showing potential sites for RWH. Identifying suitable RWH sites implemented in the ArcGIS model environment using the model builder of ArcGIS 10.1. Based on Analytical hierarchy process (AHP) analysis taking into account five layers, the spatial extents of RWH suitability areas identified using Multi-Criteria Evaluation (MCE). The suitability model generated a suitability map for RWH with four suitability classes, i.e. Excellent, Moderate, Poor, and unsuitable. The spatial distribution of the suitability map showed that the excellent suitable areas for RWH concentrated in the northern part of Egypt. According to their averages, 3.24% of the total area have excellent and good suitability for RWH, while 45.04 % and 51.48 % of the total area are moderate and unsuitable suitability, respectively. The majority of the areas with excellent suitability have slopes between 2 and 8% and with an intensively cultivated area. The major soil type in the excellent suitable area is loam and the rainfall range from 100 up to 200 mm. Validation of the used technique depends on comparing existing RWH structures locations with the generated suitability map using proximity analysis tool of ArcGIS 10.1. The result shows that most of exiting RWH structures categorized as successful.

Keywords: rainwater harvesting (RWH), geographic information system (GIS), analytical hierarchy process (AHP), multi-criteria evaluation (MCE), decision support system (DSS)

Procedia PDF Downloads 363
10245 Ceramic Membrane Filtration Technologies for Oilfield Produced Water Treatment

Authors: Mehrdad Ebrahimi, Oliver Schmitz, Axel Schmidt, Peter Czermak

Abstract:

“Produced water” (PW) is any fossil water that is brought to the surface along with crude oil or natural gas. By far, PW is the largest waste stream by volume associated with oil and gas production operations. Due to the increasing volume of waste all over the world in the current decade, the outcome and effect of discharging PW on the environment has lately become a significant issue of environmental concerns. Therefore, there is a need for new technologies for PW treatment due to increase focus on water conservation and environmental regulation. The use of membrane processes for treatment of PW has several advantages over many of the traditional separation techniques. In oilfield produced water treatment with ceramic membranes, process efficiency is characterized by the specific permeate flux and by the oil separation performance. Apart from the membrane properties, the permeate flux during filtration of oily wastewaters is known to be strongly dependent on the constituents of the feed solution, as well as on process conditions, e.g. trans-membrane pressure (TMP) and cross-flow velocity (CFV). The research project presented in these report describes the application of different ceramic membrane filtration technologies for the efficient treatment of oil-field produced water and different model oily solutions.

Keywords: ceramic membrane, membrane fouling, oil rejection, produced water treatment

Procedia PDF Downloads 186
10244 Ensuring Safe Operation by Providing an End-To-End Field Monitoring and Incident Management Approach for Autonomous Vehicle Based on ML/Dl SW Stack

Authors: Lucas Bublitz, Michael Herdrich

Abstract:

By achieving the first commercialization approval in San Francisco the Autonomous Driving (AD) industry proves the technology maturity of the SAE L4 AD systems and the corresponding software and hardware stack. This milestone reflects the upcoming phase in the industry, where the focus is now about scaling and supervising larger autonomous vehicle (AV) fleets in different operation areas. This requires an operation framework, which organizes and assigns responsibilities to the relevant AV technology and operation stakeholders from the AV system provider, the Remote Intervention Operator, the MaaS provider and regulatory & approval authority. This holistic operation framework consists of technological, processual, and organizational activities to ensure safe operation for fully automated vehicles. Regarding the supervision of large autonomous vehicle fleets, a major focus is on the continuous field monitoring. The field monitoring approach must reflect the safety and security criticality of incidents in the field during driving operation. This includes an automatic containment approach, with the overall goal to avoid safety critical incidents and reduce downtime by a malfunction of the AD software stack. An End-to-end (E2E) field monitoring approach detects critical faults in the field, uses a knowledge-based approach for evaluating the safety criticality and supports the automatic containment of these E/E faults. Applying such an approach will ensure the scalability of AV fleets, which is determined by the handling of incidents in the field and the continuous regulatory compliance of the technology after enhancing the Operational Design Domain (ODD) or the function scope by Functions on Demand (FoD) over the entire digital product lifecycle.

Keywords: field monitoring, incident management, multicompliance management for AI in AD, root cause analysis, database approach

Procedia PDF Downloads 78
10243 Optimization of Agricultural Water Demand Using a Hybrid Model of Dynamic Programming and Neural Networks: A Case Study of Algeria

Authors: M. Boudjerda, B. Touaibia, M. K. Mihoubi

Abstract:

In Algeria agricultural irrigation is the primary water consuming sector followed by the domestic and industrial sectors. Economic development in the last decade has weighed heavily on water resources which are relatively limited and gradually decreasing to the detriment of agriculture. The research presented in this paper focuses on the optimization of irrigation water demand. Dynamic Programming-Neural Network (DPNN) method is applied to investigate reservoir optimization. The optimal operation rule is formulated to minimize the gap between water release and water irrigation demand. As a case study, Foum El-Gherza dam’s reservoir system in south of Algeria has been selected to examine our proposed optimization model. The application of DPNN method allowed increasing the satisfaction rate (SR) from 12.32% to 55%. In addition, the operation rule generated showed more reliable and resilience operation for the examined case study.

