Search results for: delay tolerant networks
2367 Of an 80 Gbps Passive Optical Network Using Time and Wavelength Division Multiplexing
Authors: Malik Muhammad Arslan, Muneeb Ullah, Dai Shihan, Faizan Khan, Xiaodong Yang
Abstract:
Internet Service Providers are driving endless demands for higher bandwidth and data throughput as new services and applications require higher bandwidth. Users want immediate and accurate data delivery. This article focuses on converting old conventional networks into passive optical networks based on time division and wavelength division multiplexing. The main focus of this research is to use a hybrid of time-division multiplexing and wavelength-division multiplexing to improve network efficiency and performance. In this paper, we design an 80 Gbps Passive Optical Network (PON), which meets the need of the Next Generation PON Stage 2 (NGPON2) proposed in this paper. The hybrid of the Time and Wavelength division multiplexing (TWDM) is said to be the best solution for the implementation of NGPON2, according to Full-Service Access Network (FSAN). To co-exist with or replace the current PON technologies, many wavelengths of the TWDM can be implemented simultaneously. By utilizing 8 pairs of wavelengths that are multiplexed and then transmitted over optical fiber for 40 Kms and on the receiving side, they are distributed among 256 users, which shows that the solution is reliable for implementation with an acceptable data rate. From the results, it can be concluded that the overall performance, Quality Factor, and bandwidth of the network are increased, and the Bit Error rate is minimized by the integration of this approach.Keywords: bit error rate, fiber to the home, passive optical network, time and wavelength division multiplexing
Procedia PDF Downloads 722366 Detection and Classification Strabismus Using Convolutional Neural Network and Spatial Image Processing
Authors: Anoop T. R., Otman Basir, Robert F. Hess, Eileen E. Birch, Brooke A. Koritala, Reed M. Jost, Becky Luu, David Stager, Ben Thompson
Abstract:
Strabismus refers to a misalignment of the eyes. Early detection and treatment of strabismus in childhood can prevent the development of permanent vision loss due to abnormal development of visual brain areas. We developed a two-stage method for strabismus detection and classification based on photographs of the face. The first stage detects the presence or absence of strabismus, and the second stage classifies the type of strabismus. The first stage comprises face detection using Haar cascade, facial landmark estimation, face alignment, aligned face landmark detection, segmentation of the eye region, and detection of strabismus using VGG 16 convolution neural networks. Face alignment transforms the face to a canonical pose to ensure consistency in subsequent analysis. Using facial landmarks, the eye region is segmented from the aligned face and fed into a VGG 16 CNN model, which has been trained to classify strabismus. The CNN determines whether strabismus is present and classifies the type of strabismus (exotropia, esotropia, and vertical deviation). If stage 1 detects strabismus, the eye region image is fed into stage 2, which starts with the estimation of pupil center coordinates using mask R-CNN deep neural networks. Then, the distance between the pupil coordinates and eye landmarks is calculated along with the angle that the pupil coordinates make with the horizontal and vertical axis. The distance and angle information is used to characterize the degree and direction of the strabismic eye misalignment. This model was tested on 100 clinically labeled images of children with (n = 50) and without (n = 50) strabismus. The True Positive Rate (TPR) and False Positive Rate (FPR) of the first stage were 94% and 6% respectively. The classification stage has produced a TPR of 94.73%, 94.44%, and 100% for esotropia, exotropia, and vertical deviations, respectively. This method also had an FPR of 5.26%, 5.55%, and 0% for esotropia, exotropia, and vertical deviation, respectively. The addition of one more feature related to the location of corneal light reflections may reduce the FPR, which was primarily due to children with pseudo-strabismus (the appearance of strabismus due to a wide nasal bridge or skin folds on the nasal side of the eyes).Keywords: strabismus, deep neural networks, face detection, facial landmarks, face alignment, segmentation, VGG 16, mask R-CNN, pupil coordinates, angle deviation, horizontal and vertical deviation
Procedia PDF Downloads 962365 Machine Learning Approaches Based on Recency, Frequency, Monetary (RFM) and K-Means for Predicting Electrical Failures and Voltage Reliability in Smart Cities
Authors: Panaya Sudta, Wanchalerm Patanacharoenwong, Prachya Bumrungkun
Abstract:
As With the evolution of smart grids, ensuring the reliability and efficiency of electrical systems in smart cities has become crucial. This paper proposes a distinct approach that combines advanced machine learning techniques to accurately predict electrical failures and address voltage reliability issues. This approach aims to improve the accuracy and efficiency of reliability evaluations in smart cities. The aim of this research is to develop a comprehensive predictive model that accurately predicts electrical failures and voltage reliability in smart cities. This model integrates RFM analysis, K-means clustering, and LSTM networks to achieve this objective. The research utilizes RFM analysis, traditionally used in customer value assessment, to categorize and analyze electrical components based on their failure recency, frequency, and monetary impact. K-means clustering is employed to segment electrical components into distinct groups with similar characteristics and failure patterns. LSTM networks are used to capture the temporal dependencies and patterns in customer data. This integration of RFM, K-means, and LSTM results in a robust predictive tool for electrical failures and voltage reliability. The proposed model has been tested and validated on diverse electrical utility datasets. The results show a significant improvement in prediction accuracy and reliability compared to traditional methods, achieving an accuracy of 92.78% and an F1-score of 0.83. This research contributes to the proactive