Search results for: degenerate equilibrium point
4392 Metamaterial Lenses for Microwave Cancer Hyperthermia Treatment
Authors: Akram Boubakri, Fethi Choubani, Tan Hoa Vuong, Jacques David
Abstract:
Nowadays, microwave hyperthermia is considered as an effective treatment for the malignant tumors. This microwave treatment which comes to substitute the chemotherapy and the surgical intervention enables an in-depth tumor heating without causing any diseases to the sane tissue. This technique requires a high precision system, in order to effectively concentrate the heating just in the tumor, without heating any surrounding healthy tissue. In the hyperthermia treatment, the temperature in cancerous area is typically raised up to over 42◦C and maintained for one hour in order to destroy the tumor sufficiently, whilst in the surrounding healthy tissues, the temperature is maintained below 42◦C to avoid any damage. Metamaterial lenses are widely used in medical applications like microwave hyperthermia treatment. They enabled a subdiffraction resolution thanks to the amplification of the evanescent waves and they can focus electromagnetic waves from a point source to a point image. Metasurfaces have been used to built metamaterial lenses. The main mechanical advantages of those structures over three dimensional material structures are ease of fabrication and a smaller required volume. Here in this work, we proposed a metasurface based lens operating at the frequency of 6 GHz and designed for microwave hyperthermia. This lens was applied and showed good results in focusing and heating the tumor inside a breast tissue with an increased and maintained temperature above 42°C. The tumor was placed in the focal distance of the lens so that only the tumor tissue will be heated. Finally, in this work, it has been shown that the hyperthermia area within the tissue can be carefully adjusted by moving the antennas or by changing the thickness of the metamaterial lenses based on the tumor position. Even though the simulations performed in this work have taken into account an ideal case, some real characteristics can be considered to improve the obtained results in a realistic model.Keywords: focusing, hyperthermia, metamaterial lenses, metasurface, microwave treatment
Procedia PDF Downloads 2254391 Out-of-Plane Free Vibration of Functionally Graded Circular Curved Beams with Temperature Dependent Material Properties in Thermal Environment
Authors: M. M. Atashi, P. Malekzadeh
Abstract:
A first known formulation for the out-of-plane free vibration analysis of functionally graded (FG) circular curved beams in thermal environment and with temperature dependent material properties is presented. The formulation is based on the first order shear deformation theory (FSDT), which includes the effects of shear deformation and rotary inertia due to both torsional and flexural vibrations. The material properties are assumed to be temperature dependent and graded in the direction normal to the plane of the beam curvature. The equations of motion and the related boundary conditions, which include the effects of initial thermal stresses, are derived using the Hamilton’s principle. Differential quadrature method (DQM), as an efficient and accurate numerical method, is adopted to solve the thermoelastic equilibrium equations and the equations of motion. The fast rate of convergence of the method is investigated and the formulations are validated by comparing the results in the limit cases with the available solutions in the literature for isotropic circular curved beams. In addition, for FG circular curved beams with soft simply supported edges, the results are compared with the obtained exact solutions. Then, the effects of temperature rise, boundary conditions, material and geometrical parameters on the natural frequencies are investigated.Keywords: out of plane, free vibration, curved beams, functionally graded, thermal environment
Procedia PDF Downloads 3554390 Territorial Brand as a Means of Structuring the French Wood Industry
Authors: Laetitia Dari
Abstract:
The brand constitutes a source of differentiation between competitors. It highlights specific characteristics that create value for the enterprise. Today the concept of a brand is not just about the product but can concern territories. The competition between territories, due to tourism, research, jobs, etc., leads territories to develop territorial brands to bring out their identity and specificity. Some territorial brands are based on natural resources or products characteristic of a territory. In the French wood sector, we can observe the emergence of many territorial brands. Supported by the inter-professional organization, these brands have the main objective of showcasing wood as a source of solutions at the local level in terms of construction and energy. The implementation of these collective projects raises the question of the way in which relations between companies are structured and animated. The central question of our work is to understand how the territorial brand promotes the structuring of a sector and the construction of collective relations between actors. In other words, we are interested in the conditions for the emergence of the territorial brand and the way in which it will be a means of mobilizing the actors around a common project. The objectives of the research are (1) to understand in which context a territorial brand emerges, (2) to analyze the way in which the territorial brand structures the collective relations between actors, (3) to give entry keys to the actors to successfully develop this type of project. Thus, our research is based on a qualitative methodology with semi-structured interviews conducted with the main territorial brands in France. The research will answer various academic and empirical questions. From an academic point of view, it brings elements of understanding to the construction of a collective project and to the way in which governance operates. From an empirical point of view, the interest of our work is to bring out the key success factors in the development of a territorial brand and how the brand can become an element of valuation for a territory.Keywords: brand, marketing, strategy, territory, third party stakeholder, wood
Procedia PDF Downloads 664389 Biomechanical Assessment of Esophageal Elongation
Authors: Marta Kozuń, Krystian Toczewski, Sylwester Gerus, Justyna Wolicka, Kamila Boberek, Jarosław Filipiak, Dariusz Patkowski
Abstract:
Long gap esophageal atresia is a congenital defect and is a challenge for pediatric surgeons all over the world. There are different surgical techniques in use to treat atresia. One of them is esophageal elongation but the optimal suture placement technique to achieve maximum elongation with low-risk complications is still unknown. The aim of the study was to characterize the process of esophageal elongation from the biomechanical point of view. Esophagi of white Pekin Duck was used as a model based on the size of this animal which is similar to a newborn (2.5-4kg). The specimens were divided into two groups: the control group (CG) and the group with sutures (SG). The esophagi of the control group were mounted in the grips of the MTS Tytron 250 testing machine and tensile test until rupture was performed. The loading speed during the test was 10mm/min. Then the SG group was tested. Each esophagus was cut into two equal parts and that were fused together using surgical sutures. The distance between both esophagus parts was 20mm. Ten both ends were mounted on the same testing machine and the tensile test with the same parameters was conducted. For all specimens, force and elongation were recorded. The biomechanical properties, i.e., the maximal force and maximal elongation, were determined on the basis of force-elongation curves. The maximal elongation was determined at the point of maximal force. The force achieved with the suture group was 10.1N±1.9N and 50.3N±11.6N for the control group. The highest elongation was also obtained for the control group: 18mm±3mm vs. 13.5mm ±2.4mm for the suture group. The presented study expands the knowledge of elongation of esophagi. It is worth emphasizing that the duck esophagus differs from the esophagus of a newborn, i.e., its wall lacks striated muscle cells. This is why the parts of animal esophagi used in the research are may characterized by different biomechanical properties in comparison with newborn tissue.Keywords: long gap atresia treatment, esophageal elongation, biomechanical properties, soft tissue
Procedia PDF Downloads 994388 Carbon Nanomaterials from Agricultural Wastes for Adsorption of Organic Pollutions
Authors: Magdalena Blachnio, Viktor Bogatyrov, Mariia Galaburda, Anna Derylo-Marczewska
Abstract:
Agricultural waste materials from traditional oil mill and after extraction of natural raw materials in supercritical conditions were used for the preparation of carbon nanomaterials (activated carbons) by two various methods. Chemical activation using acetic acid and physical activation with a gaseous agent (carbon dioxide) were chosen as mild and environmentally friendly ones. The effect of influential factors: type of raw material, temperature and activation agent on the porous structure characteristics of the materials was discussed by using N₂ adsorption/desorption isotherms at 77 K. Furthermore scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) were employed to examine the physicochemical properties of the obtained sorbents. Selection of a raw material and an optimization of the conditions of the synthesis process, allowed to obtain the cheap sorbents with a targeted distribution of pores enabling effective adsorption of the model organic pollutants carried out in the multicomponent systems. Adsorption behavior (capacity and rate) of the chosen activated carbons was estimated by utilizing Crystal violet (CV), 4-chlorophenoxyacetic acid (4-CPA), 2.4-dichlorophenoxyacetic acid (2.4-D) as the adsorbates. Both rate and adsorption capacity of the organics on the sorbents evidenced that the activated carbons could be effectively used in sewage treatment plants. The mechanisms of organics adsorption were studied and correlated with activated carbons properties.Keywords: activated carbon, adsorption equilibrium, adsorption kinetics, organics adsorption
Procedia PDF Downloads 1744387 Protecting Labor Rights in the Platform Economy: Legal Challenges and Innovative Explorations
Authors: Ruwen Pei
Abstract:
In the rapidly evolving landscape of the digital economy, platform employment has emerged as a transformative labor force, fundamentally altering the traditional paradigms of the employer-employee relationship. This paper provides a comprehensive analysis of the unique dynamics and intricate legal challenges associated with platform work, where workers often navigate precarious labor conditions without the robust safety nets typically afforded in traditional industries. It underscores the limitations of current labor regulations, particularly in addressing pressing concerns such as income volatility and disparate benefits. By drawing insights from diverse global case studies, this study emphasizes the compelling need for platform companies to shoulder their social welfare responsibilities, ensuring fair treatment and security for their workers. Moreover, it critically examines the profound influence of socio-cultural factors and educational awareness on the platform economy, shedding light on the complexities of this emerging labor landscape. Advocating for a harmonious equilibrium between flexibility and security, this paper calls for substantial legal reforms and innovative policy initiatives that can adapt to the evolving nature of work in the digital age. Finally, it anticipates forthcoming trends in the digital economy and platform labor relations, underscoring the significance of proactive adaptation to foster equitable and inclusive employment practices.Keywords: platform employment, labor protections, social welfare, legal reforms, digital economy
Procedia PDF Downloads 674386 Performance Analysis of a Planar Membrane Humidifier for PEM Fuel Cell
Authors: Yu-Hsuan Chang, Jian-Hao Su, Chen-Yu Chen, Wei-Mon Yan
Abstract:
In this work, the experimental measurement was applied to examine the membrane type and flow field design on the performance of a planar membrane humidifier. The performance indexes were used to evaluate the planar membrane humidifier. The performance indexes of the membrane humidifier include the dew point approach temperature (DPAT), water recovery ratio (WRR), water flux (J) and pressure loss (P). The experiments contain mainly three parts. In the first part, a single membrane humidifier was tested using different flow field under different dry-inlet temperatures. The measured results show that the dew point approach temperature decreases with increasing the depth of flow channel at the same width of flow channel. However, the WRR and J reduce with an increase in the dry air-inlet temperature. The pressure loss tests indicate that pressure loss decreases with increasing the hydraulic diameter of flow channel, resulting from an increase in Darcy friction. Owing to the comparison of humidifier performances and pressure losses, the flow channel of width W=1 and height H=1.5 was selected as the channel design of the multi-membrane humidifier in the second part of experiment. In the second part, the multi-membrane humidifier was used to evaluate the humidification performance under different relative humidity and flow rates. The measurement results indicate that the humidifier at both lower temperature and relative humidity of inlet dry air have higher DPAT but lower J and WRR. In addition, the counter flow approach has better mass and heat transfer performance than the parallel flow approach. Moreover, the effects of dry air temperature, relative humidity and humidification approach are not significant to the pressure loss in the planar membrane humidifier. For the third part, different membranes were tested in this work in order to find out which kind membrane is appropriate for humidifier.Keywords: water management, planar membrane humidifier, heat and mass transfer, pressure loss, PEM fuel cell