Keywords: water management, agricultural demand, dam and reservoir operation, Foum el-Gherza dam, dynamic programming, artificial neural network

Procedia PDF Downloads 116
10242 Micro Plasma an Emerging Technology to Eradicate Pesticides from Food Surface

Authors: Muhammad Saiful Islam Khan, Yun Ji Kim

Abstract:

Organophosphorus pesticides (OPPs) have been widely used to replace more persistent organochlorine pesticides because OPPs are more soluble in water and decompose rapidly in aquatic systems. Extensive uses of OPPs in modern agriculture are the major cause of the contamination of surface water. Regardless of the advantages gained by the application of pesticides in modern agriculture, they are a threat to the public health environment. With the aim of reducing possible health threats, several physical and chemical treatment processes have been studied to eliminate biological and chemical poisons from food stuff. In the present study, a micro-plasma device was used to reduce pesticides from the surface of food stuff. Pesticide free food items chosen in this study were perilla leaf, tomato, broccoli and blueberry. To evaluate the removal efficiency of pesticides, different washing methods were followed such as soaking with water, washing with bubbling water, washing with plasma-treated water and washing with chlorine water. 2 mL of 2000 ppm pesticide samples, namely, diazinone and chlorpyrifos were individuality inoculated on food surface and was air dried for 2 hours before treated with plasma. Plasma treated water was used in two different manners one is plasma treated water with bubbling the other one is aerosolized plasma treated water. The removal efficiency of pesticides from food surface was studied using HPLC. Washing with plasma treated water, aerosolized plasma treated water and chlorine water shows minimum 72% to maximum 87 % reduction for 4 min treatment irrespective to the types of food items and the types of pesticides sample, in case of soaking and bubbling the reduction is 8% to 48%. Washing with plasma treated water, aerosolized plasma treated water and chlorine water shows somewhat similar reduction ability which is significantly higher comparing to the soaking and bubbling washing system. The temperature effect of the washing systems was also evaluated; three different temperatures were set for the experiment, such as 22°C, 10°C and 4°C. Decreasing temperature from 22°C to 10°C shows a higher reduction in the case of washing with plasma and aerosolized plasma treated water, whereas an opposite trend was observed for the washing with chlorine water. Further temperature reduction from 10°C to 4°C does not show any significant reduction of pesticides, except for the washing with chlorine water. Chlorine water treatment shows lesser pesticide reduction with the decrease in temperature. The color changes of the treated sample were measured immediately and after one week to evaluate if there is any effect of washing with plasma treated water and with chlorine water. No significant color changes were observed for either of the washing systems, except for broccoli washing with chlorine water.

Keywords: chlorpyrifos, diazinone, pesticides, micro plasma

Procedia PDF Downloads 189
10241 Impacts of Hydrologic and Topographic Changes on Water Regime Evolution of Poyang Lake, China

Authors: Feng Huang, Carlos G. Ochoa, Haitao Zhao

Abstract:

Poyang Lake, the largest freshwater lake in China, is located at the middle-lower reaches of the Yangtze River basin. It has great value in socioeconomic development and is internationally recognized as an important lacustrine and wetland ecosystem with abundant biodiversity. Impacted by ongoing climate change and anthropogenic activities, especially the regulation of the Three Gorges Reservoir since 2003, Poyang Lake has experienced significant water regime evolution, resulting in challenges for the management of water resources and the environment. Quantifying the contribution of hydrologic and topographic changes to water regime alteration is necessary for policymakers to design effective adaption strategies. Long term hydrologic data were collected and the back-propagation neural networks were constructed to simulate the lake water level. The impacts of hydrologic and topographic changes were differentiated through scenario analysis that considered pre-impact and post-impact hydrologic and topographic scenarios. The lake water regime was characterized by hydrologic indicators that describe monthly water level fluctuations, hydrologic features during flood and drought seasons, and frequency and rate of hydrologic variations. The results revealed different contributions of hydrologic and topographic changes to different features of the lake water regime.Noticeable changes were that the water level declined dramatically during the period of reservoir impoundment, and the drought was enhanced during the dry season. The hydrologic and topographic changes exerted a synergistic effect or antagonistic effect on different lake water regime features. The findings provide scientific reference for lacustrine and wetland ecological protection associated with water regime alterations.