maintenance and optimization of electrical infrastructures in smart cities. It also enhances overall energy management and sustainability. The integration of advanced machine learning techniques in the predictive model demonstrates the potential for transforming the landscape of electrical system management within smart cities. The research utilizes diverse electrical utility datasets to develop and validate the predictive model. RFM analysis, K-means clustering, and LSTM networks are applied to these datasets to analyze and predict electrical failures and voltage reliability. The research addresses the question of how accurately electrical failures and voltage reliability can be predicted in smart cities. It also investigates the effectiveness of integrating RFM analysis, K-means clustering, and LSTM networks in achieving this goal. The proposed approach presents a distinct, efficient, and effective solution for predicting and mitigating electrical failures and voltage issues in smart cities. It significantly improves prediction accuracy and reliability compared to traditional methods. This advancement contributes to the proactive maintenance and optimization of electrical infrastructures, overall energy management, and sustainability in smart cities.Keywords: electrical state prediction, smart grids, data-driven method, long short-term memory, RFM, k-means, machine learning
Procedia PDF Downloads 582364 Evaluation and Selection of Elite Jatropha Genotypes for Biofuel
Authors: Bambang Heliyanto, Rully Dyah Purwati, Hasnam, Fadjry Djufry
Abstract:
Jatropha curcas L., a drought tolerant and monoecious perennial shrub, has received attention worldwide during the past decade. Realizing the facts, the Indonesian government has decided to option for Jatropha and palm oil for in country biofuel production. To support the program development of high yielding jatropha varieties is necessary. This paper reviews Jatropha improvement program in Indonesia using mass selection and hybrid development. To start with, at the end of 2005, in-country germplasm collection was mobilized to Lampung and Nusa Tenggara Barat (NTB) provinces and successfully collected 15 provenances/sub-provenances which serves as a base population for selection. A significant improvement has been achieved through a simple recurrent breeding selection during 2006 to 2007. Seed yield productivity increased more than double, from 0.36 to 0.97 ton dry seed per hectare during the first selection cycle (IP-1), and then increased to 2.2 ton per hectare during the second cycles (IP-2) in Lampung provenance. Similar result was also observed in NTB provenance. Seed yield productivity increased from 0.43 ton to 1 ton dry seed per hectare in the first cycle (IP-1), and then 1.9 ton in the second cycle (IP-2). In 2008, the population IP-3 resulted from the third cycle of selection have been identified which were capable of producing 2.2 to 2.4 ton seed yield per hectare. To improve the seed yield per hectare, jatropha hybrid varieties was developed involving superior provenances. As a result a Jatropha Energy Terbarukan (JET) variety-2 was released in 2017 with seed yield potential of 2.6 ton per hectare. The use of this high yielding genotypes for biofuel is discussed.Keywords: Jatropha curcas, provenance, biofuel, improve population, hybrid
Procedia PDF Downloads 1732363 Sign Language Recognition of Static Gestures Using Kinect™ and Convolutional Neural Networks
Authors: Rohit Semwal, Shivam Arora, Saurav, Sangita Roy
Abstract:
This work proposes a supervised framework with deep convolutional neural networks (CNNs) for vision-based sign language recognition of static gestures. Our approach addresses the acquisition and segmentation of correct inputs for the CNN-based classifier. Microsoft Kinect™ sensor, despite complex environmental conditions, can track hands efficiently. Skin Colour based segmentation is applied on cropped images of hands in different poses, used to depict different sign language gestures. The segmented hand images are used as an input for our classifier. The CNN classifier proposed in the paper is able to classify the input images with a high degree of accuracy. The system was trained and tested on 39 static sign language gestures, including 26 letters of the alphabet and 13 commonly used words. This paper includes a problem definition for building the proposed system, which acts as a sign language translator between deaf/mute and the rest of the society. It is then followed by a focus on reviewing existing knowledge in the area and work done by other researchers. It also describes the working principles behind different components of CNNs in brief. The architecture and system design specifications of the proposed system are discussed in the subsequent sections of the paper to give the reader a clear picture of the system in terms of the capability required. The design then gives the top-level details of how the proposed system meets the requirements.Keywords: sign language, CNN, HCI, segmentation
Procedia PDF Downloads 1592362 An AI-Based Dynamical Resource Allocation Calculation Algorithm for Unmanned Aerial Vehicle
Authors: Zhou Luchen, Wu Yubing, Burra Venkata Durga Kumar
Abstract:
As the scale of the network becomes larger and more complex than before, the density of user devices is also increasing. The development of Unmanned Aerial Vehicle (UAV) networks is able to collect and transform data in an efficient way by using software-defined networks (SDN) technology. This paper proposed a three-layer distributed and dynamic cluster architecture to manage UAVs by using an AI-based resource allocation calculation algorithm to address the overloading network problem. Through separating services of each UAV, the UAV hierarchical cluster system performs the main function of reducing the network load and transferring user requests, with three sub-tasks including data collection, communication channel organization, and data relaying. In this cluster, a head node and a vice head node UAV are selected considering the Central Processing Unit (CPU), operational (RAM), and permanent (ROM) memory of devices, battery charge, and capacity. The vice head node acts as a backup that stores all the data in the head node. The k-means clustering algorithm is used in order to detect high load regions and form the UAV layered clusters. The whole process of detecting high load areas, forming and selecting UAV clusters, and moving the selected UAV cluster to that area is proposed as offloading traffic algorithm.Keywords: k-means, resource allocation, SDN, UAV network, unmanned aerial vehicles