Procedia PDF Downloads 2054385 Chikungunya Virus Detection Utilizing an Origami Based Electrochemical Paper Analytical Device
Authors: Pradakshina Sharma, Jagriti Narang
Abstract:
Due to the critical significance in the early identification of infectious diseases, electrochemical sensors have garnered considerable interest. Here, we develop a detection platform for the chikungunya virus by rationally implementing the extremely high charge-transfer efficiency of a ternary nanocomposite of graphene oxide, silver, and gold (G/Ag/Au) (CHIKV). Because paper is an inexpensive substrate and can be produced in large quantities, the use of electrochemical paper analytical device (EPAD) origami further enhances the sensor's appealing qualities. A cost-effective platform for point-of-care diagnostics is provided by paper-based testing. These types of sensors are referred to as eco-designed analytical tools due to their efficient production, usage of the eco-friendly substrate, and potential to reduce waste management after measuring by incinerating the sensor. In this research, the paper's foldability property has been used to develop and create 3D multifaceted biosensors that can specifically detect the CHIKVX-ray diffraction, scanning electron microscopy, UV-vis spectroscopy, and transmission electron microscopy (TEM) were used to characterize the produced nanoparticles. In this work, aptamers are used since they are thought to be a unique and sensitive tool for use in rapid diagnostic methods. Cyclic voltammetry (CV) and linear sweep voltammetry (LSV), which were both validated with a potentiostat, were used to measure the analytical response of the biosensor. The target CHIKV antigen was hybridized with using the aptamer-modified electrode as a signal modulation platform, and its presence was determined by a decline in the current produced by its interaction with an anionic mediator, Methylene Blue (MB). Additionally, a detection limit of 1ng/ml and a broad linear range of 1ng/ml-10µg/ml for the CHIKV antigen were reported.Keywords: biosensors, ePAD, arboviral infections, point of care
Procedia PDF Downloads 924384 Integrating Dependent Material Planning Cycle into Building Information Management: A Building Information Management-Based Material Management Automation Framework
Authors: Faris Elghaish, Sepehr Abrishami, Mark Gaterell, Richard Wise
Abstract:
The collaboration and integration between all building information management (BIM) processes and tasks are necessary to ensure that all project objectives can be delivered. The literature review has been used to explore the state of the art BIM technologies to manage construction materials as well as the challenges which have faced the construction process using traditional methods. Thus, this paper aims to articulate a framework to integrate traditional material planning methods such as ABC analysis theory (Pareto principle) to analyse and categorise the project materials, as well as using independent material planning methods such as Economic Order Quantity (EOQ) and Fixed Order Point (FOP) into the BIM 4D, and 5D capabilities in order to articulate a dependent material planning cycle into BIM, which relies on the constructability method. Moreover, we build a model to connect between the material planning outputs and the BIM 4D and 5D data to ensure that all project information will be accurately presented throughout integrated and complementary BIM reporting formats. Furthermore, this paper will present a method to integrate between the risk management output and the material management process to ensure that all critical materials are monitored and managed under the all project stages. The paper includes browsers which are proposed to be embedded in any 4D BIM platform in order to predict the EOQ as well as FOP and alarm the user during the construction stage. This enables the planner to check the status of the materials on the site as well as to get alarm when the new order will be requested. Therefore, this will lead to manage all the project information in a single context and avoid missing any information at early design stage. Subsequently, the planner will be capable of building a more reliable 4D schedule by allocating the categorised material with the required EOQ to check the optimum locations for inventory and the temporary construction facilitates.Keywords: building information management, BIM, economic order quantity, EOQ, fixed order point, FOP, BIM 4D, BIM 5D
Procedia PDF Downloads 1724383 Unsteady Three-Dimensional Adaptive Spatial-Temporal Multi-Scale Direct Simulation Monte Carlo Solver to Simulate Rarefied Gas Flows in Micro/Nano Devices
Authors: Mirvat Shamseddine, Issam Lakkis
Abstract:
We present an efficient, three-dimensional parallel multi-scale Direct Simulation Monte Carlo (DSMC) algorithm for the simulation of unsteady rarefied gas flows in micro/nanosystems. The algorithm employs a novel spatiotemporal adaptivity scheme. The scheme performs a fully dynamic multi-level grid adaption based on the gradients of flow macro-parameters and an automatic temporal adaptation. The computational domain consists of a hierarchical octree-based Cartesian grid representation of the flow domain and a triangular mesh for the solid object surfaces. The hybrid mesh, combined with the spatiotemporal adaptivity scheme, allows for increased flexibility and efficient data management, rendering the framework suitable for efficient particle-tracing and dynamic grid refinement and coarsening. The parallel algorithm is optimized to run DSMC simulations of strongly unsteady, non-equilibrium flows over multiple cores. The presented method is validated by comparing with benchmark studies and then employed to improve the design of micro-scale hotwire thermal sensors in rarefied gas flows.Keywords: DSMC, oct-tree hierarchical grid, ray tracing, spatial-temporal adaptivity scheme, unsteady rarefied gas flows
Procedia PDF Downloads 2984382 Environmental Assessment of Roll-to-Roll Printed Smart Label
Authors: M. Torres, A. Moulay, M. Zhuldybina, M. Rozel, N. D. Trinh, C. Bois
Abstract:
Printed electronics are a fast-growing market as their applications cover a large range of industrial needs, their production cost is low, and the additive printing techniques consume less materials than subtractive manufacturing methods used in traditional electronics. With the growing demand for printed electronics, there are concerns about their harmful and irreversible contribution to the environment. Indeed, it is estimated that 80% of the environmental load of a product is determined by the choices made at the conception stage. Therefore, examination through a life cycle approach at the developing stage of a novel product is the best way to identify potential environmental issues and make proactive decisions. Life cycle analysis (LCA) is a comprehensive scientific method to assess the environmental impacts of a product in its different stages of life: extraction of raw materials, manufacture and distribution, use, and end-of-life. Impacts and major hotspots are identified and evaluated through a broad range of environmental impact categories of the ReCiPe (H) middle point method. At the conception stage, the LCA is a tool that provides an environmental point of view on the choice of materials and processes and weights-in on the balance between performance materials and eco-friendly materials. Using the life cycle approach, the current work aims to provide a cradle-to-grave life cycle assessment of a roll-to-roll hybrid printed smart label designed for the food cold chain. Furthermore, this presentation will present the environmental impact of metallic conductive inks, a comparison with promising conductive polymers, evaluation of energy vs. performance of industrial printing processes, a full assessment of the impact from the smart label applied on a cellulosic-based substrate during the recycling process and the possible recovery of precious metals and rare earth elements.Keywords: Eco-design, label, life cycle assessment, printed electronics