Keywords: back-propagation neural network, scenario analysis, water regime, Poyang Lake

Procedia PDF Downloads 141
10240 Assessment of Air Quality Around Western Refinery in Libya: Mobile Monitoring

Authors: A. Elmethnani, A. Jroud

Abstract:

This coastal crude oil refinery is situated north of a big city west of Tripoli; the city then could be highly prone to downwind refinery emissions where the NNE wind direction is prevailing through most seasons of the year. Furthermore, due to the absence of an air quality monitoring network and scarce emission data available for the neighboring community, nearby residents have serious worries about the impacts of the oil refining operations on local air quality. In responding to these concerns, a short term survey has performed for three consecutive days where a semi-continues mobile monitoring approach has developed effectively in this study; the monitoring station (Compact AQM 65 AeroQual) was mounted on a vehicle to move quickly between locations, measurements of 10 minutes averaging of 60 seconds then been taken at each fixed sampling point. The downwind ambient concentration of CO, H₂S, NOₓ, NO₂, SO₂, PM₁, PM₂.₅ PM₁₀, and TSP were measured at carefully chosen sampling locations, ranging from 200m nearby the fence-line passing through the city center up to 4.7 km east to attain best spatial coverage. Results showed worrying levels of PM₂.₅ PM₁₀, and TSP at one sampling location in the city center, southeast of the refinery site, with an average mean of 16.395μg/m³, 33.021μg/m³, and 42.426μg/m³ respectively, which could be attributed to road traffic. No significant concentrations have been detected for other pollutants of interest over the study area, as levels observed for CO, SO₂, H₂S, NOₓ, and NO₂ haven’t respectively exceeded 1.707 ppm, 0.021ppm, 0.134 ppm, 0.4582 ppm, and 0.0018 ppm, which was at the same sampling locations as well. Although it wasn’t possible to compare the results with the Libyan air quality standards due to the difference in the averaging time period, the technique was adequate for the baseline air quality screening procedure. Overall, findings primarily suggest modeling of dispersion of the refinery emissions to assess the likely impact and spatial-temporal distribution of air pollutants.

Keywords: air quality, mobil monitoring, oil refinery

Procedia PDF Downloads 98
10239 Energy-Efficient Clustering Protocol in Wireless Sensor Networks for Healthcare Monitoring

Authors: Ebrahim Farahmand, Ali Mahani

Abstract:

Wireless sensor networks (WSNs) can facilitate continuous monitoring of patients and increase early detection of emergency conditions and diseases. High density WSNs helps us to accurately monitor a remote environment by intelligently combining the data from the individual nodes. Due to energy capacity limitation of sensors, enhancing the lifetime and the reliability of WSNs are important factors in designing of these networks. The clustering strategies are verified as effective and practical algorithms for reducing energy consumption in WSNs and can tackle WSNs limitations. In this paper, an Energy-efficient weight-based Clustering Protocol (EWCP) is presented. Artificial retina is selected as a case study of WSNs applied in body sensors. Cluster heads’ (CHs) selection is equipped with energy efficient parameters. Moreover, cluster members are selected based on their distance to the selected CHs. Comparing with the other benchmark protocols, the lifetime of EWCP is improved significantly.

Keywords: WSN, healthcare monitoring, weighted based clustering, lifetime

Procedia PDF Downloads 311
10238 Implementation of Dozer Push Measurement under Payment Mechanism in Mining Operation

Authors: Anshar Ajatasatru

Abstract:

The decline of coal prices over past years have been significantly increasing the awareness of effective mining operation. A viable step must be undertaken in becoming more cost competitive while striving for best mining practice especially at Melak Coal Mine in East Kalimantan, Indonesia. This paper aims to show how effective dozer push measurement method can be implemented as it is controlled by contract rate on the unit basis of USD ($) per bcm. The method emerges from an idea of daily dozer push activity that continually shifts the overburden until final target design by mine planning. Volume calculation is then performed by calculating volume of each time overburden is removed within determined distance using cut and fill method from a high precision GNSS system which is applied into dozer as a guidance to ensure the optimum result of overburden removal. Accumulation of daily to weekly dozer push volume is found 95 bcm which is multiplied by average sell rate of $ 0,95, thus the amount monthly revenue is $ 90,25. Furthermore, the payment mechanism is then based on push distance and push grade. The push distance interval will determine the rates that vary from $ 0,9 - $ 2,69 per bcm and are influenced by certain push slope grade from -25% until +25%. The amount payable rates for dozer push operation shall be specifically following currency adjustment and is to be added to the monthly overburden volume claim, therefore, the sell rate of overburden volume per bcm may fluctuate depends on the real time exchange rate of Jakarta Interbank Spot Dollar Rate (JISDOR). The result indicates that dozer push measurement can be one of the surface mining alternative since it has enabled to refine method of work, operating cost and productivity improvement apart from exposing risk of low rented equipment performance. In addition, payment mechanism of contract rate by dozer push operation scheduling will ultimately deliver clients by almost 45% cost reduction in the form of low and consistent cost.