Procedia PDF Downloads 1122361 Voice over IP Quality of Service Evaluation for Mobile Ad Hoc Network in an Indoor Environment for Different Voice Codecs
Authors: Lina Abou Haibeh, Nadir Hakem, Ousama Abu Safia
Abstract:
In this paper, the performance and quality of Voice over IP (VoIP) calls carried over a Mobile Ad Hoc Network (MANET) which has a number of SIP nodes registered on a SIP Proxy are analyzed. The testing campaigns are carried out in an indoor corridor structure having a well-defined channel’s characteristics and model for the different voice codecs, G.711, G.727 and G.723.1. These voice codecs are commonly used in VoIP technology. The calls’ quality are evaluated using four Quality of Service (QoS) metrics, namely, mean opinion score (MOS), jitter, delay, and packet loss. The relationship between the wireless channel’s parameters and the optimum codec is well-established. According to the experimental results, the voice codec G.711 has the best performance for the proposed MANET topologyKeywords: wireless channel modelling, Voip, MANET, session initiation protocol (SIP), QoS
Procedia PDF Downloads 2292360 Throughflow Effects on Thermal Convection in Variable Viscosity Ferromagnetic Liquids
Authors: G. N. Sekhar, P. G. Siddheshwar, G. Jayalatha, R. Prakash
Abstract:
The problem of thermal convection in temperature and magnetic field sensitive Newtonian ferromagnetic liquid is studied in the presence of uniform vertical magnetic field and throughflow. Using a combination of Galerkin and shooting techniques the critical eigenvalues are obtained for stationary mode. The effect of Prandtl number (Pr > 1) on onset is insignificant and nonlinearity of non-buoyancy magnetic parameter M3 is found to have no influence on the onset of ferroconvection. The magnetic buoyancy number, M1 and variable viscosity parameter, V have destabilizing influences on the system. The effect of throughflow Peclet number, Pe is to delay the onset of ferroconvection and this effect is independent of the direction of flow.Keywords: ferroconvection, magnetic field dependent viscosity, temperature dependent viscosity, throughflow
Procedia PDF Downloads 2652359 Finite Element Analysis of a Modular Brushless Wound Rotor Synchronous Machine
Authors: H. T. Le Luong, C. Hénaux, F. Messine, G. Bueno-Mariani, S. Mollov, N. Voyer
Abstract:
This paper presents a comparative study of different modular brushless wound rotor synchronous machine (MB-WRSM). The goal of the study is to highlight the structure which offers the best fault tolerant capability and the highest output performances. The fundamental winding factor is calculated by using the method based on EMF phasors as a significant criterion to select the preferred number of phases, stator slots, and poles. With the limited number of poles for a small machine (3.67kW/7000rpm), 15 different machines for preferred phase/slot/pole combinations are analyzed using two-dimensional (2-D) finite element method and compared according to three criteria: torque density, torque ripple and efficiency. The 7phase/7slot/6pole machine is chosen with the best compromise of high torque density, small torque ripple (3.89%) and high nominal efficiency (95%). This machine is then compared with a reference design surface permanent magnet synchronous machine (SPMSM). In conclusion, this paper provides an electromagnetic analysis of a new brushless wound-rotor synchronous machine using multiphase non-overlapping fractional slot double layer winding. The simulation results are discussed and demonstrate that the MB-WRSM presents interesting performance features, with overall performance closely matching that of an equivalent SPMSM.Keywords: finite element method (FEM), machine performance, modular wound rotor synchronous machine, non-overlapping concentrated winding
Procedia PDF Downloads 2912358 A Highly Efficient Broadcast Algorithm for Computer Networks
Authors: Ganesh Nandakumaran, Mehmet Karaata
Abstract:
A wave is a distributed execution, often made up of a broadcast phase followed by a feedback phase, requiring the participation of all the system processes before a particular event called decision is taken. Wave algorithms with one initiator such as the 1-wave algorithm have been shown to be very efficient for broadcasting messages in tree networks. Extensions of this algorithm broadcasting a sequence of waves using a single initiator have been implemented in algorithms such as the m-wave algorithm. However as the network size increases, having a single initiator adversely affects the message delivery times to nodes further away from the initiator. As a remedy, broadcast waves can be allowed to be initiated by multiple initiator nodes distributed across the network to reduce the completion time of broadcasts. These waves initiated by one or more initiator processes form a collection of waves covering the entire network. Solutions to global-snapshots, distributed broadcast and various synchronization problems can be solved efficiently using waves with multiple concurrent initiators. In this paper, we propose the first stabilizing multi-wave sequence algorithm implementing waves started by multiple initiator processes such that every process in the network receives at least one sequence of broadcasts. Due to being stabilizing, the proposed algorithm can withstand transient faults and do not require initialization. We view a fault as a transient fault if it perturbs the configuration of the system but not its program.Keywords: distributed computing, multi-node broadcast, propagation of information with feedback and cleaning (PFC), stabilization, wave algorithms
Procedia PDF Downloads 5052357 A Network Economic Analysis of Friendship, Cultural Activity, and Homophily
Authors: Siming Xie
Abstract:
In social networks, the term homophily refers to the tendency of agents with similar characteristics to link with one another and is so robustly observed across many contexts and dimensions. The starting point of my research is the observation that the “type” of agents is not a single exogenous variable. Agents, despite their differences in race, religion, and other hard to alter characteristics, may share interests and engage in activities that cut across those predetermined lines. This research aims to capture the interactions of homophily effects in a model where agents have two-dimension characteristics (i.e., race and personal hobbies such as basketball, which one either likes or dislikes) and with biases in meeting opportunities and in favor of same-type friendships. A novel feature of my model is providing a matching process with biased meeting probability on different dimensions, which could help to understand the structuring process in multidimensional networks without missing layer interdependencies. The main contribution of this study is providing a welfare based matching process for agents with multi-dimensional characteristics. In particular, this research shows that the biases in meeting opportunities on one dimension would lead to the emergence of homophily on the other dimension. The objective of this research is to determine the pattern of homophily in network formations, which will shed light on our understanding of segregation and its remedies. By constructing a two-dimension matching process, this study explores a method to describe agents’ homophilous behavior in a social network with multidimension and construct a game in which the minorities and majorities play different strategies in a society. It also shows that the optimal strategy is determined by the relative group size, where society would suffer more from social segregation if the two racial groups have a similar size. The research also has political implications—cultivating the same characteristics among agents helps diminishing social segregation, but only if the minority group is small enough. This research includes both theoretical models and empirical analysis. Providing the friendship formation model, the author first uses MATLAB to perform iteration calculations, then derives corresponding mathematical proof on previous results, and last shows that the model is consistent with empirical evidence from high school friendships. The anonymous data comes from The National Longitudinal Study of Adolescent Health (Add Health).Keywords: homophily, multidimension, social networks, friendships
Procedia PDF Downloads 1722356 The Latency-Amplitude Binomial of Waves Resulting from the Application of Evoked Potentials for the Diagnosis of Dyscalculia
Authors: Maria Isabel Garcia-Planas, Maria Victoria Garcia-Camba
Abstract:
Recent advances in cognitive neuroscience have allowed a step forward in perceiving the processes involved in learning from the point of view of the acquisition of new information or the modification of existing mental content. The evoked potentials technique reveals how basic brain processes interact to achieve adequate and flexible behaviours. The objective of this work, using evoked potentials, is to study if it is possible to distinguish if a patient suffers a specific type of learning disorder to decide the possible therapies to follow. The methodology used, is the analysis of the dynamics of different areas of the brain during a cognitive activity to find the relationships between the different areas analyzed in order to better understand the functioning of neural networks. Also, the latest advances in neuroscience have revealed the existence of different brain activity in the learning process that can be highlighted through the use of non-invasive, innocuous, low-cost and easy-access techniques such as, among others, the evoked potentials that can help to detect early possible neuro-developmental difficulties for their subsequent assessment and cure. From the study of the amplitudes and latencies of the evoked potentials, it is possible to detect brain alterations in the learning process specifically in dyscalculia, to achieve specific corrective measures for the application of personalized psycho pedagogical plans that allow obtaining an optimal integral development of the affected people.Keywords: dyscalculia, neurodevelopment, evoked potentials, Learning disabilities, neural networks
Procedia PDF Downloads 1422355 Multi-Path Signal Synchronization Model with Phase Length Constraints
Authors: Tzu-Jung Huang, Hsun-Jung Cho, Chien-Chia Liäm Huang
Abstract:
To improve the level of service (LoS) of urban arterial systems containing a series of signalized intersections, a proper design of offsets for all intersections associated is of great importance. The MAXBAND model has been the most common approach for this purpose. In this paper, we propose a MAXBAND model with phase constraints so that the lengths of the phases in a cycle are variable. In other words, the length of a cycle is also variable in our setting. We conduct experiments on a real-world traffic network, having several major paths, in Taiwan for numerical evaluations. Actual traffic data were collected through on-site experiments. Numerical evidences suggest that the improvements are around 32%, on average, in terms of total delay of the entire network.Keywords: arterial progression, MAXBAND, signal control, offset
Procedia PDF Downloads 3592354 Comparative Connectionism: Study of the Biological Constraints of Learning Through the Manipulation of Various Architectures in a Neural Network Model under the Biological Principle of the Correlation Between Structure and Function
Authors: Giselle Maggie-Fer Castañeda Lozano
Abstract:
The main objective of this research was to explore the role of neural network architectures in simulating behavioral phenomena as a potential explanation for selective associations, specifically related to biological constraints on learning. Biological constraints on learning refer to the limitations observed in conditioning procedures, where learning is expected to occur. The study involved simulations of five different experiments exploring various phenomena and sources of biological constraints in learning. These simulations included the interaction between response and reinforcer, stimulus and reinforcer, specificity of stimulus-reinforcer associations, species differences, neuroanatomical constraints, and learning in uncontrolled conditions. The overall results demonstrated that by manipulating neural network architectures, conditions can be created to model and explain diverse biological constraints frequently reported in comparative psychology literature as learning typicities. Additionally, the simulations offer predictive content worthy of experimental testing in the pursuit of new discoveries regarding the specificity of learning. The implications and limitations of these findings are discussed. Finally, it is suggested that this research could inaugurate a line of inquiry involving the use of neural networks to study biological factors in behavior, fostering the development of more ethical and precise research practices.Keywords: comparative psychology, connectionism, conditioning, experimental analysis of behavior, neural networks
Procedia PDF Downloads 742353 Assessment of Drought Tolerance Maize Hybrids at Grain Growth Stage in Mediterranean Area
Authors: Ayman El Sabagh, Celaleddin Barutçular, Hirofumi Saneoka
Abstract:
Drought is one of the most serious problems posing a grave threat to cereals production including maize. Maize improvement in drought-stress tolerance poses a great challenge as the global need for food and bio-enegry increases. Thus, the current study was planned to explore the variations and determine the performance of target traits of maize hybrids at grain growth stage under drought conditions during 2014 under Adana, Mediterranean climate conditions, Turkey. Maize hybrids (Sancia, Indaco, 71May69, Aaccel, Calgary, 70May82, 72May80) were evaluated under (irrigated and water stress). Results revealed that, grain yield and yield traits had a negative effects because of water stress conditions compared with the normal irrigation. As well as, based on the result under normal irrigation, the maximum biological yield and harvest index were recorded. According to the differences among hybrids were found that, significant differences were observed among hybrids with respect to yield and yield traits under current research. Based on the results, grain weight had more effect on grain yield than grain number during grain filling growth stage under water stress conditions. In this concern, according to low drought susceptibility index (less grain yield losses), the hybrid (Indaco) was more stable in grain number and grain weight. Consequently, it may be concluded that this hybrid would be recommended for use in the future breeding programs for production of drought tolerant hybrids.Keywords: drought susceptibility index, grain growth, grain yield, maize, water stress
Procedia PDF Downloads 3312352 The Impact of Artificial Intelligence on Agricultural Machines and Plant Nutrition
Authors: Kirolos Gerges Yakoub Gerges
Abstract:
Self-sustaining agricultural machines act in stochastic surroundings and therefore, should be capable of perceive the surroundings in real time. This notion can be done using image sensors blended with superior device learning, mainly Deep mastering. Deep convolutional neural networks excel in labeling and perceiving colour pix and since the fee of RGB-cameras is low, the hardware cost of accurate notion relies upon heavily on memory and computation power. This paper investigates the opportunity of designing lightweight convolutional neural networks for semantic segmentation (pixel clever class) with reduced hardware requirements, to allow for embedded usage in self-reliant agricultural machines. The usage of compression techniques, a lightweight convolutional neural community is designed to carry out actual-time semantic segmentation on an embedded platform. The community is skilled on two big datasets, ImageNet and Pascal Context, to apprehend as much as four hundred man or woman instructions. The 400 training are remapped into agricultural superclasses (e.g. human, animal, sky, road, area, shelterbelt and impediment) and the capacity to provide correct actual-time perception of agricultural environment is studied. The network is carried out to the case of self-sufficient grass mowing the usage of the NVIDIA Tegra X1 embedded platform. Feeding case-unique pics to the community consequences in a fully segmented map of the superclasses within the picture. As the network remains being designed and optimized, handiest a qualitative analysis of the technique is entire on the abstract submission deadline. intending this cut-off date, the finalized layout is quantitatively evaluated on 20 annotated grass mowing pictures. Light-weight convolutional neural networks for semantic segmentation can be implemented on an embedded platform and show aggressive performance on the subject of accuracy and speed. It’s miles viable to offer value-efficient perceptive capabilities related to semantic segmentation for autonomous agricultural machines.Keywords: centrifuge pump, hydraulic energy, agricultural applications, irrigationaxial flux machines, axial flux applications, coreless machines, PM machinesautonomous agricultural machines, deep learning, safety, visual perception
Procedia PDF Downloads 282351 Experimental and Numerical Investigation of Flow Control Using a Novel Active Slat
Authors: Basman Elhadidi, Islam Elqatary, Osama Saaid, Hesham Othman
Abstract:
An active slat is developed to increase the lift and delay the separation for a DU96-W180 airfoil. The active slat is a fixed slat that can be closed, fully opened or intermittently opened by a rotating vane depending on the need. Experimental results show that the active slat has reduced the mean pressure and increased the mean velocity on the suction side of the airfoil for all positive angles of attack, indicating an increase of lift. The experimental data and numerical simulations also show that the direction of actuator vane rotation can influence the mixing of the flow streams on the suction side and hence influence the aerodynamic performance.Keywords: active slat, flow control, experimental investigation, aerodynamic performance
Procedia PDF Downloads 4372350 A Real-Time Snore Detector Using Neural Networks and Selected Sound Features
Authors: Stelios A. Mitilineos, Nicolas-Alexander Tatlas, Georgia Korompili, Lampros Kokkalas, Stelios M. Potirakis
Abstract:
Obstructive Sleep Apnea Hypopnea Syndrome (OSAHS) is a widespread chronic disease that mostly remains undetected, mainly due to the fact that it is diagnosed via polysomnography which is a time and resource-intensive procedure. Screening the disease’s symptoms at home could be used as an alternative approach in order to alert individuals that potentially suffer from OSAHS without compromising their everyday routine. Since snoring is usually linked to OSAHS, developing a snore detector is appealing as an enabling technology for screening OSAHS at home using ubiquitous equipment like commodity microphones (included in, e.g., smartphones). In this context, this study developed a snore detection tool and herein present the approach and selection of specific sound features that discriminate snoring vs. environmental sounds, as well as the performance of the proposed tool. Furthermore, a Real-Time Snore Detector (RTSD) is built upon the snore detection tool and employed in whole-night sleep sound recordings resulting to a large dataset of snoring sound excerpts that are made freely available to the public. The RTSD may be used either as a stand-alone tool that offers insight to an individual’s sleep quality or as an independent component of OSAHS screening applications in future developments.Keywords: obstructive sleep apnea hypopnea syndrome, apnea screening, snoring detection, machine learning, neural networks
Procedia PDF Downloads 2082349 A Hybrid Hopfield Neural Network for Dynamic Flexible Job Shop Scheduling Problems
Authors: Aydin Teymourifar, Gurkan Ozturk
Abstract:
In this paper, a new hybrid Hopfield neural network is proposed for the dynamic, flexible job shop scheduling problem. A new heuristic based and easy to implement energy function is designed for the Hopfield neural network, which penalizes the constraints violation and decreases makespan. Moreover, for enhancing the performance, several heuristics are integrated to it that achieve active, and non-delay schedules also, prevent early convergence of the neural network. The suggested algorithm that is designed as a generalization of the previous studies for the flexible and dynamic scheduling problems can be used for solving real scheduling problems. Comparison of the presented hybrid method results with the previous studies results proves its efficiency.Keywords: dynamic flexible job shop scheduling, neural network, heuristics, constrained optimization
Procedia PDF Downloads 4192348 Comparative Evaluation of Accuracy of Selected Machine Learning Classification Techniques for Diagnosis of Cancer: A Data Mining Approach
Authors: Rajvir Kaur, Jeewani Anupama Ginige
Abstract:
With recent trends in Big Data and advancements in Information and Communication Technologies, the healthcare industry is at the stage of its transition from clinician oriented to technology oriented. Many people around the world die of cancer because the diagnosis of disease was not done at an early stage. Nowadays, the computational methods in the form of Machine Learning (ML) are used to develop automated decision support systems that can diagnose cancer with high confidence in a timely manner. This paper aims to carry out the comparative evaluation of a selected set of ML classifiers on two existing datasets: breast cancer and cervical cancer. The ML classifiers compared in this study are Decision Tree (DT), Support Vector Machine (SVM), k-Nearest Neighbor (k-NN), Logistic Regression, Ensemble (Bagged Tree) and Artificial Neural Networks (ANN). The evaluation is carried out based on standard evaluation metrics Precision (P), Recall (R), F1-score and Accuracy. The experimental results based on the evaluation metrics show that ANN showed the highest-level accuracy (99.4%) when tested with breast cancer dataset. On the other hand, when these ML classifiers are tested with the cervical cancer dataset, Ensemble (Bagged Tree) technique gave better accuracy (93.1%) in comparison to other classifiers.Keywords: artificial neural networks, breast cancer, classifiers, cervical cancer, f-score, machine learning, precision, recall
Procedia PDF Downloads 2782347 Detailed Analysis of Multi-Mode Optical Fiber Infrastructures for Data Centers
Authors: Matej Komanec, Jan Bohata, Stanislav Zvanovec, Tomas Nemecek, Jan Broucek, Josef Beran
Abstract:
With the exponential growth of social networks, video streaming and increasing demands on data rates, the number of newly built data centers rises proportionately. The data centers, however, have to adjust to the rapidly increased amount of data that has to be processed. For this purpose, multi-mode (MM) fiber based infrastructures are often employed. It stems from the fact, the connections in data centers are typically realized within a short distance, and the application of MM fibers and components considerably reduces costs. On the other hand, the usage of MM components brings specific requirements for installation service conditions. Moreover, it has to be taken into account that MM fiber components have a higher production tolerance for parameters like core and cladding diameters, eccentricity, etc. Due to the high demands for the reliability of data center components, the determination of properly excited optical field inside the MM fiber core belongs to the key parameters while designing such an MM optical system architecture. Appropriately excited mode field of the MM fiber provides optimal power budget in connections, leads to the decrease of insertion losses (IL) and achieves effective modal bandwidth (EMB). The main parameter, in this case, is the encircled flux (EF), which should be properly defined for variable optical sources and consequent different mode-field distribution. In this paper, we present detailed investigation and measurements of the mode field distribution for short MM links purposed in particular for data centers with the emphasis on reliability and safety. These measurements are essential for large MM network design. The various scenarios, containing different fibers and connectors, were tested in terms of IL and mode-field distribution to reveal potential challenges. Furthermore, we focused on estimation of particular defects and errors, which can realistically occur like eccentricity, connector shifting or dust, were simulated and measured, and their dependence to EF statistics and functionality of data center infrastructure was evaluated. The experimental tests were performed at two wavelengths, commonly used in MM networks, of 850 nm and 1310 nm to verify EF statistics. Finally, we provide recommendations for data center systems and networks, using OM3 and OM4 MM fiber connections.Keywords: optical fiber, multi-mode, data centers, encircled flux