Procedia PDF Downloads 1624381 Research and Application of Multi-Scale Three Dimensional Plant Modeling
Authors: Weiliang Wen, Xinyu Guo, Ying Zhang, Jianjun Du, Boxiang Xiao
Abstract:
Reconstructing and analyzing three-dimensional (3D) models from situ measured data is important for a number of researches and applications in plant science, including plant phenotyping, functional-structural plant modeling (FSPM), plant germplasm resources protection, agricultural technology popularization. It has many scales like cell, tissue, organ, plant and canopy from micro to macroscopic. The techniques currently used for data capture, feature analysis, and 3D reconstruction are quite different of different scales. In this context, morphological data acquisition, 3D analysis and modeling of plants on different scales are introduced systematically. The commonly used data capture equipment for these multiscale is introduced. Then hot issues and difficulties of different scales are described respectively. Some examples are also given, such as Micron-scale phenotyping quantification and 3D microstructure reconstruction of vascular bundles within maize stalks based on micro-CT scanning, 3D reconstruction of leaf surfaces and feature extraction from point cloud acquired by using 3D handheld scanner, plant modeling by combining parameter driven 3D organ templates. Several application examples by using the 3D models and analysis results of plants are also introduced. A 3D maize canopy was constructed, and light distribution was simulated within the canopy, which was used for the designation of ideal plant type. A grape tree model was constructed from 3D digital and point cloud data, which was used for the production of science content of 11th international conference on grapevine breeding and genetics. By using the tissue models of plants, a Google glass was used to look around visually inside the plant to understand the internal structure of plants. With the development of information technology, 3D data acquisition, and data processing techniques will play a greater role in plant science.Keywords: plant, three dimensional modeling, multi-scale, plant phenotyping, three dimensional data acquisition
Procedia PDF Downloads 2754380 Impact of America's Anti-Ballistic Missile System (ABMS) on Power Dynamics of the World
Authors: Fehmeen Anwar, Ujala Liaqat
Abstract:
For over half a century, U.S. and the Soviet Union have been at daggers drawn with each other. Both leading powers of the world have been struggling hard to surpass each other in military and other technological fields. This neck-to-neck competition turned in favour of U.S. in the early 1990s when USSR had to face economic stagnation and later dismemberment of several of its states. The predominance of U.S. is still evident to date, rather it continues to grow. With this proposed defence program i.e. Anti-Ballistic Missile System, the U.S. will have a considerable chance of intercepting any nuclear strike by Russia, which re-asserts U.S. dominance in the region and creating a security dilemma for Russia and other states. The question is whether America’s recent nuclear deterrence project is merely to counter nuclear threats from Iran and North Korea or is it purely directed towards Russia, thus ensuring complete military supremacy in the world. Although U.S professes to direct its Anti-Ballistic Missile System (ABMS) against the axis of evil (Iran and North Korea), yet the deployment of this system in the East European territory undermines the Russian nuclear strategic capability, as this enables U.S. to initiate an attack and guard itself from retaliatory strike, thus disturbing the security equilibrium in Europe. The implications of this program can lead to power imbalance which can lead to the emergence of fundamentally different paradigm of international politics.Keywords: Anti-Ballistic Missile System (ABMS), cold-war, axis of evil, power dynamics
Procedia PDF Downloads 2914379 Geospatial Assessment of Waste Disposal System in Akure, Ondo State, Nigeria
Authors: Babawale Akin Adeyemi, Esan Temitayo, Adeyemi Olabisi Omowumi
Abstract:
The paper analyzed waste disposal system in Akure, Ondo State using GIS techniques. Specifically, the study identified the spatial distribution of collection points and existing dumpsite; evaluated the accessibility of waste collection points and their proximity to each other with the view of enhancing better performance of the waste disposal system. Data for the study were obtained from both primary and secondary sources. Primary data were obtained through the administration of questionnaire. From field survey, 35 collection points were identified in the study area. 10 questionnaires were administered around each collection point making a total of 350 questionnaires for the study. Also, co-ordinates of each collection point were captured using a hand-held Global Positioning System (GPS) receiver which was used to analyze the spatial distribution of collection points. Secondary data used include administrative map collected from Akure South Local Government Secretariat. Data collected was analyzed using the GIS analytical tools which is neighborhood function. The result revealed that collection points were found in all parts of Akure with the highest concentration around the central business district. The study also showed that 80% of the collection points enjoyed efficient waste service while the remaining 20% does not. The study further revealed that most collection points in the core of the city were in close proximity to each other. In conclusion, the paper revealed the capability of Geographic Information System (GIS) as a technique in management of waste collection and disposal technique. The application of Geographic Information System (GIS) in the evaluation of the solid waste management in Akure is highly invaluable for the state waste management board which could also be beneficial to other states in developing a modern day solid waste management system. Further study on solid waste management is also recommended especially for updating of information on both spatial and non-spatial data.Keywords: assessment, geospatial, system, waste disposal
Procedia PDF Downloads 2374378 Analysis of Cardiac Health Using Chaotic Theory