Keywords: contract rate, cut-fill method, dozer push, overburden volume

Procedia PDF Downloads 318
10237 The Brain’s Attenuation Coefficient as a Potential Estimator of Temperature Elevation during Intracranial High Intensity Focused Ultrasound Procedures

Authors: Daniel Dahis, Haim Azhari

Abstract:

Noninvasive image-guided intracranial treatments using high intensity focused ultrasound (HIFU) are on the course of translation into clinical applications. They include, among others, tumor ablation, hyperthermia, and blood-brain-barrier (BBB) penetration. Since many of these procedures are associated with local temperature elevation, thermal monitoring is essential. MRI constitutes an imaging method with high spatial resolution and thermal mapping capacity. It is the currently leading modality for temperature guidance, commonly under the name MRgHIFU (magnetic-resonance guided HIFU). Nevertheless, MRI is a very expensive non-portable modality which jeopardizes its accessibility. Ultrasonic thermal monitoring, on the other hand, could provide a modular, cost-effective alternative with higher temporal resolution and accessibility. In order to assess the feasibility of ultrasonic brain thermal monitoring, this study investigated the usage of brain tissue attenuation coefficient (AC) temporal changes as potential estimators of thermal changes. Newton's law of cooling describes a temporal exponential decay behavior for the temperature of a heated object immersed in a relatively cold surrounding. Similarly, in the case of cerebral HIFU treatments, the temperature in the region of interest, i.e., focal zone, is suggested to follow the same law. Thus, it was hypothesized that the AC of the irradiated tissue may follow a temporal exponential behavior during cool down regime. Three ex-vivo bovine brain tissue specimens were inserted into plastic containers along with four thermocouple probes in each sample. The containers were placed inside a specially built ultrasonic tomograph and scanned at room temperature. The corresponding pixel-averaged AC was acquired for each specimen and used as a reference. Subsequently, the containers were placed in a beaker containing hot water and gradually heated to about 45ᵒC. They were then repeatedly rescanned during cool down using ultrasonic through-transmission raster trajectory until reaching about 30ᵒC. From the obtained images, the normalized AC and its temporal derivative as a function of temperature and time were registered. The results have demonstrated high correlation (R² > 0.92) between both the brain AC and its temporal derivative to temperature. This indicates the validity of the hypothesis and the possibility of obtaining brain tissue temperature estimation from the temporal AC thermal changes. It is important to note that each brain yielded different AC values and slopes. This implies that a calibration step is required for each specimen. Thus, for a practical acoustic monitoring of the brain, two steps are suggested. The first step consists of simply measuring the AC at normal body temperature. The second step entails measuring the AC after small temperature elevation. In face of the urging need for a more accessible thermal monitoring technique for brain treatments, the proposed methodology enables a cost-effective high temporal resolution acoustical temperature estimation during HIFU treatments.

Keywords: attenuation coefficient, brain, HIFU, image-guidance, temperature

Procedia PDF Downloads 166
10236 Contactless Attendance System along with Temperature Monitoring

Authors: Nalini C. Iyer, Shraddha H., Anagha B. Varahamurthy, Dikshith C. S., Ishwar G. Kubasad, Vinayak I. Karalatti, Pavan B. Mulimani

Abstract:

The current scenario of the pandemic due to COVID-19 has led to the awareness among the people to avoid unneces-sary contact in public places. There is a need to avoid contact with physical objects to stop the spreading of infection. The contactless feature has to be included in the systems in public places wherever possible. For example, attendance monitoring systems with fingerprint biometric can be replaced with a contactless feature. One more important protocol followed in the current situation is temperature monitoring and screening. The paper describes an attendance system with a contactless feature and temperature screening for the university. The system displays a QR code to scan, which redirects to the student login web page only if the location is valid (the location where the student scans the QR code should be the location of the display of the QR code). Once the student logs in, the temperature of the student is scanned by the contactless temperature sensor (mlx90614) with an error of 0.5°C. If the temperature falls in the range of the desired value (range of normal body temperature), then the attendance of the student is marked as present, stored in the database, and the door opens automatically. The attendance is marked as absent in the other case, alerted with the display of temperature, and the door remains closed. The door is automated with the help of a servomotor. To avoid the proxy, IR sensors are used to count the number of students in the classroom. The hardware system consisting of a contactless temperature sensor and IR sensor is implemented on the microcontroller, NodeMCU.

Keywords: NodeMCU, IR sensor, attendance monitoring, contactless, temperature

Procedia PDF Downloads 188
10235 Investigation of Water Transport Dynamics in Polymer Electrolyte Membrane Fuel Cells Based on a Gas Diffusion Media Layers

Authors: Saad S. Alrwashdeh, Henning Markötter, Handri Ammari, Jan Haußmann, Tobias Arlt, Joachim Scholta, Ingo Manke

Abstract:

In this investigation, synchrotron X-ray imaging is used to study water transport inside polymer electrolyte membrane fuel cells. Two measurement techniques are used, namely in-situ radiography and quasi-in-situ tomography combining together in order to reveal the relationship between the structures of the microporous layers (MPLs) and the gas diffusion layers (GDLs), the operation temperature and the water flow. The developed cell is equipped with a thick GDL and a high back pressure MPL. It is found that these modifications strongly influence the overall water transport in the whole adjacent GDM.