Procedia PDF Downloads 3772346 A Study of Factors Affecting the Elapsed Time of Housing Renewal Project Implementation in Seoul
Authors: In Su Na, Gunwon Lee, Seiyong Kim
Abstract:
This study analyzed the effect of area variables and economic variables on the length of each period of the project in order to analyze the effect of agreement rate on project implementation in housing renewal projects. In conclusion, as can be seen from these results, a low agreement rate may not translate into project promotion, and a higher agreement rate may not translate into project delay. The expectation of the policy is that the lower the agreement rate, the more projects would be promoted, but that is not the actual effect. From a policy consistency viewpoint, changing the agreement rate frequently, depending on the decision of the public, is not reasonable. The policy of using agreement rate as a necessary condition for project implementation should be reconsidered.Keywords: Area and Economic Variables, Elapsed time, Housing Renewal Project
Procedia PDF Downloads 4572345 Estimating 3D-Position of a Stationary Random Acoustic Source Using Bispectral Analysis of 4-Point Detected Signals
Authors: Katsumi Hirata
Abstract:
To develop the useful acoustic environmental recognition system, the method of estimating 3D-position of a stationary random acoustic source using bispectral analysis of 4-point detected signals is proposed. The method uses information about amplitude attenuation and propagation delay extracted from amplitude ratios and angles of auto- and cross-bispectra of the detected signals. It is expected that using bispectral analysis affects less influence of Gaussian noises than using conventional power spectral one. In this paper, the basic principle of the method is mentioned first, and its validity and features are considered from results of the fundamental experiments assumed ideal circumstances.Keywords: 4-point detection, a stationary random acoustic source, auto- and cross-bispectra, estimation of 3D-position
Procedia PDF Downloads 3602344 Mobile Traffic Management in Congested Cells using Fuzzy Logic
Authors: A. A. Balkhi, G. M. Mir, Javid A. Sheikh
Abstract:
To cater the demands of increasing traffic with new applications the cellular mobile networks face new changes in deployment in infrastructure for making cellular networks heterogeneous. To reduce overhead processing the densely deployed cells require smart behavior with self-organizing capabilities with high adaptation to the neighborhood. We propose self-organization of unused resources usually excessive unused channels of neighbouring cells with densely populated cells to reduce handover failure rates. The neighboring cells share unused channels after fulfilling some conditional candidature criterion using threshold values so that they are not suffered themselves for starvation of channels in case of any abrupt change in traffic pattern. The cells are classified as ‘red’, ‘yellow’, or ‘green’, as per the available channels in cell which is governed by traffic pattern and thresholds. To combat the deficiency of channels in red cell, migration of unused channels from under-loaded cells, hierarchically from the qualified candidate neighboring cells is explored. The resources are returned back when the congested cell is capable of self-contained traffic management. In either of the cases conditional sharing of resources is executed for enhanced traffic management so that User Equipment (UE) is provided uninterrupted services with high Quality of Service (QoS). The fuzzy logic-based simulation results show that the proposed algorithm is efficiently in coincidence with improved successful handoffs.Keywords: candidate cell, channel sharing, fuzzy logic, handover, small cells
Procedia PDF Downloads 1212343 Tolerance of Some Warm Season Turfgrasses to Compaction under Shade and Sunlight Conditions of Riyadh, Saudi Arabia
Authors: Mohammed A. Al-Yafrsi, Fahed A. Al-Mana
Abstract:
A study was conducted to evaluate the compaction-tolerance ability of some warm season turfgrasses under shade and sunlight conditions in Riyadh, Saudi Arabia. Hybrid bermudagrass (Cynodon dactylon): 'Tifway' and 'Tifsport', seashore paspalum (Paspalum vaginatum) and its cultivar 'Sea Isle 2000' were used. The study area was divided into two sections where one was exposed to sunlight and the other one was maintained under shade using green plastic grille (shade 70%). Turfgrasses were planted by sods in beds containing a mixture of sand, silt, and peat moss (4: 1: 1, v/v). The soil compaction was applied using a locally-made cylindrical roll (weighing 250 kg), passing four times over the growing turfgrasses for 3 days/week. The results revealed that compaction treatment led to a decrease in grass height, and it was the lowest (4.0 cm) for paspalum 'Sea Isle 2000' in February. At the shaded area, paspalum turfgrasses retained its high quality degree (4.0) in April, May, and June. In the sunlight area, the grass quality degree was the greatest (4.0) in 'Sea Isle 2000' and the lowest (3.0) in 'Tifsport'. Paspalum turfgrasses gave higher color degree (4) than bermuda grasses (2.5) in April, May, and June. The compaction also led to a decline in leaf area, fresh and dry weights of all grown turfgrasses. The grass density was high for paspalum turfgrasses indicating that their resistance to compaction was greater than bermudagrasses. It can be concluded that the best compaction and shade tolerant turfgrasses are 'Sea Isle 2000' and seashore paspalum.Keywords: hybrid bermudagrass, seashore paspalum, soil compaction, shade area, sunlight condition
Procedia PDF Downloads 1222342 Spacio-Temporal Variation of the Zooplanktonic Community of Esa-Odo Reservoir, Esa-Odo, Osun State, Nigeria
Authors: Helen Yetunde Omoboye, Adebukola Adenike Adedeji, Israel Funso Adeniyi
Abstract:
This study of the biodiversity, community structure, and production capacity of the zooplankton community is an aspect of bio-monitoring of the aquatic ecosystem. Samples were selected horizontally and vertically from Esa-Odo Reservoir using improvised Meyer’s water sampler. Planktonic samples were collected at two months intervals for two years. Net and total plankton were sampled by filtration and sedimentation methods. Planktonic samples were preserved as 5% formalin and 1% Lugol’s solution. Measurement, enumeration, and scaled pictures of the recorded zooplankton were taken using a photomicrograph. The taxonomic composition of zooplankton biota was determined using identification keys. Eighty three (83) species of zooplankton recorded in this study belong to 4 groups: Rotifera, Cladocera, Copepoda, and Insecta. Rotifera was the most represented group (61.21%). Horizontally, 24 species with the highest mean abundance characterized the lacustrine; while 12 species and 10 species were unique to the transition and riverine zones, respectively. Vertically, most species had their mean abundance decreased from the surface to the bottom of the reservoir. A total of nine (9), two (2), and one (1) species were peculiar to the surface, bottom and mid-depth, respectively. Zooplankton was most abundant during the dry season. In conclusion, Esa-Odo Reservoir comprised highly diversified zooplankton fauna with great potential to support a rich aquatic community and fishery production. The reservoir can be classified as fairly clean based on the abundance of the rotifer group. However, the lake should be subjected to regular proper monitoring because of the presence of some pollution tolerant copepod species identified among the zooplankton fauna.Keywords: zooplankton, spatial, temporal, abundance, biodiversity, reservoir
Procedia PDF Downloads 972341 Mathematical Model of Cancer Growth under the Influence of Radiation Therapy
Authors: Beata Jackowska-Zduniak
Abstract:
We formulate and analyze a mathematical model describing dynamics of cancer growth under the influence of radiation therapy. The effect of this type of therapy is considered as an additional equation of discussed model. Numerical simulations show that delay, which is added to ordinary differential equations and represent time needed for transformation from one type of cells to the other one, affects the behavior of the system. The validation and verification of proposed model is based on medical data. Analytical results are illustrated by numerical examples of the model dynamics. The model is able to reconstruct dynamics of treatment of cancer and may be used to determine the most effective treatment regimen based on the study of the behavior of individual treatment protocols.Keywords: mathematical modeling, numerical simulation, ordinary differential equations, radiation therapy
Procedia PDF Downloads 4092340 Juvenile Paget’s Disease(JPD) of Bone
Authors: Aftab Ahmed, Ghulam Mehboob
Abstract:
The object of presentation is to highlight the importance of condition which is a very rare genetic disorder although Paget’s disease is common but its juvenile type is very rare and a late presentation due to very slow onset and lack of earlier standard management. We present a case of 25 years old male with a chronic history of bone pain and a slow onset of mild swelling, later on diagnosed as juvenile Paget disease of bone. Rarity of this condition with inaccessibility for standard health treatment can lead to a significant delay in presentation and its management. There have been 50 reported cases worldwide according to Genetic Home Reference. There is increased osteoclastic activity along with osteoblastic activity related to gene alteration and osteoprotegrin deficiency. Morbidity of disease is very significant which lead children to become immobilize.Keywords: juvenile, Paget’s disease, bone, Northern Area of Pakistan
Procedia PDF Downloads 3292339 Experimental and Numerical Investigation of Flow Control Using a Novel Active Slat
Authors: Basman Elhadidi, Islam Elqatary, Osama Mohamady, Hesham Othman
Abstract:
An active slat is developed to increase the lift and delay the separation for a DU96-W180 airfoil. The active slat is a fixed slat that can be closed, fully opened or intermittently opened by a rotating vane depending on the need. Experimental results show that the active slat has reduced the mean pressure and increased the mean velocity on the suction side of the airfoil for all positive angles of attack, indicating an increase of lift. The experimental data and numerical simulations also show that the direction of actuator vane rotation can influence the mixing of the flow streams on the suction side and hence influence the aerodynamic performance.Keywords: active slat, flow control, DU96-W180 airfoil, flow streams
Procedia PDF Downloads 3792338 Coordinated Interference Canceling Algorithm for Uplink Massive Multiple Input Multiple Output Systems
Authors: Messaoud Eljamai, Sami Hidouri
Abstract:
Massive multiple-input multiple-output (MIMO) is an emerging technology for new cellular networks such as 5G systems. Its principle is to use many antennas per cell in order to maximize the network's spectral efficiency. Inter-cellular interference remains a fundamental problem. The use of massive MIMO will not derogate from the rule. It improves performances only when the number of antennas is significantly greater than the number of users. This, considerably, limits the networks spectral efficiency. In this paper, a coordinated detector for an uplink massive MIMO system is proposed in order to mitigate the inter-cellular interference. The proposed scheme combines the coordinated multipoint technique with an interference-cancelling algorithm. It requires the serving cell to send their received symbols, after processing, decision and error detection, to the interfered cells via a backhaul link. Each interfered cell is capable of eliminating intercellular interferences by generating and subtracting the user’s contribution from the received signal. The resulting signal is more reliable than the original received signal. This allows the uplink massive MIMO system to improve their performances dramatically. Simulation results show that the proposed detector improves system spectral efficiency compared to classical linear detectors.Keywords: massive MIMO, COMP, interference canceling algorithm, spectral efficiency
Procedia PDF Downloads 148