Authors: Chandra Mukherjee
Abstract:
The prevalent knowledge of the biological systems is based on the standard scientific perception of natural equilibrium, determination and predictability. Recently, a rethinking of concepts was presented and a new scientific perspective emerged that involves complexity theory with deterministic chaos theory, nonlinear dynamics and theory of fractals. The unpredictability of the chaotic processes probably would change our understanding of diseases and their management. The mathematical definition of chaos is defined by deterministic behavior with irregular patterns that obey mathematical equations which are critically dependent on initial conditions. The chaos theory is the branch of sciences with an interest in nonlinear dynamics, fractals, bifurcations, periodic oscillations and complexity. Recently, the biomedical interest for this scientific field made these mathematical concepts available to medical researchers and practitioners. Any biological network system is considered to have a nominal state, which is recognized as a homeostatic state. In reality, the different physiological systems are not under normal conditions in a stable state of homeostatic balance, but they are in a dynamically stable state with a chaotic behavior and complexity. Biological systems like heart rhythm and brain electrical activity are dynamical systems that can be classified as chaotic systems with sensitive dependence on initial conditions. In biological systems, the state of a disease is characterized by a loss of the complexity and chaotic behavior, and by the presence of pathological periodicity and regulatory behavior. The failure or the collapse of nonlinear dynamics is an indication of disease rather than a characteristic of health.Keywords: HRV, HRVI, LF, HF, DII
Procedia PDF Downloads 4244377 Structural Properties, Natural Bond Orbital, Theory Functional Calculations (DFT), and Energies for Fluorous Compounds: C13H12F7ClN2O
Authors: Shahriar Ghammamy, Masomeh Shahsavary
Abstract:
In this paper, the optimized geometries and frequencies of the stationary point and the minimum energy paths of C13H12F7ClN2O are calculated by using the DFT (B3LYP) methods with LANL2DZ basis sets. B3LYP/ LANL2DZ calculation results indicated that some selected bond length and bond angles values for the C13H12F7ClN2O.Keywords: C13H12F7ClN2O, vatural bond orbital, fluorous compounds, functional calculations
Procedia PDF Downloads 3354376 Two Major Methods to Control Thermal Resistance of Focus Ring for Process Uniformity Enhance
Authors: Jin-Uk Park
Abstract:
Recently, the semiconductor industry is rapidly demanding complicated structures and mass production. From the point of view of mass production, the ETCH industry is concentrating on maintaining the ER (Etch rate) of the wafer edge constant regardless of changes over time. In this study, two major thermal factors affecting process were identified and controlled. First, the filler of the thermal pad was studied. Second, the significant difference of handling the thermal pad during PM was studied.Keywords: etcher, thermal pad, wet cleaning, thermal conductivity
Procedia PDF Downloads 1904375 Batch Adsorption Studies for the Removal of Textile Dyes from Aqueous Solution on Three Different Pine Bark
Authors: B. Cheknane, F. Zermane
Abstract:
The main objective of the present study is the valorization of natural raw materials of plant origin for the treatment of textile industry wastewater. Selected bark was: maritime (MP), pinyon (PP) and Aleppo pine (AP) bark. The efficiency of these barks were tested for the removal of three dye; rhodamine B (RhB), Green Malachite (GM) and X Methyl Orange (MO). At the first time we focus to study the different parameters which can influence the adsorption processes such as: nature of the adsorbents, nature of the pollutants (dyes) and the effect of pH. Obtained results reveals that the speed adsorption is strongly influencing by the pH medium and the comparative study show that adsorption is favorable in the acidic medium with amount adsorbed of (Q=40mg/g) for rhodamine B and (Q=46mg/g) for orange methyl. Results of adsorption kinetics reveals that the molecules of GM are adsorbed better (Q=48mg/g) than the molecules of RhB (Q=46mg/g) and methyl orange (Q=18mg/g), with equilibrium time of 6 hours. The results of adsorption isotherms show clearly that the maritime pine bark is the most effective adsorbents with adsorbed amount of (QRhB=200mg/g) and (QMO=88mg/g) followed by pinyon pine (PP) with (QRhB=184mg/g) and (QMO=56mg/g) and finally Aleppo pine (AP) bark with (QRhB=131mg/g) and (QMO= 46mg/g). The different obtained isotherms were modeled using the Langmuir and Freundlich models and according to the adjustment coefficient values R2, the obtained isotherms are well represented by Freundlich model.Keywords: maritime pine bark (MP), pinyon pine bark (PP), Aleppo pine (AP) bark, adsorption, dyes
Procedia PDF Downloads 3184374 Processing Big Data: An Approach Using Feature Selection
Authors: Nikat Parveen, M. Ananthi
Abstract:
Big data is one of the emerging technology, which collects the data from various sensors and those data will be used in many fields. Data retrieval is one of the major issue where there is a need to extract the exact data as per the need. In this paper, large amount of data set is processed by using the feature selection. Feature selection helps to choose the data which are actually needed to process and execute the task. The key value is the one which helps to point out exact data available in the storage space. Here the available data is streamed and R-Center is proposed to achieve this task.Keywords: big data, key value, feature selection, retrieval, performance
Procedia PDF Downloads 3394373 Identification of Ideal Plain Sufu (Fermented Soybean Curds) Based on Ideal Profile Method and Assessment of the Consistency of Ideal Profiles Obtained from Consumers
Authors: Yan Ping Chen, Hau Yin Chung
Abstract:
The Ideal Profile Method (IPM) is a newly developed descriptive sensory analysis conducted by consumers without previous training. To perform this test, both the perceived and the ideal intensities from the judgements of consumers on products’ attributes, as well as their hedonic ratings were collected for formulating an ideal product (the most liked one). In addition, Ideal Profile Analysis (IPA) was conducted to check the consistency of the ideal data at both the panel and consumer levels. In this test, 12 commercial plain sufus bought from Hong Kong local market were tested by 113 consumers according to the IPM, and rated on 22 attributes. Principal component analysis was used to profile the perceived and the ideal spaces of tested products. The consistency of ideal data was then checked by IPA. The result showed that most consumers shared a common ideal. It was observed that the sensory product space and the ideal product space were structurally similar. Their first dimensions all opposed products with intense fermented related aroma to products with less fermented related aroma. And the predicted ideal profile (the estimated liking score around 7.0 in a 9.0-point scale) got higher hedonic score than the tested products (the average liking score around 6.0 in a 9.0-point scale). For the majority of consumers (95.2%), the stated ideal product considered as a potential ideal through checking the R2 coefficient value. Among all the tested products, sample-6 was the most popular one with consumer liking percentage around 30%. This product with less fermented and moldy flavour but easier to melt in mouth texture possessed close sensory profile according to the ideal product. This experiment validated that data from untrained consumers could be guided as useful information. Appreciated sensory characteristics could be served as reference in the optimization of the commercial plain sufu.Keywords: ideal profile method, product development, sensory evaluation, sufu (fermented soybean curd)