Keywords: polymer electrolyte membrane fuel cell, microporous layer, water transport, radiography, tomography

Procedia PDF Downloads 180
10234 Recovery of Local Materials in Pavements in Areas with an Arid Climate

Authors: Hocini Yousra, Medjnoun Amal, Khiatine Mohamed, Bahar Ramdane

Abstract:

The development of the regions of southern Algeria require the construction of numerous road, rail, and airport infrastructures. However, this development is very expensive given the very severe climatic conditions, the difficulty of reusing local materials, and the unavailability of water on the project sites; these regions are characterized by an arid or semi-arid climate, which means that water sources are very limited. The climatic conditions and the scarcity of water make soil compaction work very difficult and excessively expensive. These constraints related to the supply of water for irrigation of these construction sites make it necessary to examine the solution of compaction with low water content. This work studies the possibility of improving the compaction with a low water content of the soils of southern Algeria and this by using natural or recycled ecological materials. Local soils are first subjected to a series of laboratory characterization tests, then mixed with varying amounts of natural additives. The new materials are, in turn, subjected to road tests.

Keywords: compaction, low water content, sand, natural materials

Procedia PDF Downloads 123
10233 Effect of Strength Class of Concrete and Curing Conditions on Capillary Water Absorption of Self-Compacting and Conventional Concrete

Authors: E. Ebru Demirci, Remzi Şahin

Abstract:

The purpose of this study is to compare Self Compacting Concrete (SCC) and Conventional Concrete (CC) in terms of their capillary water absorption. During the comparison of SCC and CC, the effects of two different factors were also investigated: concrete strength class and curing condition. In the study, both SCC and CC were produced in three different concrete classes (C25, C50 and C70) and the other parameter (i.e curing condition) was determined as two levels: moisture and air curing. It was observed that, for both curing environments and all strength classes of concrete, SCCs had lower capillary water absorption values than that of CCs. It was also detected that, for both SCC and CC, capillary water absorption values of samples kept in moisture curing were significantly lower than that of samples stored in air curing. Additionally, it was determined that capillary water absorption values for both SCC and CC decrease with increasing strength class of concrete for both curing environments.

Keywords: capillary water absorption, curing condition, reinforced concrete beam, self-compacting concrete

Procedia PDF Downloads 337
10232 Wearable Heart Rate Sensor Based on Wireless System for Heart Health Monitoring

Authors: Murtadha Kareem, Oliver Faust

Abstract:

Wearable biosensor systems can be designed and developed for health monitoring. There is much interest in both scientific and industrial communities established since 2007. Fundamentally, the cost of healthcare has increased dramatically and the world population is aging. That creates the need to harvest technological improvements with small bio-sensing devices, wireless-communication, microelectronics and smart textiles, that leads to non-stop developments of wearable sensor based systems. There has been a significant demand to monitor patient's health status while the patient leaves the hospital in his/her personal environment. To address this need, there are numerous system prototypes which has been launched in the medical market recently, the aim of that is to provide real time information feedback about patient's health status, either to the patient himself/herself or direct to the supervising medical centre station, while being capable to give a notification for the patient in case of possible imminent health threatening conditions. Furthermore, wearable health monitoring systems comprise new techniques to address the problem of managing and monitoring chronic heart diseases for elderly people. Wearable sensor systems for health monitoring include various types of miniature sensors, either wearable or implantable. To be specific, our proposed system able to measure essential physiological parameter, such as heart rate signal which could be transmitted through Bluetooth to the cloud server in order to store, process, analysis and visualise the data acquisition. The acquired measurements are connected through internet of things to a central node, for instance an android smart phone or tablet used for visualising the collected information on application or transmit it to a medical centre.

Keywords: Wearable sensor, Heart rate, Internet of things, Chronic heart disease

Procedia PDF Downloads 162
10231 Effect of Mobile Drip and Linear Irrigation System on Sugar Beet Yield

Authors: Ismail Tas, Yusuf Ersoy Yildirim, Yavuz Fatih Fidantemiz, Aysegul Boyacioglu, Demet Uygan, Ozgur Ates, Erdinc Savasli, Oguz Onder, Murat Tugrul

Abstract:

The biggest input of agricultural production is irrigation, water and energy. Although it varies according to the conditions in drip and sprinkler irrigation systems compared to surface irrigation systems, there is a significant amount of energy expenditure. However, this expense not only increases the user's control over the irrigation water but also provides an increase in water savings and water application efficiency. Thus, while irrigation water is used more effectively, it also contributes to reducing production costs. The Mobile Drip Irrigation System (MDIS) is a system in which new technologies are used, and it is one of the systems that are thought to play an important role in increasing the irrigation water utilization rate of plants and reducing water losses, as well as using irrigation water effectively. MDIS is currently considered the most effective method for irrigation, with the development of both linear and central motion systems. MDIS is potentially more advantageous than sprinkler irrigation systems in terms of reducing wind-induced water losses and reducing evaporation losses on the soil and plant surface. Another feature of MDIS is that the sprinkler heads on the systems (such as the liner and center pivot) can remain operational even when the drip irrigation system is installed. This allows the user to use both irrigation methods. In this study, the effect of MDIS and linear sprinkler irrigation method on sugar beet yield at different irrigation water levels will be revealed.

