Search results for: inflow performance relationship
4621 A Cloud Computing System Using Virtual Hyperbolic Coordinates for Services Distribution
Authors: Telesphore Tiendrebeogo, Oumarou Sié
Abstract:
Cloud computing technologies have attracted considerable interest in recent years. Thus, these latters have become more important for many existing database applications. It provides a new mode of use and of offer of IT resources in general. Such resources can be used “on demand” by anybody who has access to the internet. Particularly, the Cloud platform provides an ease to use interface between providers and users, allow providers to develop and provide software and databases for users over locations. Currently, there are many Cloud platform providers support large scale database services. However, most of these only support simple keyword-based queries and can’t response complex query efficiently due to lack of efficient in multi-attribute index techniques. Existing Cloud platform providers seek to improve performance of indexing techniques for complex queries. In this paper, we define a new cloud computing architecture based on a Distributed Hash Table (DHT) and design a prototype system. Next, we perform and evaluate our cloud computing indexing structure based on a hyperbolic tree using virtual coordinates taken in the hyperbolic plane. We show through our experimental results that we compare with others clouds systems to show our solution ensures consistence and scalability for Cloud platform.Keywords: virtual coordinates, cloud, hyperbolic plane, storage, scalability, consistency
Procedia PDF Downloads 4254620 Speech Perception by Monolingual and Bilingual Dravidian Speakers under Adverse Listening Conditions
Authors: S. B. Rathna Kumar, Sale Kranthi, Sandya K. Varudhini
Abstract:
The precise perception of spoken language is influenced by several variables, including the listeners’ native language, distance between speaker and listener, reverberation and background noise. When noise is present in an acoustic environment, it masks the speech signal resulting in reduction in the redundancy of the acoustic and linguistic cues of speech. There is strong evidence that bilinguals face difficulty in speech perception for their second language compared with monolingual speakers under adverse listening conditions such as presence of background noise. This difficulty persists even for speakers who are highly proficient in their second language and is greater in those who have learned the second language later in life. The present study aimed to assess the performance of monolingual (Telugu speaking) and bilingual (Tamil as first language and Telugu as second language) speakers on Telugu speech perception task under quiet and noisy environments. The results indicated that both the groups performed similar in both quiet and noisy environments. The findings of the present study are not in accordance with the findings of previous studies which strongly report poorer speech perception in adverse listening conditions such as noise with bilingual speakers for their second language compared with monolinguals.Keywords: monolingual, bilingual, second language, speech perception, quiet, noise
Procedia PDF Downloads 3894619 Elaboration and Characterization of Self-Compacting Mortar Based Biopolymer
Authors: I. Djefour, M. Saidi, I. Tlemsani, S. Toubal
Abstract:
Lignin is a molecule derived from wood and also generated as waste from the paper industry. With a view to its valorization and protection of the environment, we are interested in its use as a superplasticizer-type adjuvant in mortars and concretes to improve their mechanical strengths. The additives of the concrete have a very strong influence on the properties of the fresh and / or hardened concrete. This study examines the development and use of industrial waste and lignin extracted from a renewable natural source (wood) in cementitious materials. The use of these resources is known at present as a definite resurgence of interest in the development of building materials. Physicomechanical characteristics of mortars are determined by optimization quantity of the natural superplasticizer. The results show that the mechanical strengths of mortars based on natural adjuvant have improved by 20% (64 MPa) for a W/C ratio = 0.4, and the amount of natural adjuvant of dry extract needed is 40 times smaller than commercial adjuvant. This study has a scientific impact (improving the performance of the mortar with an increase in compactness and reduction of the quantity of water), ecological use of the lignin waste generated by the paper industry) and economic reduction of the cost price necessary to elaboration of self-compacting mortars and concretes).Keywords: biopolymer (lignin), industrial waste, mechanical resistances, self compacting mortars (SCM)
Procedia PDF Downloads 1664618 Mechanical Behavior of Geosynthetics vs the Combining Effect of Aging, Temperature and Internal Structure
Authors: Jaime Carpio-García, Elena Blanco-Fernández, Jorge Rodríguez-Hernández, Daniel Castro-Fresno
Abstract:
Geosynthetic mechanical behavior vs temperature or vs aging has been widely studied independently during the last years, both in laboratory and in outdoor conditions. This paper studies this behavior deeper, considering that geosynthetics have to perform adequately at different outdoor temperatures once they have been subjected to a certain degree of aging, and also considering the different geosynthetic structures made of the same material. This combining effect has been not considered so far, and it is important to ensure the performance of geosynthetics, especially where high temperatures are expected. In order to fill this gap, six commercial geosynthetics with different internal structures made of polypropylene (PP), high density polyethylene (HDPE), bitumen and polyvinyl chloride (PVC), or even a combination of some of them have been mechanically tested at mild temperature (20ºC or 23ºC) and at warm temperature (45ºC) before and after specific exposition to air at standardized high temperature in order to simulate 25 years of aging due to oxidation. Besides, for 45ºC tests, an innovative heating system during test for high deformable specimens is proposed. The influence of the combining effect of aging, structure and temperature in the product behavior have been analyzed and discussed, concluding that internal structure is more influential than aging in the mechanical behavior of a geosynthetic versus temperature.Keywords: geosynthetics, mechanical behavior, temperature, aging, internal structure
