Search results for: decision tree model
18842 Model of Optimal Centroids Approach for Multivariate Data Classification
Authors: Pham Van Nha, Le Cam Binh
Abstract:
Particle swarm optimization (PSO) is a population-based stochastic optimization algorithm. PSO was inspired by the natural behavior of birds and fish in migration and foraging for food. PSO is considered as a multidisciplinary optimization model that can be applied in various optimization problems. PSO’s ideas are simple and easy to understand but PSO is only applied in simple model problems. We think that in order to expand the applicability of PSO in complex problems, PSO should be described more explicitly in the form of a mathematical model. In this paper, we represent PSO in a mathematical model and apply in the multivariate data classification. First, PSOs general mathematical model (MPSO) is analyzed as a universal optimization model. Then, Model of Optimal Centroids (MOC) is proposed for the multivariate data classification. Experiments were conducted on some benchmark data sets to prove the effectiveness of MOC compared with several proposed schemes.Keywords: analysis of optimization, artificial intelligence based optimization, optimization for learning and data analysis, global optimization
Procedia PDF Downloads 21018841 Purchasing Decision-Making in Supply Chain Management: A Bibliometric Analysis
Authors: Ahlem Dhahri, Waleed Omri, Audrey Becuwe, Abdelwahed Omri
Abstract:
In industrial processes, decision-making ranges across different scales, from process control to supply chain management. The purchasing decision-making process in the supply chain is presently gaining more attention as a critical contributor to the company's strategic success. Given the scarcity of thorough summaries in the prior studies, this bibliometric analysis aims to adopt a meticulous approach to achieve quantitative knowledge on the constantly evolving subject of purchasing decision-making in supply chain management. Through bibliometric analysis, we examine a sample of 358 peer-reviewed articles from the Scopus database. VOSviewer and Gephi software were employed to analyze, combine, and visualize the data. Data analytic techniques, including citation network, page-rank analysis, co-citation, and publication trends, have been used to identify influential works and outline the discipline's intellectual structure. The outcomes of this descriptive analysis highlight the most prominent articles, authors, journals, and countries based on their citations and publications. The findings from the research illustrate an increase in the number of publications, exhibiting a slightly growing trend in this field. Co-citation analysis coupled with content analysis of the most cited articles identified five research themes mentioned as follows integrating sustainability into the supplier selection process, supplier selection under disruption risks assessment and mitigation strategies, Fuzzy MCDM approaches for supplier evaluation and selection, purchasing decision in vendor problems, decision-making techniques in supplier selection and order lot sizing problems. With the help of a graphic timeline, this exhaustive map of the field illustrates a visual representation of the evolution of publications that demonstrate a gradual shift from research interest in vendor selection problems to integrating sustainability in the supplier selection process. These clusters offer insights into a wide variety of purchasing methods and conceptual frameworks that have emerged; however, they have not been validated empirically. The findings suggest that future research would emerge with a greater depth of practical and empirical analysis to enrich the theories. These outcomes provide a powerful road map for further study in this area.Keywords: bibliometric analysis, citation analysis, co-citation, Gephi, network analysis, purchasing, SCM, VOSviewer
Procedia PDF Downloads 8718840 Lean Impact Analysis Assessment Models: Development of a Lean Measurement Structural Model
Authors: Catherine Maware, Olufemi Adetunji
Abstract:
The paper is aimed at developing a model to measure the impact of Lean manufacturing deployment on organizational performance. The model will help industry practitioners to assess the impact of implementing Lean constructs on organizational performance. It will also harmonize the measurement models of Lean performance with the house of Lean that seems to have become the industry standard. The sheer number of measurement models for impact assessment of Lean implementation makes it difficult for new adopters to select an appropriate assessment model or deployment methodology. A literature review is conducted to classify the Lean performance model. Pareto analysis is used to select the Lean constructs for the development of the model. The model is further formalized through the use of Structural Equation Modeling (SEM) in defining the underlying latent structure of a Lean system. An impact assessment measurement model developed can be used to measure Lean performance and can be adopted by different industries.Keywords: impact measurement model, lean bundles, lean manufacturing, organizational performance
Procedia PDF Downloads 48718839 Studies of Rule Induction by STRIM from the Decision Table with Contaminated Attribute Values from Missing Data and Noise — in the Case of Critical Dataset Size —
Authors: Tetsuro Saeki, Yuichi Kato, Shoutarou Mizuno
Abstract:
STRIM (Statistical Test Rule Induction Method) has been proposed as a method to effectively induct if-then rules from the decision table which is considered as a sample set obtained from the population of interest. Its usefulness has been confirmed by simulation experiments specifying rules in advance, and by comparison with conventional methods. However, scope for future development remains before STRIM can be applied to the analysis of real-world data sets. The first requirement is to determine the size of the dataset needed for inducting true rules, since finding statistically significant rules is the core of the method. The second is to examine the capacity of rule induction from datasets with contaminated attribute values created by missing data and noise, since real-world datasets usually contain such contaminated data. This paper examines the first problem theoretically, in connection with the rule length. The second problem is then examined in a simulation experiment, utilizing the critical size of dataset derived from the first step. The experimental results show that STRIM is highly robust in the analysis of datasets with contaminated attribute values, and hence is applicable to realworld data.Keywords: rule induction, decision table, missing data, noise