Keywords: MDIS, linear sprinkler, sugar beet, irrigation efficiency

Procedia PDF Downloads 100
10230 Exogenous Ascorbic Acid Increases Resistance to Salt of Carthamus tinctorius

Authors: Banu Aytül Ekmekçi

Abstract:

Salinity stress has negative effects on agricultural yield throughout the world, affecting production whether it is for subsistence or economic gain. This study investigates the inductive role of vitamin C and its application mode in mitigating the detrimental effects of irrigation with diluted (10, 20 and 30 %) NaCl + water on carthamus tinctorius plants. The results show that 10% of salt water exhibited insignificant changes, while the higher levels impaired growth by reducing seed germination, dry weights of shoot and root, water status and chlorophyll contents. However, irrigation with salt water enhanced carotenoids and antioxidant enzyme activities. The detrimental effects of salt water were ameliorated by application of 100 ppm ascorbic acid (vitamin C). The inductive role of vitamin was associated with the improvement of seed germination, growth, plant water status, carotenoids, endogenous ascorbic acid and antioxidant enzyme activities. Moreover, vitamin C alone or in combination with 30% NaCl water increased the intensity of protein bands as well as synthesized additional new proteins with molecular weights of 205, 87, 84, 65 and 45 kDa. This could increase tolerance mechanisms of treated plants towards water salinity.

Keywords: salinity, stress, vitamin c, antioxidant, NaCl, enzyme

Procedia PDF Downloads 514
10229 Utilization of Low-Cost Adsorbent Fly Ash for the Removal of Phenol from Water

Authors: Ihsanullah, Muataz Ali Atieh

Abstract:

In this study, a low-cost adsorbent carbon fly ash (CFA) was used for the removal of Phenol from the water. The adsorbent characteristics were observed by the Thermogravimetric Analysis (TGA), BET specific surface area analyzer, Zeta Potential and Field Emission Scanning Electron Microscopy (FE-SEM). The effect of pH, agitation speed, contact time, adsorbent dosage, and initial concentration of phenol were studied on the removal of phenol from the water. The optimum values of these variables for maximum removal of phenol were also determined. Both Freundlich and Langmuir isotherm models were successfully applied to describe the experimental data. Results showed that low-cost adsorbent phenol can be successfully applied for the removal of Phenol from the water.

Keywords: phenol, fly ash, adsorption, carbon adsorbents

Procedia PDF Downloads 327
10228 Solubility of Water in CO2 Mixtures at Pipeline Operation Conditions

Authors: Mohammad Ahmad, Sander Gersen, Erwin Wilbers

Abstract:

Carbon capture, transport and underground storage have become a major solution to reduce CO2 emissions from power plants and other large CO2 sources. A big part of this captured CO2 stream is transported at high pressure dense phase conditions and stored in offshore underground depleted oil and gas fields. CO2 is also transported in offshore pipelines to be used for enhanced oil and gas recovery. The captured CO2 stream with impurities may contain water that causes severe corrosion problems, flow assurance failure and might damage valves and instrumentations. Thus, free water formation should be strictly prevented. The purpose of this work is to study the solubility of water in pure CO2 and in CO2 mixtures under real pipeline pressure (90-150 bar) and temperature operation conditions (5-35°C). A set up was constructed to generate experimental data. The results show the solubility of water in CO2 mixtures increasing with the increase of the temperature or/and with the increase in pressure. A drop in water solubility in CO2 is observed in the presence of impurities. The data generated were then used to assess the capabilities of two mixture models: the GERG-2008 model and the EOS-CG model. By generating the solubility data, this study contributes to determine the maximum allowable water content in CO2 pipelines.