Procedia PDF Downloads 704617 An Image Enhancement Method Based on Curvelet Transform for CBCT-Images
Authors: Shahriar Farzam, Maryam Rastgarpour
Abstract:
Image denoising plays extremely important role in digital image processing. Enhancement of clinical image research based on Curvelet has been developed rapidly in recent years. In this paper, we present a method for image contrast enhancement for cone beam CT (CBCT) images based on fast discrete curvelet transforms (FDCT) that work through Unequally Spaced Fast Fourier Transform (USFFT). These transforms return a table of Curvelet transform coefficients indexed by a scale parameter, an orientation and a spatial location. Accordingly, the coefficients obtained from FDCT-USFFT can be modified in order to enhance contrast in an image. Our proposed method first uses a two-dimensional mathematical transform, namely the FDCT through unequal-space fast Fourier transform on input image and then applies thresholding on coefficients of Curvelet to enhance the CBCT images. Consequently, applying unequal-space fast Fourier Transform leads to an accurate reconstruction of the image with high resolution. The experimental results indicate the performance of the proposed method is superior to the existing ones in terms of Peak Signal to Noise Ratio (PSNR) and Effective Measure of Enhancement (EME).Keywords: curvelet transform, CBCT, image enhancement, image denoising
Procedia PDF Downloads 3004616 Data-Driven Approach to Predict Inpatient's Estimated Discharge Date
Authors: Ayliana Dharmawan, Heng Yong Sheng, Zhang Xiaojin, Tan Thai Lian
Abstract:
To facilitate discharge planning, doctors are presently required to assign an Estimated Discharge Date (EDD) for each patient admitted to the hospital. This assignment of the EDD is largely based on the doctor’s judgment. This can be difficult for cases which are complex or relatively new to the doctor. It is hypothesized that a data-driven approach would be able to facilitate the doctors to make accurate estimations of the discharge date. Making use of routinely collected data on inpatient discharges between January 2013 and May 2016, a predictive model was developed using machine learning techniques to predict the Length of Stay (and hence the EDD) of inpatients, at the point of admission. The predictive performance of the model was compared to that of the clinicians using accuracy measures. Overall, the best performing model was found to be able to predict EDD with an accuracy improvement in Average Squared Error (ASE) by -38% as compared to the first EDD determined by the present method. It was found that important predictors of the EDD include the provisional diagnosis code, patient’s age, attending doctor at admission, medical specialty at admission, accommodation type, and the mean length of stay of the patient in the past year. The predictive model can be used as a tool to accurately predict the EDD.Keywords: inpatient, estimated discharge date, EDD, prediction, data-driven
Procedia PDF Downloads 1744615 Self Tuning Controller for Reducing Cycle to Cycle Variations in SI Engine
Authors: Alirıza Kaleli, M. Akif Ceviz, Erdoğan Güner, Köksal Erentürk
Abstract:
The cyclic variations in spark ignition engines occurring especially under specific engine operating conditions make the maximum pressure variable for successive in-cylinder pressure cycles. Minimization of cyclic variations has a great importance in effectively operating near to lean limit, or at low speed and load. The cyclic variations may reduce the power output of the engine, lead to operational instabilities, and result in undesirable engine vibrations and noise. In this study, spark timing is controlled in order to reduce the cyclic variations in spark ignition engines. Firstly, an ARMAX model has developed between spark timing and maximum pressure using system identification techniques. By using this model, the maximum pressure of the next cycle has been predicted. Then, self-tuning minimum variance controller has been designed to change the spark timing for consecutive cycles of the first cylinder of test engine to regulate the in-cylinder maximum pressure. The performance of the proposed controller is illustrated in real time and experimental results show that the controller has a reliable effect on cycle to cycle variations of maximum cylinder pressure when the engine works under low speed conditions.Keywords: cyclic variations, cylinder pressure, SI engines, self tuning controller
Procedia PDF Downloads 4814614 Effects and Mechanization of a High Gradient Magnetic Separation Process for Particulate and Microbe Removal from Ballast Water
Authors: Zhijun Ren, Zhang Lin, Zhao Ye, Zuo Xiangyu, Mei Dongxing
Abstract:
As a pretreatment process of ballast water treatment, the performance of high gradient magnetic separation (HGMS) technology for the removal of particulates and microorganisms was studied. The results showed that HGMS process could effectively remove suspended particles larger than 5 µm and had ability to resist impact load. Microorganism could also be effectively removed by HGMS process, and the removal effect increased with increasing magnetic field strength. The maximum removal rates for Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) were 4016.1% and 9675.3% higher, respectively, than without the magnetic field. In addition, the superoxide dismutase (SOD) activity of the microbes decreased by 32.2% when the magnetic field strength was 15.4 mT for 72 min. The microstructure of the stainless steel wool was investigated, and the results showed that particle removal by HGMS has common function by the magnetic force of the high-strength, high-gradient magnetic field on weakly magnetic particles in the water, and on the stainless steel wool.Keywords: HGMS, particulates, superoxide dismutase (SOD) activity, steel wool magnetic medium
Procedia PDF Downloads 4494613 Efficacy of a Wiener Filter Based Technique for Speech Enhancement in Hearing Aids
Authors: Ajish K. Abraham
Abstract:
Hearing aid is the most fundamental technology employed towards rehabilitation of persons with sensory neural hearing impairment. Hearing in noise is still a matter of major concern for many hearing aid users and thus continues to be a challenging issue for the hearing aid designers. Several techniques are being currently used to enhance the speech at the hearing aid output. Most of these techniques, when implemented, result in reduction of intelligibility of the speech signal. Thus the dissatisfaction of the hearing aid user towards comprehending the desired speech amidst noise is prevailing. Multichannel Wiener Filter is widely implemented in binaural hearing aid technology for noise reduction. In this study, Wiener filter based noise reduction approach is experimented for a single microphone based hearing aid set up. This method checks the status of the input speech signal in each frequency band and then selects the relevant noise reduction procedure. Results showed that the Wiener filter based algorithm is capable of enhancing speech even when the input acoustic signal has a very low Signal to Noise Ratio (SNR). Performance of the algorithm was compared with other similar algorithms on the basis of improvement in intelligibility and SNR of the output, at different SNR levels of the input speech. Wiener filter based algorithm provided significant improvement in SNR and intelligibility compared to other techniques.Keywords: hearing aid output speech, noise reduction, SNR improvement, Wiener filter, speech enhancement
Procedia PDF Downloads 2474612 Hybrid Algorithm for Non-Negative Matrix Factorization Based on Symmetric Kullback-Leibler Divergence for Signal Dependent Noise: A Case Study
Authors: Ana Serafimovic, Karthik Devarajan
Abstract:
Non-negative matrix factorization approximates a high dimensional non-negative matrix V as the product of two non-negative matrices, W and H, and allows only additive linear combinations of data, enabling it to learn parts with representations in reality. It has been successfully applied in the analysis and interpretation of high dimensional data arising in neuroscience, computational biology, and natural language processing, to name a few. The objective of this paper is to assess a hybrid algorithm for non-negative matrix factorization with multiplicative updates. The method aims to minimize the symmetric version of Kullback-Leibler divergence known as intrinsic information and assumes that the noise is signal-dependent and that it originates from an arbitrary distribution from the exponential family. It is a generalization of currently available algorithms for Gaussian, Poisson, gamma and inverse Gaussian noise. We demonstrate the potential usefulness of the new generalized algorithm by comparing its performance to the baseline methods which also aim to minimize symmetric divergence measures.Keywords: non-negative matrix factorization, dimension reduction, clustering, intrinsic information, symmetric information divergence, signal-dependent noise, exponential family, generalized Kullback-Leibler divergence, dual divergence
Procedia PDF Downloads 2464611 Data Science-Based Key Factor Analysis and Risk Prediction of Diabetic
Authors: Fei Gao, Rodolfo C. Raga Jr.
Abstract:
This research proposal will ascertain the major risk factors for diabetes and to design a predictive model for risk assessment. The project aims to improve diabetes early detection and management by utilizing data science techniques, which may improve patient outcomes and healthcare efficiency. The phase relation values of each attribute were used to analyze and choose the attributes that might influence the examiner's survival probability using Diabetes Health Indicators Dataset from Kaggle’s data as the research data. We compare and evaluate eight machine learning algorithms. Our investigation begins with comprehensive data preprocessing, including feature engineering and dimensionality reduction, aimed at enhancing data quality. The dataset, comprising health indicators and medical data, serves as a foundation for training and testing these algorithms. A rigorous cross-validation process is applied, and we assess their performance using five key metrics like accuracy, precision, recall, F1-score, and area under the receiver operating characteristic curve (AUC-ROC). After analyzing the data characteristics, investigate their impact on the likelihood of diabetes and develop corresponding risk indicators.Keywords: diabetes, risk factors, predictive model, risk assessment, data science techniques, early detection, data analysis, Kaggle
Procedia PDF Downloads 754610 Developing a Web-Based Workflow Management System in Cloud Computing Platforms
Authors: Wang Shuen-Tai, Lin Yu-Ching, Chang Hsi-Ya
Abstract:
Cloud computing is the innovative and leading information technology model for enabling convenient, on-demand network access to a shared pool of configurable computing resources that can be rapidly provisioned and released with minimal management effort. In this paper, we aim at the development of workflow management system for cloud computing platforms based on our previous research on the dynamic allocation of the cloud computing resources and its workflow process. We took advantage of the HTML 5 technology and developed web-based workflow interface. In order to enable the combination of many tasks running on the cloud platform in sequence, we designed a mechanism and developed an execution engine for workflow management on clouds. We also established a prediction model which was integrated with job queuing system to estimate the waiting time and cost of the individual tasks on different computing nodes, therefore helping users achieve maximum performance at lowest payment. This proposed effort has the potential to positively provide an efficient, resilience and elastic environment for cloud computing platform. This development also helps boost user productivity by promoting a flexible workflow interface that lets users design and control their tasks' flow from anywhere.Keywords: web-based, workflow, HTML5, Cloud Computing, Queuing System
Procedia PDF Downloads 3094609 The Impact of Democratic Leadership on Job Satisfaction Among Teachers in South Hebron Directorate Schools
Authors: Mohammad Mahmoud Rjoob
Abstract:
This study aimed to explore the impact of democratic leadership on job satisfaction among teachers in the South Hebron Directorate schools. The study was applied to a random sample representing the study population of teachers in the South Hebron Directorate of Education, with a sample size of 301 teachers from 12 schools. The researcher adopted the descriptive approach as it is the most suitable for the nature of this study, and a questionnaire was used as a tool for data collection and measuring various variables. The study recommended the importance of enhancing the concept of democratic leadership in schools to boost teachers' morale and improve the quality of the educational process. It also encouraged the adoption of democratic leadership styles by administrations, educational areas, and new principals due to their positive and effective impact on job performance. Additionally, the study suggested providing training courses for school principals and new teachers on how to apply the principles of democratic leadership that contribute to creating a positive educational environment and enhance the spirit of cooperation to achieve the school's goals. Finally, the study called for granting school principals more authority and powers to increase their ability to effectively deal with challenges and problems, which contributes to improving the educational process and enhances teachers' job satisfaction.Keywords: democratic leadership, job satisfaction, teachers, South Hebron Directorate Schools
Procedia PDF Downloads 94608 Optimal Allocation of Oil Rents and Public Investment In Low-Income Developing Countries: A Computable General Equilibrium Analysis
Authors: Paule Olivia Akotto
Abstract:
The recent literature suggests spending between 50%-85% of oil rents. However, there are not yet clear guidelines for allocating this windfall in the public investment system, while most of the resource-rich countries fail to improve their intergenerational mobility. We study a design of the optimal spending system in Senegal, a low-income developing country featuring newly discovered oil fields and low intergenerational mobility. We build a dynamic general equilibrium model in which rural and urban (Dakar and other urban centers henceforth OUC) households face different health, education, and employment opportunities based on their location, affecting their intergenerational mobility. The model captures the relationship between oil rents, public investment, and multidimensional inequality of opportunity. The government invests oil rents in three broad sectors: health and education, road and industries, and agriculture. Through endogenous productivity externality and human capital accumulation, our model generates the predominant position of Dakar and OUC households in terms of access to health, education, and employment in line with Senegal data. Rural households are worse off in all dimensions. We compute the optimal spending policy under two sets of simulation scenarios. Under the current Senegal public investment strategy, which weighs more health and education investments, we find that the reform maximizing the decline in inequality of opportunity between households, frontloads investment during the first eight years of the oil exploitation and spends the perpetual value of oil wealth thereafter. We will then identify the marginal winners and losers associated with this policy and its redistributive implications. Under our second set of scenarios, we will test whether the Senegalese economy can reach better equality of opportunity outcomes under this frontloading reform, by allowing the sectoral shares of investment to vary. The trade-off will be between cutting human capital investment in favor of agricultural and productive infrastructure or increasing the former. We will characterize the optimal policy by specifying where the higher weight should be. We expect that the optimal policy of the second set strictly dominates in terms of equality of opportunity, the optimal policy computed under the current investment strategy. Finally, we will quantify this optimal policy's aggregate and distributional effects on poverty, well-being, and gender earning gaps.Keywords: developing countries, general equilibrium, inequality of opportunity, oil rents
Procedia PDF Downloads 2374607 Continuous Dyeing of Graphene and Polyaniline on Textiles for Electromagnetic interference Shielding: An Application of Intelligent Fabrics
Authors: Mourad Makhlouf Sabrina Bouriche, Zoubir Benmaamar, Didier Villemin
Abstract:
Background: The increasing presence of electromagnetic interference (EMI) requires the development of effective protection solutions. Intelligent textiles offer a promising approach due to their wear ability and the possibility of integration into everyday clothing. In this study, the use of graphene and polyaniline for EMI shielding on cotton fabrics was examined. Methods: In this study, the continuous dyeing of recycled graphite-derived graphene and polyaniline was examined. Bottom-reforming technology was adopted to improve adhesion and achieve uniform distribution of conductive material on the fiber surface. The effect of material weight ratio on fabric performance and X-band EMI shielding effectiveness (SE) was evaluated. Significant Findings: The dyed cotton fabrics incorporating graphene, polyaniline, and their combination exhibited improved conductivity. Notably, these fabrics achieved EMI SE values ranging from 9 to 16 dB within the X-band frequency range (8-9 GHz). These findings demonstrate the potential of this approach for developing intelligent textiles with effective EMI shielding capabilities. Additionally, the utilization of recycled materials contributes to a more sustainable shielding solution.Keywords: Intelligent textiles, graphene, polyaniline, electromagnetic shielding, conductivity, recycling
Procedia PDF Downloads 434606 Reclamation of Molding Sand: A Chemical Approach to Recycle Waste Foundry Sand
Authors: Mohd Moiz Khan, S. M. Mahajani, G. N. Jadhav
Abstract:
Waste foundry sand (total clay content 15%) contains toxic heavy metals and particulate matter which make dumping of waste sand an environmental and health hazard. Disposal of waste foundry sand (WFS) remains one of the substantial challenges faced by Indian foundries nowadays. To cope up with this issue, the chemical method was used to reclaim WFS. A stirrer tank reactor was used for chemical reclamation. Experiments were performed to reduce the total clay content from 15% to as low as 0.9% in chemical reclamation. This method, although found to be effective for WFS reclamation, it may face a challenge due to the possibly high operating cost. Reclaimed sand was found to be satisfactory in terms of sand qualities such as total clay (0.9%), active clay (0.3%), acid demand value (ADV) (2.6%), loss on igniting (LOI) (3 %), grain fineness number (GFN) (56), and compressive strength (60 kPa). The experimental data generated on chemical reactor under different conditions is further used to optimize the design and operating parameters (rotation speed, sand to acidic solution ratio, acid concentration, temperature and time) for the best performance. The use of reclaimed sand within the foundry would improve the economics and efficiency of the process and reduce environmental concerns.Keywords: chemical reclamation, clay content, environmental concerns, recycle, waste foundry sand
Procedia PDF Downloads 1474605 Advances in Artificial intelligence Using Speech Recognition
Authors: Khaled M. Alhawiti
Abstract:
This research study aims to present a retrospective study about speech recognition systems and artificial intelligence. Speech recognition has become one of the widely used technologies, as it offers great opportunity to interact and communicate with automated machines. Precisely, it can be affirmed that speech recognition facilitates its users and helps them to perform their daily routine tasks, in a more convenient and effective manner. This research intends to present the illustration of recent technological advancements, which are associated with artificial intelligence. Recent researches have revealed the fact that speech recognition is found to be the utmost issue, which affects the decoding of speech. In order to overcome these issues, different statistical models were developed by the researchers. Some of the most prominent statistical models include acoustic model (AM), language model (LM), lexicon model, and hidden Markov models (HMM). The research will help in understanding all of these statistical models of speech recognition. Researchers have also formulated different decoding methods, which are being utilized for realistic decoding tasks and constrained artificial languages. These decoding methods include pattern recognition, acoustic phonetic, and artificial intelligence. It has been recognized that artificial intelligence is the most efficient and reliable methods, which are being used in speech recognition.Keywords: speech recognition, acoustic phonetic, artificial intelligence, hidden markov models (HMM), statistical models of speech recognition, human machine performance
Procedia PDF Downloads 4784604 Social Participation and Associated Life Satisfaction among Older Adults in India: Moderating Role of Marital Status and Living Arrangements
Authors: Varsha Pandurang Nagargoje, K. S. James
Abstract:
Background: Social participation is considered as one of the central components of successful and healthy aging. This study aimed to examine the moderating role of marital status and living arrangement in the relationship between social participation and life satisfaction and other potential factors associated with life satisfaction of Indian older adults. Method: For analyses, the nationally representative study sample of 31,464 adults aged ≥60 years old was extracted from the Longitudinal Ageing Study in India (LASI) wave 1, 2017-18. Descriptive statistics and bivariate analysis have been performed to determine the proportion of life satisfaction. The first set of multivariable linear regression analyses examined Diener’s Satisfaction with Life Scale and its association with various predictor variables, including social participation, marital status, living arrangements, socio-demographic, economic, and health-related variables. Further, the second and third sets of regression investigated the moderating role of marital status and living arrangements respectively in the association of social participation and level of life satisfaction among Indian older adults. Results: Overall, the proportion of life satisfaction among older men was relatively higher than women counterparts in most background characteristics. Regression results stressed the importance of older adults’ involvement in social participation [β = 0.39, p < 0.05], being in marital union [β = 0.68, p < 0.001] and co-residential living arrangements either only with spouse [β = 1.73, p < 0.001] or with other family members [β = 2.18, p < 0.001] for the improvement of life satisfaction. Results also showed that some factors were significant for life satisfaction: in particular, increased age, having a higher level of educational status, MPCE quintile, and caste category. Higher risk of life dissatisfaction found among Indian older adults who were exposed to vulnerabilities like consuming tobacco, poor self-rated health, having difficulty in performing ADL and IADL were of major concern. The interaction effect of social participation with marital status or with living arrangements explained that currently married older individuals, and those older adults who were either co-residing with their spouse only or with other family members irrespective of their involvement in social participation remained an important modifiable factor for life satisfaction. Conclusion: It would be crucial for policymakers and practitioners to advocate social policy programs and service delivery oriented towards meaningful social connections, especially for those Indian older adults who were staying alone or currently not in the marital union to enhance their overall life satisfaction.Keywords: Indian, older adults, social participation, life satisfaction, marital status, living arrangement
Procedia PDF Downloads 1294603 Dual-Channel Multi-Band Spectral Subtraction Algorithm Dedicated to a Bilateral Cochlear Implant
Authors: Fathi Kallel, Ahmed Ben Hamida, Christian Berger-Vachon
Abstract:
In this paper, a Speech Enhancement Algorithm based on Multi-Band Spectral Subtraction (MBSS) principle is evaluated for Bilateral Cochlear Implant (BCI) users. Specifically, dual-channel noise power spectral estimation algorithm using Power Spectral Densities (PSD) and Cross Power Spectral Densities (CPSD) of the observed signals is studied. The enhanced speech signal is obtained using Dual-Channel Multi-Band Spectral Subtraction ‘DC-MBSS’ algorithm. For performance evaluation, objective speech assessment test relying on Perceptual Evaluation of Speech Quality (PESQ) score is performed to fix the optimal number of frequency bands needed in DC-MBSS algorithm. In order to evaluate the speech intelligibility, subjective listening tests are assessed with 3 deafened BCI patients. Experimental results obtained using French Lafon database corrupted by an additive babble noise at different Signal-to-Noise Ratios (SNR) showed that DC-MBSS algorithm improves speech understanding for single and multiple interfering noise sources.Keywords: speech enhancement, spectral substracion, noise estimation, cochlear impalnt
Procedia PDF Downloads 5494602 Assessment of Material Type, Diameter, Orientation and Closeness of Fibers in Vulcanized Reinforced Rubbers
Authors: Ali Osman Güney, Bahattin Kanber
Abstract:
In this work, the effect of material type, diameter, orientation and closeness of fibers on the general performance of reinforced vulcanized rubbers are investigated using finite element method with experimental verification. Various fiber materials such as hemp, nylon, polyester are used for different fiber diameters, orientations and closeness. 3D finite element models are developed by considering bonded contact elements between fiber and rubber sheet interfaces. The fibers are assumed as linear elastic, while vulcanized rubber is considered as hyper-elastic. After an experimental verification of finite element results, the developed models are analyzed under prescribed displacement that causes tension. The normal stresses in fibers and shear stresses between fibers and rubber sheet are investigated in all models. Large deformation of reinforced rubber sheet also represented with various fiber conditions under incremental loading. A general assessment is achieved about best fiber properties of reinforced rubber sheets for tension-load conditions.Keywords: reinforced vulcanized rubbers, fiber properties, out of plane loading, finite element method
Procedia PDF Downloads 3464601 Multi Tier Data Collection and Estimation, Utilizing Queue Model in Wireless Sensor Networks
Authors: Amirhossein Mohajerzadeh, Abolghasem Mohajerzadeh
Abstract:
In this paper, target parameter is estimated with desirable precision in hierarchical wireless sensor networks (WSN) while the proposed algorithm also tries to prolong network lifetime as much as possible, using efficient data collecting algorithm. Target parameter distribution function is considered unknown. Sensor nodes sense the environment and send the data to the base station called fusion center (FC) using hierarchical data collecting algorithm. FC builds underlying phenomena based on collected data. Considering the aggregation level, x, the goal is providing the essential infrastructure to find the best value for aggregation level in order to prolong network lifetime as much as possible, while desirable accuracy is guaranteed (required sample size is fully depended on desirable precision). First, the sample size calculation algorithm is discussed, second, the average queue length based on M/M[x]/1/K queue model is determined and it is used for energy consumption calculation. Nodes can decrease transmission cost by aggregating incoming data. Furthermore, the performance of the new algorithm is evaluated in terms of lifetime and estimation accuracy.Keywords: aggregation, estimation, queuing, wireless sensor network
Procedia PDF Downloads 1864600 Acute Effects of Exogenous Hormone Treatments on Postprandial Acylation Stimulating Protein Levels in Ovariectomized Rats After a Fat Load
Authors: Bashair Al Riyami
Abstract:
Background: Acylation stimulating protein (ASP) is a small basic protein that was isolated based on its function as a potent lipogenic factor. The role of ASP in lipid metabolism has been described in numerous studies. Several association studies suggest that ASP may play a prominent role in female fat metabolism and distribution. Progesterone is established as a female lipogenic hormone, however the mechanisms by which progesterone exert its effects are not fully understood. AIM: Since ASP is an established potent lipogenic factor with a known mechanism of action, in this study we aim to investigate acute effects of different hormone treatments on ASP levels in vivo after a fat load. Methods: This is a longitudinal study including 24 female wister rats that were randomly divided into 4 groups including controls (n=6). The rats were ovariectomized, and fourteen days later the fasting rats were injected subcutaneously with a single dose of different hormone treatments (progesterone, estrogen and testosterone). An hour later, olive was administered by oral gavage, and plasma blood samples were collected at several time points after oil administration for ASP and triglyceride measurements. Area under the curve (TG-AUC) was calculated to represent TG clearance Results: RM-ANCOVA and post-analysis showed that only the progesterone treated group had a significant postprandial ASP increase at two hours compared to basal levels and to the controls (439.8± 62.4 vs 253.45± 59.03 ug/ml), P= 0.04. Interestingly, increased postprandial ASP levels coordinated negatively with corresponding TG levels and TG-AUC across the postprandial period most apparent in the progesterone and testosterone treated groups that behaved in an opposite manner. ASP levels were 3-fold higher in the progesterone compared to the testosterone treated group, whereas TG-AUC was significantly lower in the progesterone treated group compared to the testosterone treated group. Conclusion: These findings suggest that progesterone treatment enhances ASP production and TG clearance in a simultaneous manner. The strong association of postprandial ASP levels and TG clearance in the progesterone treated group support the notion of a stimulatory role for progesterone on ASP mediated TG clearance. This is the first functional study to demonstrate a cause-effect relationship between hormone treatment and ASP levels in vivo. These findings are promising and may contribute to further understanding the mechanism of progesterone function as a female lipogenic hormone through enhancing ASP production and plasma levels.Keywords: ASP, lipids, sex hormones, wister rats