Procedia PDF Downloads 39718838 Aircraft Line Maintenance Equipped with Decision Support System
Authors: B. Sudarsan Baskar, S. Pooja Pragati, S. Raj Kumar
Abstract:
The cost effectiveness in aircraft maintenance is of high privilege in the recent days. The cost effectiveness can be effectively made when line maintenance activities are incorporated at airports during Turn around time (TAT). The present work outcomes the shortcomings that affect the dispatching of the aircrafts, aiming at high fleet operability and low maintenance cost. The operational and cost constraints have been discussed and a suggestive alternative mechanism is proposed. The possible allocation of all deferred maintenance tasks to a set of all deferred maintenance tasks to a set of suitable airport resources have termed as alternative and is discussed in this paper from the data’s collected from the kingfisher airlines.Keywords: decision support system, aircraft maintenance planning, maintenance-cost, RUL(remaining useful life), logistics, supply chain management
Procedia PDF Downloads 50718837 The Effect of Law on Politics
Authors: Boukrida Rafiq
Abstract:
Democracy is based on the notion that all citizens have the right to participate in the managing of political affairs and that every citizens input is of equal importance. This basic assumption clearly places emphasis on public participation in maintaining a stable democracy. The level of public participation, however is highly contested with many theorists arguing that too much public participation would overwhelm and ultimately cripple democratic systems. On the other hand, others who favor high levels of participation argue that more citizen involvement leads to greater representation. Regardless of these disagreements over the utopian level of participation, there is widespread agreement amongst scholars that, at the very least, some participation is necessary to maintain democratic systems. The ways in which citizens participate vary greatly and depending on the method used, influence political decision making at varying levels. The method of political participation is a key in controlling public influence over political affairs and therefore is also an integral part of maintaining democracy, whether it be "thin" (low levels of participation) or "Robust" (high levels of participation). High levels of participation or "robust" democracy are argued by some theorists to enhance democracy through providing the opportunity for more issues to be represented during decision making. The notion of widespread participation was first advanced by classical theorists.Keywords: assumption clearly places emphasis, ultimately cripple, influence political decision making at varying, classical theorists
Procedia PDF Downloads 46218836 Investigation of a Technology Enabled Model of Home Care: the eShift Model of Palliative Care
Authors: L. Donelle, S. Regan, R. Booth, M. Kerr, J. McMurray, D. Fitzsimmons
Abstract:
Palliative home health care provision within the Canadian context is challenged by: (i) a shortage of registered nurses (RN) and RNs with palliative care expertise, (ii) an aging population, (iii) reliance on unpaid family caregivers to sustain home care services with limited support to conduct this ‘care work’, (iv) a model of healthcare that assumes client self-care, and (v) competing economic priorities. In response, an interprofessional team of service provider organizations, a software/technology provider, and health care providers developed and implemented a technology-enabled model of home care, the eShift model of palliative home care (eShift). The eShift model combines communication and documentation technology with non-traditional utilization of health human resources to meet patient needs for palliative care in the home. The purpose of this study was to investigate the structure, processes, and outcomes of the eShift model of care. Methodology: Guided by Donebedian’s evaluation framework for health care, this qualitative-descriptive study investigated the structure, processes, and outcomes care of the eShift model of palliative home care. Interviews and focus groups were conducted with health care providers (n= 45), decision-makers (n=13), technology providers (n=3) and family care givers (n=8). Interviews were recorded, transcribed, and a deductive analysis of transcripts was conducted. Study Findings (1) Structure: The eShift model consists of a remotely-situated RN using technology to direct care provision virtually to patients in their home. The remote RN is connected virtually to a health technician (an unregulated care provider) in the patient’s home using real-time communication. The health technician uses a smartphone modified with the eShift application and communicates with the RN who uses a computer with the eShift application/dashboard. Documentation and communication about patient observations and care activities occur in the eShift portal. The RN is typically accountable for four to six health technicians and patients over an 8-hour shift. The technology provider was identified as an important member of the healthcare team. Other members of the team include family members, care coordinators, nurse practitioners, physicians, and allied health. (2) Processes: Conventionally, patient needs are the focus of care; however within eShift, the patient and the family caregiver were the focus of care. Enhanced medication administration was seen as one of the most important processes, and family caregivers reported high satisfaction with the care provided. There was perceived enhanced teamwork among health care providers. (3) Outcomes: Patients were able to die at home. The eShift model enabled consistency and continuity of care, and effective management of patient symptoms and caregiver respite. Conclusion: More than a technology solution, the eShift model of care was viewed as transforming home care practice and an innovative way to resolve the shortage of palliative care nurses within home care.Keywords: palliative home care, health information technology, patient-centred care, interprofessional health care team
Procedia PDF Downloads 42118835 The Investment Decision-Making Principles in Regional Tourism
Authors: Evgeni Baratashvili, Giorgi Sulashvili, Malkhaz Sulashvili, Bela Khotenashvili, Irma Makharashvili
Abstract:
The most investment decision-making principle of regional travel firm's management and its partner is the formulation of the aims of investment programs. The investments can be targeted in order to reduce the firm's production costs and to purchase good transport equipment. In attractive region, in order to develop firm’s activities, the investment program can be targeted for increasing of provided services. That is the case where the sales already have been used in the market. The investment can be directed to establish the affiliate firms, branches, to construct new hotels, to create food and trade enterprises, to develop entertainment enterprises, etc. Economic development is of great importance to regional development. International experience shows that inclusive economic growth largely depends on not only the national, but also regional development planning and implementation of a strong and competitive regions. Regional development is considered as the key factor in achieving national success. Establishing a modern institute separate entities if the pilot centers will constitute a promotion, international best practice-based public-private partnership to encourage the use of models. Regional policy directions and strategies adopted in accordance with the successful implementation of major importance in the near future specific action plans for inclusive development and implementation, which will be provided in accordance with the effective monitoring and evaluation tools and measurable indicators combined. All of these above-mentioned investments are characterized by different levels, which are related to the following fact: How successful tourism marketing service is, whether it is able to determine the proper market's reaction according to the particular firm's actions. In the sphere of regional tourism industry and in the investment decision possible variants it can be developed the some specter of models. Each of the models can be modified and specified according to the situation, and characteristic skills of the existing problem that must be solved. Besides, while choosing the proper model, the process is affected by the regulation system of economic processes. Also, it is influenced by liberalization quality and by the level of state participation.Keywords: net income of travel firm, economic growth, Investment profitability, regional development, tourist product, tourism development
Procedia PDF Downloads 26118834 An Assessment of Airport Collaborative Decision-Making System Using Predictive Maintenance
Authors: Faruk Aras, Melih Inal, Tansel Cinar
Abstract:
The coordination of airport staff especially in the operations and maintenance departments is important for the airport operation. As a result, this coordination will increase the efficiency in all operation. Therefore, a Collaborative Decision-Making (CDM) system targets on improving the overall productivity of all operations by optimizing the use of resources and improving the predictability of actions. Enlarged productivity can be of major benefit for all airport operations. It also increases cost-efficiency. This study explains how predictive maintenance using IoT (Internet of Things), predictive operations and the statistical data such as Mean Time To Failure (MTTF) improves airport terminal operations and utilize airport terminal equipment in collaboration with collaborative decision making system/Airport Operation Control Center (AOCC). Data generated by the predictive maintenance methods is retrieved and analyzed by maintenance managers to predict when a problem is about to occur. With that information, maintenance can be scheduled when needed. As an example, AOCC operator would have chance to assign a new gate that towards to this gate all the equipment such as travellator, elevator, escalator etc. are operational if the maintenance team is in collaboration with AOCC since maintenance team is aware of the health of the equipment because of predictive maintenance methods. Applying predictive maintenance methods based on analyzing the health of airport terminal equipment dramatically reduces the risk of downtime by on time repairs. We can classify the categories as high priority calls for urgent repair action, as medium priority requires repair at the earliest opportunity, and low priority allows maintenance to be scheduled when convenient. In all cases, identifying potential problems early resulted in better allocation airport terminal resources by AOCC.Keywords: airport, predictive maintenance, collaborative decision-making system, Airport Operation Control Center (AOCC)
Procedia PDF Downloads 36618833 Option Pricing Theory Applied to the Service Sector
Authors: Luke Miller
Abstract:
This paper develops an options pricing methodology to value strategic pricing strategies in the services sector. More specifically, this study provides a unifying taxonomy of current service sector pricing practices, frames these pricing decisions as strategic real options, demonstrates accepted option valuation techniques to assess service sector pricing decisions, and suggests future research areas where pricing decisions and real options overlap. Enhancing revenue in the service sector requires proactive decision making in a world of uncertainty. In an effort to strategically price service products, revenue enhancement necessitates a careful study of the service costs, customer base, competition, legalities, and shared economies with the market. Pricing decisions involve the quality of inputs, manpower, and best practices to maintain superior service. These decisions further hinge on identifying relevant pricing strategies and understanding how these strategies impact a firm’s value. A relatively new area of research applies option pricing theory to investments in real assets and is commonly known as real options. The real options approach is based on the premise that many corporate decisions to invest or divest in assets are simply an option wherein the firm has the right to make an investment without any obligation to act. The decision maker, therefore, has more flexibility and the value of this operating flexibility should be taken into consideration. The real options framework has already been applied to numerous areas including manufacturing, inventory, natural resources, research and development, strategic decisions, technology, and stock valuation. Additionally, numerous surveys have identified a growing need for the real options decision framework within all areas of corporate decision-making. Despite the wide applicability of real options, no study has been carried out linking service sector pricing decisions and real options. This is surprising given the service sector