Keywords: carbon capture and storage, water solubility, equation of states, fluids engineering

Procedia PDF Downloads 305
10227 Remote Sensing Reversion of Water Depths and Water Management for Waterbird Habitats: A Case Study on the Stopover Site of Siberian Cranes at Momoge, China

Authors: Chunyue Liu, Hongxing Jiang

Abstract:

Traditional water depth survey of wetland habitats used by waterbirds needs intensive labor, time and money. The optical remote sensing image relies on passive multispectral scanner data has been widely employed to study estimate water depth. This paper presents an innovative method for developing the water depth model based on the characteristics of visible and thermal infrared spectra of Landsat ETM+ image, combing with 441 field water depth data at Etoupao shallow wetland. The wetland is located at Momoge National Nature Reserve of Northeast China, where the largest stopover habitat along the eastern flyway of globally, critically-endangered Siberian Cranes are. The cranes mainly feed on the tubers of emergent aquatic plants such as Scirpus planiculmis and S. nipponicus. The effective water control is a critical step for maintaining the production of tubers and food availability for this crane. The model employing multi-band approach can effectively simulate water depth for this shallow wetland. The model parameters of NDVI and GREEN indicated the vegetation growth and coverage affecting the reflectance from water column change are uneven. Combining with the field-observed water level at the same date of image acquisition, the digital elevation model (DEM) for the underwater terrain was generated. The wetland area and water volume of different water levels were then calculated from the DEM using the function of Area and Volume Statistics under the 3D Analyst of ArcGIS 10.0. The findings provide good references to effectively monitor changes in water level and water demand, develop practical plan for water level regulation and water management, and to create best foraging habitats for the cranes. The methods here can be adopted for the bottom topography simulation and water management in waterbirds’ habitats, especially in the shallow wetlands.

Keywords: remote sensing, water depth reversion, shallow wetland habitat management, siberian crane

Procedia PDF Downloads 254
10226 Use of Remote Sensing for Seasonal and Temporal Monitoring in Wetlands: A Case Study of Akyatan Lagoon

Authors: A. Cilek, S. Berberoglu, A. Akin Tanriover, C. Donmez

Abstract:

Wetlands are the areas which have important effects and functions on protecting human life, adjust to nature, and biological variety, besides being potential exploitation sources. Observing the changes in these sensitive areas is important to study for data collecting and correct planning for the future. Remote sensing and Geographic Information System are being increasingly used for environmental studies such as biotope mapping and habitat monitoring. Akyatan Lagoon, one of the most important wetlands in Turkey, has been facing serious threats from agricultural applications in recent years. In this study, seasonal and temporal monitoring in wetlands system are determined by using remotely sensed data and Geographic Information Systems (GIS) between 1985 and 2015. The research method is based on classifying and mapping biotopes in the study area. The natural biotope types were determined as coastal sand dunes, salt marshes, river beds, coastal woods, lakes, lagoons.

Keywords: biotope mapping, GIS, remote sensing, wetlands

Procedia PDF Downloads 394
10225 Microbial Contaminants in Drinking Water Collected from Different Regions of Kuwait

Authors: Abu Salim Mustafa

Abstract:

Water plays a major role in maintaining life on earth, but it can also serve as a matrix for pathogenic organisms, posing substantial health threats to humans. Although, outbreaks of diseases attributable to drinking water may not be common in industrialized countries, they still occur and can lead to serious acute, chronic, or sometimes fatal health consequences. The analysis of drinking water samples from different regions of Kuwait was performed in this study for bacterial and viral contaminations. Drinking tap water samples were collected from 15 different locations of the six Kuwait governorates. All samples were analyzed by confocal microscopy for the presence of bacteria. The samples were cultured in vitro to detect cultivable organisms. DNA was isolated from the cultured organisms and the identity of the bacteria was determined by sequencing the bacterial 16S rRNA genes, followed by BLAST analysis in the database of NCBI, USA. RNA was extracted from water samples and analyzed by real-time PCR for the detection of viruses with potential health risks, i.e. Astrovirus, Enterovirus, Norovirus, Rotavirus, and Hepatitis A. Confocal microscopy showed the presence of bacteria in some water samples. The 16S rRNA gene sequencing of culture grown organisms, followed by BLAST analysis, identified the presence of several non-pathogenic bacterial species. However, one sample had Acinetobacter baumannii, which often causes opportunistic infections in immunocompromised people, but none of the studied viruses could be detected in the drinking water samples analyzed. The results indicate that drinking water samples analyzed from various locations in Kuwait are relatively safe for drinking and do not contain many harmful pathogens.

Keywords: drinking water, microbial contaminant, 16S rDNA, Kuwait

Procedia PDF Downloads 158
10224 Detection and Tracking for the Protection of the Elderly and Socially Vulnerable People in the Video Surveillance System

Authors: Mobarok Hossain Bhuyain

Abstract:

Video surveillance processing has attracted various security fields transforming it into one of the leading research fields. Today's demand for detection and tracking of human mobility for security is very useful for human security, such as in crowded areas. Accordingly, video surveillance technology has seen a rapid advancement in recent years, with algorithms analyzing the behavior of people under surveillance automatically. The main motivation of this research focuses on the detection and tracking of the elderly and socially vulnerable people in crowded areas. Degenerate people are a major health concern, especially for elderly people and socially vulnerable people. One major disadvantage of video surveillance is the need for continuous monitoring, especially in crowded areas. To assist the security monitoring live surveillance video, image processing, and artificial intelligence methods can be used to automatically send warning signals to the monitoring officers about elderly people and socially vulnerable people.