Procedia PDF Downloads 1874372 Hygrothermal Performance of Sheep Wool in Cold and Humid Climates
Authors: Yuchen Chen, Dehong Li, Bin Li, Denis Rodrigue, Xiaodong (Alice) Wang
Abstract:
When selecting insulation materials, not only should their thermal efficiency be considered, but also their impact on the environment. Compared to conventional insulation materials, bio-based materials not only have comparable thermal performance, but they also have a lower embodied energy. Sheep wool has the advantages of low negative health impact, high fire resistance, eco-friendliness, and high moisture resistance. However, studies on applying sheep wool insulation in cold and humid climates are still insufficient. The purpose of this study is to simulate the hygrothermal performance of sheep wool insulation for the Quebec City climate, as well as analyze the mold growth risks. The results show that a sheep wool wall has better thermal performance than a reference wall and that both meet the minimum requirements of the Quebec Code for the thermal performance of above-ground walls. The total water content indicates that the sheep wool wall can reach dynamic equilibrium in the Quebec climate and can dry out. At the same time, a delay of almost four months in the maximum total water content indicates that the sheep wool wall has high moisture absorption compared to the reference wall. The hygrothermal profiles show that the sheathing-insulation interface of both walls is at the highest risk for condensation. When the interior surface gypsum was replaced by stucco, the mold index significantly dropped.Keywords: sheep wool, water content, hygrothermal performance, mould growth risk
Procedia PDF Downloads 904371 Construction Innovation: Support for 3D Printing House
Authors: Andrea Palazzo, Daniel Macek, Veronika Malinova
Abstract:
Contour processing is the new technology challenge for architects and construction companies. The many advantages it promises make it one of the most interesting solutions for construction in terms of automation of building processes. The technology for 3D printing houses offers many application possibilities, from low-cost construction, to being considered by NASA for visionary projects as a good solution for building settlements on other planets. Another very important point is that clients, as architects, will no longer have many limits in design concerning ideas and creativity. The prices for real estate are constantly increasing and the lack of availability of construction materials as well as the speculation that has been created around it in 2021 is bringing prices to such a level that in the future real estate developers risk not being able to find customers for these ultra-expensive homes. Hence, this paper starts with the introduction of 3D printing, which now has the potential to gain an important position in the market, becoming a valid alternative to the classic construction process. This technology is not only beneficial from an economic point of view but it is also a great opportunity to have an impact on the environment by reducing CO2 emissions. Further on in the article we will also understand if, after the COP 26 (2021 United Nations Climate Change Conference), world governments could also push towards building technologies that reduce the waste materials that are needed to be disposed of and at the same time reduce emissions with the contribution of governmental funds. This paper will give us insight on the multiple benefits of 3D printing and emphasise the importance of finding new solutions for materials that can be used by the printer. Therefore, based on the type of material, it will be possible to understand the compatibility with current regulations and how the authorities will be inclined to support this technology. This will help to enable the rise and development of this technology in Europe and in the rest of the world on actual housing projects and not only on prototypes.Keywords: additive manufacturing, contour crafting, development, new regulation, printing material
Procedia PDF Downloads 1954370 2.4 GHz 0.13µM Multi Biased Cascode Power Amplifier for ISM Band Wireless Applications
Authors: Udayan Patankar, Shashwati Bhagat, Vilas Nitneware, Ants Koel
Abstract:
An ISM band power amplifier is a type of electronic amplifier used to convert a low-power radio-frequency signal into a larger signal of significant power, typically used for driving the antenna of a transmitter. Due to drastic changes in telecommunication generations may lead to the requirements of improvements. Rapid changes in communication lead to the wide implementation of WLAN technology for its excellent characteristics, such as high transmission speed, long communication distance, and high reliability. Many applications such as WLAN, Bluetooth, and ZigBee, etc. were evolved with 2.4GHz to 5 GHz ISM Band, in which the power amplifier (PA) is a key building block of RF transmitters. There are many manufacturing processes available to manufacture a power amplifier for desired power output, but the major problem they have faced is about the power it consumed for its proper working, as many of them are fabricated on the GaN HEMT, Bi COMS process. In this paper we present a CMOS Base two stage cascode design of power amplifier working on 2.4GHz ISM frequency band. To lower the costs and allow full integration of a complete System-on-Chip (SoC) we have chosen 0.13µm low power CMOS technology for design. While designing a power amplifier, it is a real task to achieve higher power efficiency with minimum resources. This design showcase the Multi biased Cascode methodology to implement a two-stage CMOS power amplifier using ADS and LTSpice simulating tool. Main source is maximum of 2.4V which is internally distributed into different biasing point VB driving and VB driven as required for distinct stages of two stage RF power amplifier. It shows maximum power added efficiency near about 70.195% whereas its Power added efficiency calculated at 1 dB compression point is 44.669 %. Biased MOSFET is used to reduce total dc current as this circuit is designed for different wireless applications comes under 2.4GHz ISM Band.Keywords: RFIC, PAE, RF CMOS, impedance matching