comprises 80% of the US employment and Gross Domestic Product (GDP). Identifying real options as a practical tool to value different service sector pricing strategies is believed to have a significant impact on firm decisions. This paper identifies and discusses four distinct pricing strategies available to the service sector from an options’ perspective: (1) Cost-based profit margin, (2) Increased customer base, (3) Platform pricing, and (4) Buffet pricing. Within each strategy lie several pricing tactics available to the service firm. These tactics can be viewed as options the decision maker has to best manage a strategic position in the market. To demonstrate the effectiveness of including flexibility in the pricing decision, a series of pricing strategies were developed and valued using a real options binomial lattice structure. The options pricing approach discussed in this study allows service firms to directly incorporate market-driven perspectives into the decision process and thus synchronizing service operations with organizational economic goals.Keywords: option pricing theory, real options, service sector, valuation
Procedia PDF Downloads 35618832 Grouping Pattern, Habitat Assessment and Overlap Analysis of Five Ungulates Species in Different Altitudinal Gradients of Western Himalaya, Uttarakhand, India
Authors: Kaleem Ahmed, Jamal A. Khan
Abstract:
Grouping patterns, habitat use, and overlap studies were conducted on five sympatric ungulate species sambar (Cervus unicolor), chital (Axis axis), muntjac (Muntiacus muntjac), goral (Nemorhaedus goral), and serow (Capricornis sumatraensis) in the Dabka watershed area within Indian West Himalayan range. Data on age, sex composition, group size, and various ecological and topographical factors governing the presence/absence of species within the study area were collected using a 250 km of a trail walk, 95 permanent circular plots of 10 m radius, and 3 vantage points with 58 scannings. The highest mean group size was recorded for chital (6.35 ± 0.50), followed by sambar (1.35 ± 0.10), goral (1.25 ±0.63), muntjac (1.12 ± 0.05), and serow (1.00 ± 0.00). Grouping pattern significantly varied among sympatric species (F = 85.10, df. = 6, P = 0.000). The highest mean pellet group density (/ha ± SE) was recorded for sambar (41.56 ± 3.51), followed by goral (23.31 ± 3.45), chital (19.21 ± 3.51), muntjac (7.43 ± 1.21), and serow (1.02 ± 0.10). Two-way variance analysis showed a significant difference in the density of the pellet group of all ungulate species across different study area habitats (F = 6.38, df = 4, P = 0.027). The availability-utilization (AU) analysis reveals that goral was mostly sighted in steep slopes, preferred > 2100 m altitudinal range with low shrub understory, avoided dense forest, and relatively more southern aspects were used. Chital had used a wide range of tree and shrub coverings with a preference towards moderate cover range (26-50%), preferred areas with low slope category ( < 25), avoided areas of high altitude > 900 m. Sambar avoided less tree cover (0-25), preferred slope category (26-500), altitudes between 1600-2100 m, and preferred dense forest with northern aspects. Muntjac used all elevation ranges in the study area with a preference towards the dense forest and northern aspects. Serow preferred high tree cover > 75%, avoided low shrub cover (0-25%), preferred high shrub cover 51-75%, utilized higher elevation > 2100 m, avoided low elevation range and northern aspects. All species occupied similar habitat types, forest or scrub, except for the goral, which preferred open spaces. Between muntjac and sambar, the highest overlap was found (65%), and there was no overlap between chital and serow, chital and goral. Aspect, slope, altitude, and vegetation characteristics were found to be important factors for the overlap of ungulate sympatric species. One major reason for their ecological separation at the fine-scale level is the differential use of altitude by ungulates in the present study. This is confirmed by the avoidance by chital of altitudes > 900 m and serow of < 2100 m.Keywords: altitude, grouping pattern, Himalayas, overlap, ungulates
Procedia PDF Downloads 14218831 Advanced Analytical Competency Is Necessary for Strategic Leadership to Achieve High-Quality Decision-Making
Authors: Amal Mohammed Alqahatni
Abstract:
This paper is a non-empirical analysis of existing literature on digital leadership competency, data-driven organizations, and dealing with AI technology (big data). This paper will provide insights into the importance of developing the leader’s analytical skills and style to be more effective for high-quality decision-making in a data-driven organization and achieve creativity during the organization's transformation to be digitalized. Despite the enormous potential that big data has, there are not enough experts in the field. Many organizations faced an issue with leadership style, which was considered an obstacle to organizational improvement. It investigates the obstacles to leadership style in this context and the challenges leaders face in coaching and development. The leader's lack of analytical skill with AI technology, such as big data tools, was noticed, as was the lack of understanding of the value of that data, resulting in poor communication with others, especially in meetings when the decision should be made. By acknowledging the different dynamics of work competency and organizational structure and culture, organizations can make the necessary adjustments to best support their leaders. This paper reviews prior research studies and applies what is known to assist with current obstacles. This paper addresses how analytical leadership will assist in overcoming challenges in a data-driven organization's work environment.Keywords: digital leadership, big data, leadership style, digital leadership challenge
Procedia PDF Downloads 7018830 Development of an Analytical Model for a Synchronous Permanent Magnet Generator
Authors: T. Sahbani, M. Bouteraa, R. Wamkeue
Abstract:
Wind Turbine are considered to be one of the more efficient system of energy production nowadays, a reason that leads the main industrial companies in wind turbine construction and researchers in over the world to look for better performance and one of the ways for that is the use of the synchronous permanent magnet generator. In this context, this work is about developing an analytical model that could simulate different situation in which the synchronous generator may go through, and of course this model match perfectly with the numerical and experimental model.Keywords: MATLAB, synchronous permanent magnet generator, wind turbine, analytical model