Keywords: human detection, target tracking, neural network, particle filter

Procedia PDF Downloads 167
10223 Physico-Chemical and Heavy Metals Analysis of Contaminated Ndawuse River in North Central of Nigeria

Authors: Abimbola Motunrayo Enitan, Ibironke Titilayo Enitan, John Odiyo

Abstract:

The study assessed quality of surface water across Ndawuse River Phase 1, District of the Federal Capital Territory (FCT), Abuja, Nigeria based on physico-chemical variables that are linked to agrochemical and eutrophication, as well as heavy metals concentrations. In total, sixteen surface water samples were obtained from five locations along the river. The results were compared with the standard limits set by both World Health Organization and Federal Environmental Protection Agency for drinking water. The results obtained indicated that BOD5, turbidity, 0.014-3.511 mg Fe/L and 0.078-0.14 mg Cr/L were all above the standard limits. The results further showed that the quality of surface water is being significantly affected by human activities around the Ndawuse River which could pose an adverse health risk to several communities that rely on these receiving water bodies primarily as their source of water. Therefore, there is a need for strict enforcement of environmental laws considering the physico-chemical analysis.

Keywords: Abuja, heavy metals, human exposure risk, Ndawuse River, Nigeria, surface water

Procedia PDF Downloads 268
10222 The Effect of Treated Waste-Water on Compaction and Compression of Fine Soil

Authors: M. Attom, F. Abed, M. Elemam, M. Nazal, N. ElMessalami

Abstract:

—The main objective of this paper is to study the effect of treated waste-water (TWW) on the compaction and compressibility properties of fine soil. Two types of fine soils (clayey soils) were selected for this study and classified as CH soil and Cl type of soil. Compaction and compressibility properties such as optimum water content, maximum dry unit weight, consolidation index and swell index, maximum past pressure and volume change were evaluated using both tap and treated waste water. It was found that the use of treated waste water affects all of these properties. The maximum dry unit weight increased for both soils and the optimum water content decreased as much as 13.6% for highly plastic soil. The significant effect was observed in swell index and swelling pressure of the soils. The swell indexed decreased by as much as 42% and 33% for highly plastic and low plastic soils, respectively, when TWW is used. Additionally, the swelling pressure decreased by as much as 16% for both soil types. The result of this research pointed out that the use of treated waste water has a positive effect on compaction and compression properties of clay soil and promise for potential use of this water in engineering applications. Keywords—Consolidation, proctor compaction, swell index, treated waste-water, volume change.

Keywords: consolidation, proctor compaction, swell index, treated waste-water, volume change

Procedia PDF Downloads 264
10221 Polymer Flooding: Chemical Enhanced Oil Recovery Technique

Authors: Abhinav Bajpayee, Shubham Damke, Rupal Ranjan, Neha Bharti

Abstract:

Polymer flooding is a dramatic improvement in water flooding and quickly becoming one of the EOR technologies. Used for improving oil recovery. With the increasing energy demand and depleting oil reserves EOR techniques are becoming increasingly significant .Since most oil fields have already begun water flooding, chemical EOR technique can be implemented by using fewer resources than any other EOR technique. Polymer helps in increasing the viscosity of injected water thus reducing water mobility and hence achieves a more stable displacement .Polymer flooding helps in increasing the injection viscosity as has been revealed through field experience. While the injection of a polymer solution improves reservoir conformance the beneficial effect ceases as soon as one attempts to push the polymer solution with water. It is most commonly applied technique because of its higher success rate. In polymer flooding, a water-soluble polymer such as Polyacrylamide is added to the water in the water flood. This increases the viscosity of the water to that of a gel making the oil and water greatly improving the efficiency of the water flood. It also improves the vertical and areal sweep efficiency as a consequence of improving the water/oil mobility ratio. Polymer flooding plays an important role in oil exploitation, but around 60 million ton of wastewater is produced per day with oil extraction together. Therefore the treatment and reuse of wastewater becomes significant which can be carried out by electro dialysis technology. This treatment technology can not only decrease environmental pollution, but also achieve closed-circuit of polymer flooding wastewater during crude oil extraction. There are three potential ways in which a polymer flood can make the oil recovery process more efficient: (1) through the effects of polymers on fractional flow, (2) by decreasing the water/oil mobility ratio, and (3) by diverting injected water from zones that have been swept. It has also been suggested that the viscoelastic behavior of polymers can improve displacement efficiency Polymer flooding may also have an economic impact because less water is injected and produced compared with water flooding. In future we need to focus on developing polymers that can be used in reservoirs of high temperature and high salinity, applying polymer flooding in different reservoir conditions and also combine polymer with other processes (e.g., surfactant/ polymer flooding).

Keywords: fractional flow, polymer, viscosity, water/oil mobility ratio

Procedia PDF Downloads 401