Procedia PDF Downloads 2224369 Purification of Zr from Zr-Hf Resources Using Crystallization in HF-HCl Solvent Mixture
Authors: Kenichi Hirota, Jifeng Wang, Sadao Araki, Koji Endo, Hideki Yamamoto
Abstract:
Zirconium (Zr) has been used as a fuel cladding tube for nuclear reactors, because of the excellent corrosion resistance and the low adsorptive material for neutron. Generally speaking, the natural resource of Zr is often containing Hf that has similar properties. The content of Hf in the Zr resources is about 2~4 wt%. In the industrial use, the content of Hf in Zr resources should be lower than the 100 ppm. However, the separation of Zr and Hf is not so easy, because of similar chemical and physical properties such as melting point, boiling point and things. Solvent extraction method has been applied for the separation of Zr and Hf from Zr natural resources. This method can separate Hf with high efficiency (Hf < 100ppm), however, it needs much amount of organic solvents for solvent extraction and the cost of its disposal treatment is high. Therefore, we attached attention for the fractional crystallization. This separation method depends on the solubility difference of Zr and Hf in the solvent. In this work, hexafluorozirconate (hafnate) (K2Zr(Hf)F6) was used as model compound. Solubility of K2ZrF6 in water showed lower than that of K2HfF6. By repeating of this treatment, it is possible to purify Zr, practically. In this case, 16-18 times of recrystallization stages were needed for its high purification. The improvement of the crystallization process was carried out in this work. Water, hydrofluoric acid (HF) and hydrofluoric acid (HF) +hydrochloric acid (HCl) mixture were chosen as solvent for dissolution of Zr and Hf. In the experiment, 10g of K2ZrF6 was added to each solvent of 100mL. Each solution was heated for 1 hour at 353K. After 1h of this operation, they were cooled down till 293K, and were held for 5 hours at 273K. Concentration of Zr or Hf was measured using ICP analysis. It was found that Hf was separated from Zr-Hf mixed compound with high efficiency, when HF-HCl solution was used for solvent of crystallization. From the comparison of the particle size of each crystal by SEM, it was confirmed that the particle diameter of the crystal showed smaller size with decreasing of Hf content. This paper concerned with purification of Zr from Zr-Hf mixture using crystallization method.Keywords: crystallization, zirconium, hafnium, separation
Procedia PDF Downloads 4364368 Verification of Sr-90 Determination in Water and Spruce Needles Samples Using IAEA-TEL-2016-04 ALMERA Proficiency Test Samples
Authors: S. Visetpotjanakit, N. Nakkaew
Abstract:
Determination of 90Sr in environmental samples has been widely developed with several radioanlytical methods and radiation measurement techniques since 90Sr is one of the most hazardous radionuclides produced from nuclear reactors. Liquid extraction technique using di-(2-ethylhexyl) phosphoric acid (HDEHP) to separate and purify 90Y and Cherenkov counting using liquid scintillation counter to determine 90Y in secular equilibrium to 90Sr was developed and performed at our institute, the Office of Atoms for Peace. The approach is inexpensive, non-laborious, and fast to analyse 90Sr in environmental samples. To validate our analytical performance for the accurate and precise criteria, determination of 90Sr using the IAEA-TEL-2016-04 ALMERA proficiency test samples were performed for statistical evaluation. The experiment used two spiked tap water samples and one naturally contaminated spruce needles sample from Austria collected shortly after the Chernobyl accident. Results showed that all three analyses were successfully passed in terms of both accuracy and precision criteria, obtaining “Accepted” statuses. The two water samples obtained the measured results of 15.54 Bq/kg and 19.76 Bq/kg, which had relative bias 5.68% and -3.63% for the Maximum Acceptable Relative Bias (MARB) 15% and 20%, respectively. And the spruce needles sample obtained the measured results of 21.04 Bq/kg, which had relative bias 23.78% for the MARB 30%. These results confirm our analytical performance of 90Sr determination in water and spruce needles samples using the same developed method.Keywords: ALMERA proficiency test, Cerenkov counting, determination of 90Sr, environmental samples
Procedia PDF Downloads 2314367 Mode II Fracture Toughness of Hybrid Fiber Reinforced Concrete
Authors: H. S. S Abou El-Mal, A. S. Sherbini, H. E. M. Sallam
Abstract:
Mode II fracture toughness (KIIc) of fiber reinforced concrete has been widely investigated under various patterns of testing geometries. The effect of fiber type, concrete matrix properties, and testing mechanisms were extensively studied. The area of hybrid fiber addition shows a lake of reported research data. In this paper an experimental investigation of hybrid fiber embedded in high strength concrete matrix is reported. Three different types of fibers; namely steel (S), glass (G), and polypropylene (PP) fibers were mixed together in four hybridization patterns, (S/G), (S/PP), (G/PP), (S/G/PP) with constant cumulative volume fraction (Vf) of 1.5%. The concrete matrix properties were kept the same for all hybrid fiber reinforced concrete patterns. In an attempt to estimate a fairly accepted value of fracture toughness KIIc, four testing geometries and loading types are employed in this investigation. Four point shear, Brazilian notched disc, double notched cube, and double edge notched specimens are investigated in a trial to avoid the limitations and sensitivity of each test regarding geometry, size effect, constraint condition, and the crack length to specimen width ratio a/w. The addition of all hybridization patterns of fiber reduced the compressive strength and increased mode II fracture toughness in pure mode II tests. Mode II fracture toughness of concrete KIIc decreased with the increment of a/w ratio for all concretes and test geometries. Mode II fracture toughness KIIc is found to be sensitive to the hybridization patterns of fiber. The (S/PP) hybridization pattern showed higher values than all other patterns, while the (S/G/PP) showed insignificant enhancement on mode II fracture toughness (KIIc). Four point shear (4PS) test set up reflects the most reliable values of mode II fracture toughness KIIc of concrete. Mode II fracture toughness KIIc of concrete couldn’t be assumed as a real material property.Keywords: fiber reinforced concrete, Hybrid fiber, Mode II fracture toughness, testing geometry
Procedia PDF Downloads 3254366 Data Transformations in Data Envelopment Analysis
Authors: Mansour Mohammadpour
Abstract:
Data transformation refers to the modification of any point in a data set by a mathematical function. When applying transformations, the measurement scale of the data is modified. Data transformations are commonly employed to turn data into the appropriate form, which can serve various functions in the quantitative analysis of the data. This study addresses the investigation of the use of data transformations in Data Envelopment Analysis (DEA). Although data transformations are important options for analysis, they do fundamentally alter the nature of the variable, making the interpretation of the results somewhat more complex.Keywords: data transformation, data envelopment analysis, undesirable data, negative data