Procedia PDF Downloads 55018829 Forecasting Materials Demand from Multi-Source Ordering
Authors: Hui Hsin Huang
Abstract:
The downstream manufactures will order their materials from different upstream suppliers to maintain a certain level of the demand. This paper proposes a bivariate model to portray this phenomenon of material demand. We use empirical data to estimate the parameters of model and evaluate the RMSD of model calibration. The results show that the model has better fitness.Keywords: recency, ordering time, materials demand quantity, multi-source ordering
Procedia PDF Downloads 53818828 The Formulation of R&D Strategy for Biofuel Technology: A Case Study of the Aviation Industry in Iran
Authors: Maryam Amiri, Ali Rajabzade, Gholam Reza Goudarzi, Reza Heidari
Abstract:
Growth of technology and environmental changes are so fast and therefore, companies and industries have much tendency to do activities of R&D for active participation in the market and achievement to a competitive advantages. Aviation industry and its subdivisions have high level technology and play a special role in economic and social development of countries. So, in the aviation industry for getting new technologies and competing with other countries aviation industry, there is a requirement for capability in R&D. Considering of appropriate R&D strategy is supportive that day technologies of the world can be achieved. Biofuel technology is one of the newest technologies that has allocated discussion of the world in aviation industry to itself. The purpose of this research has been formulation of R&D strategy of biofuel technology in aviation industry of Iran. After reviewing of the theoretical foundations of the methods and R&D strategies, finally we classified R&D strategies in four main categories as follows: internal R&D, collaboration R&D, out sourcing R&D and in-house R&D. After a review of R&D strategies, a model for formulation of R&D strategy with the aim of developing biofuel technology in aviation industry in Iran was offered. With regard to the requirements and aracteristics of industry and technology in the model, we presented an integrated approach to R&D. Based on the techniques of decision making and analyzing of structured expert opinion, 4 R&D strategies for different scenarios and with the aim of developing biofuel technology in aviation industry in Iran were recommended. In this research, based on the common features of the implementation process of R&D, a logical classification of these methods are presented as R&D strategies. Then, R&D strategies and their characteristics was developed according to the experts. In the end, we introduced a model to consider the role of aviation industry and biofuel technology in R&D strategies. And lastly, for conditions and various scenarios of the aviation industry, we have formulated a specific R&D strategy.Keywords: aviation industry, biofuel technology, R&D, R&D strategy
Procedia PDF Downloads 58218827 Worst-Case Load Shedding in Electric Power Networks
Authors: Fu Lin
Abstract:
We consider the worst-case load-shedding problem in electric power networks where a number of transmission lines are to be taken out of service. The objective is to identify a prespecified number of line outages that lead to the maximum interruption of power generation and load at the transmission level, subject to the active power-flow model, the load and generation capacity of the buses, and the phase-angle limit across the transmission lines. For this nonlinear model with binary constraints, we show that all decision variables are separable except for the nonlinear power-flow equations. We develop an iterative decomposition algorithm, which converts the worst-case load shedding problem into a sequence of small subproblems. We show that the subproblems are either convex problems that can be solved efficiently or nonconvex problems that have closed-form solutions. Consequently, our approach is scalable for large networks. Furthermore, we prove the convergence of our algorithm to a critical point, and the objective value is guaranteed to decrease throughout the iterations. Numerical experiments with IEEE test cases demonstrate the effectiveness of the developed approach.Keywords: load shedding, power system, proximal alternating linearization method, vulnerability analysis
Procedia PDF Downloads 14218826 Survival Analysis Based Delivery Time Estimates for Display FAB
Authors: Paul Han, Jun-Geol Baek
Abstract:
In the flat panel display industry, the scheduler and dispatching system to meet production target quantities and the deadline of production are the major production management system which controls each facility production order and distribution of WIP (Work in Process). In dispatching system, delivery time is a key factor for the time when a lot can be supplied to the facility. In this paper, we use survival analysis methods to identify main factors and a forecasting model of delivery time. Of survival analysis techniques to select important explanatory variables, the cox proportional hazard model is used to. To make a prediction model, the Accelerated Failure Time (AFT) model was used. Performance comparisons were conducted with two other models, which are the technical statistics model based on transfer history and the linear regression model using same explanatory variables with AFT model. As a result, the Mean Square Error (MSE) criteria, the AFT model decreased by 33.8% compared to the existing prediction model, decreased by 5.3% compared to the linear regression model. This survival analysis approach is applicable to implementing a delivery time estimator in display manufacturing. And it can contribute to improve the productivity and reliability of production management system.Keywords: delivery time, survival analysis, Cox PH model, accelerated failure time model
Procedia PDF Downloads 54518825 The Nexus of Decentralized Policy, social Heterogeneity and Poverty in Equitable Forest Benefit Sharing in the Lowland Community Forestry Program of Nepal
Authors: Dhiraj Neupane
Abstract:
Decentralized policy and practices have largely concentrated on the transformation of decision-making authorities from central to local institutions (or people) in the developing world. Such policy and practices always aimed for the equitable and efficient management of resources in the line of poverty reduction. The transformation of forest decision-making autonomy has also glorified as the best forest management alternatives to maximize the forest benefits and improve the livelihood of local people living nearby the forests. However, social heterogeneity and poor decision-making capacity of local institutions (or people) pose a nexus while managing the resources and sharing the forest benefits among the user households despite the policy objectives. The situation is severe in the lowland of Nepal, where forest resources have higher economic potential and user households have heterogeneous socio-economic conditions. The study discovered that utilizing the power of decision-making autonomy, user households were putting low values of timber considering the equitable access of timber to all user households as it is the most valuable product of community forest. Being the society is heterogeneous by socio-economic conditions, households of better economic conditions were always taking higher amount of forest benefits. The low valuation of timber has negative consequences on equitable benefit sharing and poor support to livelihood improvement of user households. Moreover, low valuation has possibility to increase the local demands of timber and increase the human pressure on forests.Keywords: decentralized forest policy, Nepal, poverty, social heterogeneity, Terai
Procedia PDF Downloads 28918824 The Implementation of the Human Right of Self-Determination: the Example of Nagorno-Karabakh Republic
Authors: S. Vlasyan
Abstract:
The article deals with the implementation of the right to self-determination of peoples on the example of Nagorno-Karabakh Republic. The problem of correlation of two fundamental principles of international law i. e. territorial integrity and the right to self-determination of peoples is considered to be one of the vital issues in the field of international law for several decades. So, in this article, the author analyzes the decision of the Supreme Court of Canada regarding specific issues of secession of Quebec from Canada, as well as the decision of the International Court of Justice in the case concerning East Timor (Portugal v. Australia), and in the case of Western Sahara. The author formulates legal conditions of Nagorno-Karabakh secession.Keywords: right of self-determination, territorial integrity, the principles of International Law, Nagorno-Karabakh Republic
Procedia PDF Downloads 41118823 A Condition-Based Maintenance Policy for Multi-Unit Systems Subject to Deterioration
Authors: Nooshin Salari, Viliam Makis
Abstract:
In this paper, we propose a condition-based maintenance policy for multi-unit systems considering the existence of economic dependency among units. We consider a system composed of N identical units, where each unit deteriorates independently. Deterioration process of each unit is modeled as a three-state continuous time homogeneous Markov chain with two working states and a failure state. The average production rate of units varies in different working states and demand rate of the system is constant. Units are inspected at equidistant time epochs, and decision regarding performing maintenance is determined by the number of units in the failure state. If the total number of units in the failure state exceeds a critical level, maintenance is initiated, where units in failed state are replaced correctively and deteriorated state units are maintained preventively. Our objective is to determine the optimal number of failed units to initiate maintenance minimizing the long run expected average cost per unit time. The problem is formulated and solved in the semi-Markov decision process (SMDP) framework. A numerical example is developed to demonstrate the proposed policy and the comparison with the corrective maintenance policy is presented.Keywords: reliability, maintenance optimization, semi-Markov decision process, production
Procedia PDF Downloads 16618822 Developing a DNN Model for the Production of Biogas From a Hybrid BO-TPE System in an Anaerobic Wastewater Treatment Plant
Authors: Hadjer Sadoune, Liza Lamini, Scherazade Krim, Amel Djouadi, Rachida Rihani
Abstract:
Deep neural networks are highly regarded for their accuracy in predicting intricate fermentation processes. Their ability to learn from a large amount of datasets through artificial intelligence makes them particularly effective models. The primary obstacle in improving the performance of these models is to carefully choose the suitable hyperparameters, including the neural network architecture (number of hidden layers and hidden units), activation function, optimizer, learning rate, and other relevant factors. This study predicts biogas production from real wastewater treatment plant data using a sophisticated approach: hybrid Bayesian optimization with a tree-structured Parzen estimator (BO-TPE) for an optimised deep neural network (DNN) model. The plant utilizes an Upflow Anaerobic Sludge Blanket (UASB) digester that treats industrial wastewater from soft drinks and breweries. The digester has a working volume of 1574 m3 and a total volume of 1914 m3. Its internal diameter and height were 19 and 7.14 m, respectively. The data preprocessing was conducted with meticulous attention to preserving data quality while avoiding data reduction. Three normalization techniques were applied to the pre-processed data (MinMaxScaler, RobustScaler and StandardScaler) and compared with the Non-Normalized data. The RobustScaler approach has strong predictive ability for estimating the volume of biogas produced. The highest predicted biogas volume was 2236.105 Nm³/d, with coefficient of determination (R2), mean absolute error (MAE), and root mean square error (RMSE) values of 0.712, 164.610, and 223.429, respectively.Keywords: anaerobic digestion, biogas production, deep neural network, hybrid bo-tpe, hyperparameters tuning
Procedia PDF Downloads 4018821 A Platform to Analyze Controllers for Solar Hot Water Systems
Authors: Aziz Ahmad, Guillermo Ramirez-Prado
Abstract:
Governments around the world encourage the use of solar water heating in residential houses due to the low maintenance requirements and efficiency of the solar collector water heating systems. The aim of this work is to study a domestic solar water heating system in a residential building to develop a model of the entire solar water heating system including flat-plate solar collector and storage tank. The proposed model is adaptable to any households and location. The model can be used to test different types of controllers and can provide efficiency as well as economic analysis. The proposed model is based on the heat and mass transfer equations along with assumptions applied in the model which can be modified for a variety of different solar water heating systems and sizes. Simulation results of the model were compared with the actual system which shows similar trends.Keywords: solar thermal systems, solar water heating, solar collector model, hot water tank model, solar controllers
Procedia PDF Downloads 27318820 A Controlled Mathematical Model for Population Dynamics in an Infested Honeybees Colonies
Authors: Chakib Jerry, Mounir Jerry
Abstract:
In this paper, a mathematical model of infested honey bees colonies is formulated in order to investigate Colony Collapse Disorder in a honeybee colony. CCD, as it is known, is a major problem on honeybee farms because of the massive decline in colony numbers. We introduce to the model a control variable which represents forager protection. We study the controlled model to derive conditions under which the bee colony can fight off epidemic. Secondly we study the problem of minimizing prevention cost under model’s dynamics constraints.Keywords: honey bee, disease transmission model, disease control honeybees, optimal control
Procedia PDF Downloads 42818819 Hospital 4.0 Maturity Assessment Model Development: Case of Moroccan Public Hospitals
Authors: T. Benazzouz, K. Auhmani
Abstract:
This paper presents a Hospital 4.0 Maturity Assessment Model based on the Industry 4.0 concepts. The self-assessment model defines current and target states of digital transformation by considering multiple aspects of a hospital and a healthcare supply chain. The developed model was validated and evaluated on real-life cases. The resulting model consisted of 5 domains: Technology, Strategy 4.0, Human resources 4.0 & Culture 4.0, Supply chain 4.0 management, and Patient journeys management. Each domain is further divided into several sub-domains, totally 34 sub-domains are identified, that reflect different facets of a hospital 4.0 mature organization.Keywords: hospital 4.0, Industry 4.0, maturity assessment model, supply chain 4.0, patient
Procedia PDF Downloads 9418818 The Increasing of Perception of Consumers’ Awareness about Sustainability Brands during Pandemic: A Multi Mediation Model
Authors: Silvia Platania, Martina Morando, Giuseppe Santisi
Abstract:
Introduction: In the last thirty years, there is constant talk of sustainable consumption and a "transition" of consumer lifestyles towards greater awareness of consumer choices (United Nation, 1992). The 2019 coronavirus (COVID-19) epidemic that has hit the world population since 2020 has had significant consequences in all areas of people's lives; individuals have been forced to change their behaviors, to redefine their owngoals, priorities, practices, and lifestyles, to rebuild themselves in the new situation dictated by the pandemic. Method(Participants and procedure ): The data were collected through an online survey; moreover, we used convenience sampling from the general population. The participants were 669 Italians consumers (Female= 514, 76.8%; Male=155, 23.2%) that choice sustainability brands, aged between 18 and 65 years (Mₐ𝓰ₑ = 35.45; Standard Deviation, SD = 9.51).(Measure ): The following measures were used: The Muncy–Vitell Consumer Ethics Scale; Attitude Toward Business Scale; Perceived Consumer Effectiveness Scale; Consumers Perception on Sustainable Brand Attitudes. Results: Preliminary analyses were conducted to test our model. Pearson's bivariate correlation between variables shows that all variables of our model correlate significantly and positively, PCE with CPSBA (r = .56, p <.001). Furthermore, a CFA, according to Harman's single-factor test, was used to diagnose the extent to which common-method variance was a problem. A comparison between the hypothesised model and a model with one factor (with all items loading on a unique factor) revealed that the former provided a better fit for the data in all the CFA fit measures [χ² [6, n = 669] = 7.228, p = 0.024, χ² / df = 1.20, RMSEA = 0.07 (CI = 0.051-0.067), CFI = 0.95, GFI = 0.95, SRMR = 0.04, AIC = 66.501; BIC = 132,150). Next, amulti mediation was conducted to test our hypotheses. The results show that there is a direct effect of PCE on ethical consumption behavior (β = .38) and on ATB (β = .23); furthermore, there is a direct effect on the CPSBA outcome (β = .34). In addition, there is a mediating effect by ATB (C.I. =. 022-.119, 95% interval confidence) and by CES (C.I. =. 136-.328, 95% interval confidence). Conclusion: The spread of the COVID-19 pandemic has affected consumer consumption styles and has led to an increase in online shopping and purchases of sustainable products. Several theoretical and practical considerations emerge from the results of the study.Keywords: decision making, sustainability, pandemic, multimediation model
Procedia PDF Downloads 11118817 Towards a Framework for Embedded Weight Comparison Algorithm with Business Intelligence in the Plantation Domain
Authors: M. Pushparani, A. Sagaya
Abstract:
Embedded systems have emerged as important elements in various domains with extensive applications in automotive, commercial, consumer, healthcare and transportation markets, as there is emphasis on intelligent devices. On the other hand, Business Intelligence (BI) has also been extensively used in a range of applications, especially in the agriculture domain which is the area of this research. The aim of this research is to create a framework for Embedded Weight Comparison Algorithm with Business Intelligence (EWCA-BI). The weight comparison algorithm will be embedded within the plantation management system and the weighbridge system. This algorithm will be used to estimate the weight at the site and will be compared with the actual weight at the plantation. The algorithm will be used to build the necessary alerts when there is a discrepancy in the weight, thus enabling better decision making. In the current practice, data are collected from various locations in various forms. It is a challenge to consolidate data to obtain timely and accurate information for effective decision making. Adding to this, the unstable network connection leads to difficulty in getting timely accurate information. To overcome the challenges embedding is done on a portable device that will have the embedded weight comparison algorithm to also assist in data capture and synchronize data at various locations overcoming the network short comings at collection points. The EWCA-BI will provide real-time information at any given point of time, thus enabling non-latent BI reports that will provide crucial information to enable efficient operational decision making. This research has a high potential in bringing embedded system into the agriculture industry. EWCA-BI will provide BI reports with accurate information with uncompromised data using an embedded system and provide alerts, therefore, enabling effective operation management decision-making at the site.Keywords: embedded business intelligence, weight comparison algorithm, oil palm plantation, embedded systems