Procedia PDF Downloads 194365 An Efficient Robot Navigation Model in a Multi-Target Domain amidst Static and Dynamic Obstacles
Authors: Michael Ayomoh, Adriaan Roux, Oyindamola Omotuyi
Abstract:
This paper presents an efficient robot navigation model in a multi-target domain amidst static and dynamic workspace obstacles. The problem is that of developing an optimal algorithm to minimize the total travel time of a robot as it visits all target points within its task domain amidst unknown workspace obstacles and finally return to its initial position. In solving this problem, a classical algorithm was first developed to compute the optimal number of paths to be travelled by the robot amidst the network of paths. The principle of shortest distance between robot and targets was used to compute the target point visitation order amidst workspace obstacles. Algorithm premised on the standard polar coordinate system was developed to determine the length of obstacles encountered by the robot hence giving room for a geometrical estimation of the total surface area occupied by the obstacle especially when classified as a relevant obstacle i.e. obstacle that lies in between a robot and its potential visitation point. A stochastic model was developed and used to estimate the likelihood of a dynamic obstacle bumping into the robot’s navigation path and finally, the navigation/obstacle avoidance algorithm was hinged on the hybrid virtual force field (HVFF) method. Significant modelling constraints herein include the choice of navigation path to selected target points, the possible presence of static obstacles along a desired navigation path and the likelihood of encountering a dynamic obstacle along the robot’s path and the chances of it remaining at this position as a static obstacle hence resulting in a case of re-routing after routing. The proposed algorithm demonstrated a high potential for optimal solution in terms of efficiency and effectiveness.Keywords: multi-target, mobile robot, optimal path, static obstacles, dynamic obstacles
Procedia PDF Downloads 2794364 The Impact of Government Expenditure on Economic Growth: A Study of Asian Countries
Authors: K. P. K. S. Lahirushan, W. G. V. Gunasekara
Abstract:
Main purpose of this study is to identifying the impact of government expenditure on economic growth in Asian Countries. Consequently, Fist, objective is to analyze whether government expenditure causes economic growth in Asian countries vice versa and then scrutinizing long-run equilibrium relationship exists between them. The study completely based on secondary data. The methodology being quantitative that includes econometrical techniques of cointegration, panel fixed effects model and granger causality in the context of panel data of Asian countries; Singapore, Malaysia, Thailand, South Korea, Japan, China, Sri Lanka, India and Bhutan with 44 observations in each country, totaling to 396 observations from 1970 to 2013. The model used is the random effects panel OLS model. As with the above methodology, the study found the fascinating outcome. At first, empirical findings exhibit a momentous positive impact of government expenditure on Gross Domestic Production in Asian region. Secondly, government expenditure and economic growth indicate a long-run relationship in Asian countries. In conclusion, there is a unidirectional causality from economic growth to government expenditure and government expenditure to economic growth in Asian countries. Hence the study is validated that it is in line with the Keynesian theory and Wagner’s law as well. Consequently, it can be concluded that role of government would play a vital role in economic growth of Asian Countries .However; if government expenditure did not figure out with the economy’s needs it might be considerably inspiration the economy in a negative way so that society bears the costs.Keywords: Asian countries, government expenditure, Keynesian theory, Wagner’s theory, random effects panel ols model
Procedia PDF Downloads 3484363 Transient Heat Transfer: Experimental Investigation near the Critical Point
Authors: Andreas Kohlhepp, Gerrit Schatte, Wieland Christoph, Spliethoff Hartmut
Abstract:
In recent years the research of heat transfer phenomena of water and other working fluids near the critical point experiences a growing interest for power engineering applications. To match the highly volatile characteristics of renewable energies, conventional power plants need to shift towards flexible operation. This requires speeding up the load change dynamics of steam generators and their heating surfaces near the critical point. In dynamic load transients, both a high heat flux with an unfavorable ratio to the mass flux and a high difference in fluid and wall temperatures, may cause problems. It may lead to deteriorated heat transfer (at supercritical pressures), dry-out or departure from nucleate boiling (at subcritical pressures), all cases leading to an extensive rise of temperatures. For relevant technical applications, the heat transfer coefficients need to be predicted correctly in case of transient scenarios to prevent damage to the heated surfaces (membrane walls, tube bundles or fuel rods). In transient processes, the state of the art method of calculating the heat transfer coefficients is using a multitude of different steady-state correlations for the momentarily existing local parameters for each time step. This approach does not necessarily reflect the different cases that may lead to a significant variation of the heat transfer coefficients and shows gaps in the individual ranges of validity. An algorithm was implemented to calculate the transient behavior of steam generators during load changes. It is used to assess existing correlations for transient heat transfer calculations. It is also desirable to validate the calculation using experimental data. By the use of a new full-scale supercritical thermo-hydraulic test rig, experimental data is obtained to describe the transient phenomena under dynamic boundary conditions as mentioned above and to serve for validation of transient steam generator calculations. Aiming to improve correlations for the prediction of the onset of deteriorated heat transfer in both, stationary and transient cases the test rig was specially designed for this task. It is a closed loop design with a directly electrically heated evaporation tube, the total heating power of the evaporator tube and the preheater is 1MW. To allow a big range of parameters, including supercritical pressures, the maximum pressure rating is 380 bar. The measurements contain the most important extrinsic thermo-hydraulic parameters. Moreover, a high geometric resolution allows to accurately predict the local heat transfer coefficients and fluid enthalpies.Keywords: departure from nucleate boiling, deteriorated heat transfer, dryout, supercritical working fluid, transient operation of steam generators
Procedia PDF Downloads 218