Procedia PDF Downloads 28818816 Decision Location and Resource Requirement for Relief Goods Assembly
Authors: Glenda B. Minguito, Jenith L. Banluta
Abstract:
One of the critical aspects of humanitarian operations is the distribution of relief goods to the affected community. The common assumption is that relief goods are prepositioned during disasters which are not applicable in developing countries like the Philippines. During disasters, the on-the-ground government agencies and responders have to procure, sort, weigh and pack the relief goods. There is a need to review the relief goods preparation as it seriously affects the delivery of necessary aid for human survival. This study also identifies the ideal location of the assembly hub to minimize the distance to the affected community. This paper reveals that location and resources are dependent on the type of disasters encountered at the local level. The Center-of-Gravity method and Multiple Activity Chart were applied in the analysis.Keywords: humanitarian supply chain, location decision, resource allocation, local level
Procedia PDF Downloads 15218815 A Semi-Markov Chain-Based Model for the Prediction of Deterioration of Concrete Bridges in Quebec
Authors: Eslam Mohammed Abdelkader, Mohamed Marzouk, Tarek Zayed
Abstract:
Infrastructure systems are crucial to every aspect of life on Earth. Existing Infrastructure is subjected to degradation while the demands are growing for a better infrastructure system in response to the high standards of safety, health, population growth, and environmental protection. Bridges play a crucial role in urban transportation networks. Moreover, they are subjected to high level of deterioration because of the variable traffic loading, extreme weather conditions, cycles of freeze and thaw, etc. The development of Bridge Management Systems (BMSs) has become a fundamental imperative nowadays especially in the large transportation networks due to the huge variance between the need for maintenance actions, and the available funds to perform such actions. Deterioration models represent a very important aspect for the effective use of BMSs. This paper presents a probabilistic time-based model that is capable of predicting the condition ratings of the concrete bridge decks along its service life. The deterioration process of the concrete bridge decks is modeled using semi-Markov process. One of the main challenges of the Markov Chain Decision Process (MCDP) is the construction of the transition probability matrix. Yet, the proposed model overcomes this issue by modeling the sojourn times based on some probability density functions. The sojourn times of each condition state are fitted to probability density functions based on some goodness of fit tests such as Kolmogorov-Smirnov test, Anderson Darling, and chi-squared test. The parameters of the probability density functions are obtained using maximum likelihood estimation (MLE). The condition ratings obtained from the Ministry of Transportation in Quebec (MTQ) are utilized as a database to construct the deterioration model. Finally, a comparison is conducted between the Markov Chain and semi-Markov chain to select the most feasible prediction model.Keywords: bridge management system, bridge decks, deterioration model, Semi-Markov chain, sojourn times, maximum likelihood estimation
Procedia PDF Downloads 21618814 Numerical Simulations of the Transition Flow of Model Propellers for Predicting Open Water Performance
Authors: Huilan Yao, Huaixin Zhang
Abstract:
Simulations of the transition flow of model propellers are important for predicting hydrodynamic performance and studying scale effects. In this paper, the transition flow of a model propeller under different loadings are simulated using a transition model provided by STAR-CCM+, and the influence of turbulence intensity (TI) on the transition, especially friction and pressure components of propeller performance, was studied. Before that, the transition model was applied to simulate the transition flow of a flat plate and an airfoil. Predicted transitions agree well with experimental results. Then, the transition model was applied for propeller simulations in open water, and the influence of TI was studied. Under the heavy and moderate loadings, thrust and torque of the propeller predicted by the transition model (different TI) and two turbulence models are very close and agree well with measurements. However, under the light loading, only the transition model with low TI predicts the most accurate results. Above all, the friction components of propeller performance predicted by the transition model with different TI have obvious difference.Keywords: transition flow, model propellers, hydrodynamic performance, numerical simulation
Procedia PDF Downloads 26418813 Strategic Model of Implementing E-Learning Using Funnel Model
Authors: Mohamed Jama Madar, Oso Wilis
Abstract:
E-learning is the application of information technology in the teaching and learning process. This paper presents the Funnel model as a solution for the problems of implementation of e-learning in tertiary education institutions. While existing models such as TAM, theory-based e-learning and pedagogical model have been used over time, they have generally been found to be inadequate because of their tendencies to treat materials development, instructional design, technology, delivery and governance as separate and isolated entities. Yet it is matching components that bring framework of e-learning strategic implementation. The Funnel model enhances all these into one and applies synchronously and asynchronously to e-learning implementation where the only difference is modalities. Such a model for e-learning implementation has been lacking. The proposed Funnel model avoids ad-ad-hoc approach which has made other systems unused or inefficient, and compromised educational quality. Therefore, the proposed Funnel model should help tertiary education institutions adopt and develop effective and efficient e-learning system which meets users’ requirements.Keywords: e-learning, pedagogical, technology, strategy
Procedia PDF Downloads 453