Procedia PDF Downloads 3424599 Evaluating the Factors That Influence Caries Reduction During Pregnancy
Authors: Mimoza Canga, Irene Malagnino, Vergjini Mulo, Alketa Qafmolla, Vito Antonio Malagnino
Abstract:
Background: Dental caries is the most common dental disease and pregnancy represents a special process of physical, hormonal and metabolic changes in pregnant women, which is accompanied by an imbalance in the oral cavity. Objective: The objective of this study is to evaluate caries reduction after dental visits, the scaling of teeth, fluoridated water, brushing of the teeth and using fluoride toothpaste before and during pregnancy. Materials and methods: This study was conducted in the time period March 2018- September 2021, the age range of the participants was: 18-41 years old. The sample taken under observation was composed of 84 pregnant women. The questionnaire included the demographic characteristics of the sample, such as age, women's education level was primary, secondary, and higher education. Based on women's education level, our analysis found that 25.9% of pregnant women had completed primary education, 35.2% of them had secondary education and 38.9% of pregnant women had higher education. The descriptive and analytical research analysis is formulated as a longitudinal study. Statistical analysis was performed using IBM SPSS Statistics 23.0. The significance level (α) was set at 0.05, whereas P-value and analysis of variance (ANOVA) were used to analyze the data. Results: In the present study, it was observed that there is a strong relationship between dental visits and the scaling of the teeth with the value of P˂ .0001. While the number of teeth with caries before pregnancy and fluoridated water have a P-value=0.002. If we compare the same factor with the number of teeth with dental caries during pregnancy, the correlation is P-value = 0.0001. The number of teeth with caries before pregnancy and carbohydrates consumption has a strong relation with P-value=0.05. According to the present research, the number of teeth with dental caries before pregnancy in relation to brushing the teeth has a P-value ˂ 0.05. Furthermore, in the actual research, it was established that using fluoride toothpaste doesn’t affect the number of teeth with caries before pregnancy with a P-value= .314. Conclusion: According to the results of the present study performed in Albania, it was found out that the periodical dental visits, scaling of the teeth, fluoridated water, brushing of the teeth influenced caries reduction before and during pregnancy. In comparison, the usage of fluoride toothpaste did not have any effect on dental caries reduction in the same time period. The recommendations are as follows: maintaining oral hygiene, using fluoridated water and brushing the teeth regularly. Healthcare providers should inform pregnant women about the importance of oral health and the implementation of measures to manage dental caries.Keywords: brushing of the teeth, dental visits, dental scaling, fluoridated water, pregnancy
Procedia PDF Downloads 1944598 Identifying the Barriers Facing Chinese Small and Medium-Sized Enterprises and Evaluating the Effectiveness of Public Supports
Authors: A. Yongsheng Guo, B. Obedat. Abdulazeez, C. Xiaoxian Zhu
Abstract:
This study aimed to identify the barriers to the development of small and medium-sized enterprises (SMEs) in China and build a theoretical framework to evaluate the support provided by the authorities and institutions. A grounded theory approach was adopted to collect and analyze data. 32 interviews were conducted with SME managers, and open, axial and selective coding was utilized to develop themes. Based on institutional theory, grounded theory models were used to present findings. The findings showed that the main barriers in the business environment were defaulting on contracts, bureaucracy in procedures, lack of financial and legal support, limited intermediaries and channels, and poor quality of products and services. This study found that many programs were provided to support SMEs. A theoretical framework was developed to evaluate the performance of the programs from the managers’ perspective. The concepts of economy, efficiency and effectiveness were used to evaluate the perceived value of the programs. This study suggests that specialized programs are needed to suit sector-specific requirements, and creative packages are helpful in supporting SMEs' growth.Keywords: business support, public economics, public programme, SME
Procedia PDF Downloads 524597 Constructing a Physics Guided Machine Learning Neural Network to Predict Tonal Noise Emitted by a Propeller
Authors: Arthur D. Wiedemann, Christopher Fuller, Kyle A. Pascioni
Abstract:
With the introduction of electric motors, small unmanned aerial vehicle designers have to consider trade-offs between acoustic noise and thrust generated. Currently, there are few low-computational tools available for predicting acoustic noise emitted by a propeller into the far-field. Artificial neural networks offer a highly non-linear and adaptive model for predicting isolated and interactive tonal noise. But neural networks require large data sets, exceeding practical considerations in modeling experimental results. A methodology known as physics guided machine learning has been applied in this study to reduce the required data set to train the network. After building and evaluating several neural networks, the best model is investigated to determine how the network successfully predicts the acoustic waveform. Lastly, a post-network transfer function is developed to remove discontinuity from the predicted waveform. Overall, methodologies from physics guided machine learning show a notable improvement in prediction performance, but additional loss functions are necessary for constructing predictive networks on small datasets.Keywords: aeroacoustics, machine learning, propeller, rotor, neural network, physics guided machine learning
Procedia PDF Downloads 2284596 Readiness Assessment to Implement Net-Zero Energy Building Program of Government Buildings in the Philippines
Authors: Patrick T. Aquino, Jimwel B. Balunday, Cephas Olivier V. Cabatit, Mary Grace Q. Razonable
Abstract:
In 2023, the Philippine Department of Energy (PDOE) published the National Energy Efficiency and Conservation Plan (NEECP) and Roadmap 2023-2050 to be the basis of a comprehensive program for the efficient supply and economical use of energy. The building sector, as one of the most energy-intensive sectors, shall conform to the energy-conserving design to reduce the use of energy. The concept of Net-Zero Energy Building (NZEB), and its definitions promote to improve energy efficiency of the buildings. The PDOE partnered with Meralco Power Academy to survey and conduct focus group discussions to establish the readiness into NZE-aspiring buildings of government entities. This paper outlines important NZEB principles, best practices from other countries, issues and gaps relating to energy management program, and the recommendations on the development of a framework for NZEB under government building in the Philippines. Results revealed the limitation on specific data to establish a baseline building energy efficiency performance index and significant energy uses; the need to update the Guidelines for Energy Conservation Design of Buildings, including NZEB definition and requirements; appropriate enabling infrastructures and programs to transition government buildings into NZE-aspiring buildings to Nearly Zero Energy Buildings by 2050.Keywords: NZEB, energy efficiency, buildings, Philippines
Procedia PDF Downloads 874595 Identification System for Grading Banana in Food Processing Industry
Authors: Ebenezer O. Olaniyi, Oyebade K. Oyedotun, Khashman Adnan
Abstract:
In the food industry high quality production is required within a limited time to meet up with the demand in the society. In this research work, we have developed a model which can be used to replace the human operator due to their low output in production and slow in making decisions as a result of an individual differences in deciding the defective and healthy banana. This model can perform the vision attributes of human operators in deciding if the banana is defective or healthy for food production based. This research work is divided into two phase, the first phase is the image processing where several image processing techniques such as colour conversion, edge detection, thresholding and morphological operation were employed to extract features for training and testing the network in the second phase. These features extracted in the first phase were used in the second phase; the classification system phase where the multilayer perceptron using backpropagation neural network was employed to train the network. After the network has learned and converges, the network was tested with feedforward neural network to determine the performance of the network. From this experiment, a recognition rate of 97% was obtained and the time taken for this experiment was limited which makes the system accurate for use in the food industry.Keywords: banana, food processing, identification system, neural network
Procedia PDF Downloads 4714594 Ambiguity Resolution for Ground-based Pulse Doppler Radars Using Multiple Medium Pulse Repetition Frequency
Authors: Khue Nguyen Dinh, Loi Nguyen Van, Thanh Nguyen Nhu
Abstract:
In this paper, we propose an adaptive method to resolve ambiguities and a ghost target removal process to extract targets detected by a ground-based pulse-Doppler radar using medium pulse repetition frequency (PRF) waveforms. The ambiguity resolution method is an adaptive implementation of the coincidence algorithm, which is implemented on a two-dimensional (2D) range-velocity matrix to resolve range and velocity ambiguities simultaneously, with a proposed clustering filter to enhance the anti-error ability of the system. Here we consider the scenario of multiple target environments. The ghost target removal process, which is based on the power after Doppler processing, is proposed to mitigate ghosting detections to enhance the performance of ground-based radars using a short PRF schedule in multiple target environments. Simulation results on a ground-based pulsed Doppler radar model will be presented to show the effectiveness of the proposed approach.Keywords: ambiguity resolution, coincidence algorithm, medium PRF, ghosting removal
Procedia PDF Downloads 1524593 Comparative Analysis of the Impact of Urbanization on Land Surface Temperature in the United Arab Emirates
Authors: A. O. Abulibdeh
Abstract:
The aim of this study is to investigate and compare the changes in the Land Surface Temperature (LST) as a function of urbanization, particularly land use/land cover changes, in three cities in the UAE, mainly Abu Dhabi, Dubai, and Al Ain. The scale of this assessment will be at the macro- and micro-levels. At the macro-level, a comparative assessment will take place to compare between the four cities in the UAE. At the micro-level, the study will compare between the effects of different land use/land cover on the LST. This will provide a clear and quantitative city-specific information related to the relationship between urbanization and local spatial intra-urban LST variation in three cities in the UAE. The main objectives of this study are 1) to investigate the development of LST on the macro- and micro-level between and in three cities in the UAE over two decades time period, 2) to examine the impact of different types of land use/land cover on the spatial distribution of LST. Because these three cities are facing harsh arid climate, it is hypothesized that (1) urbanization is affecting and connected to the spatial changes in LST; (2) different land use/land cover have different impact on the LST; and (3) changes in spatial configuration of land use and vegetation concentration over time would control urban microclimate on a city scale and control macroclimate on the country scale. This study will be carried out over a 20-year period (1996-2016) and throughout the whole year. The study will compare between two distinct periods with different thermal characteristics which are the cool/cold period from November to March and warm/hot period between April and October. The best practice research method for this topic is to use remote sensing data to target different aspects of natural and anthropogenic systems impacts. The project will follow classical remote sensing and mapping techniques to investigate the impact of urbanization, mainly changes in land use/land cover, on LST. The investigation in this study will be performed in two stages. Stage one remote sensing data will be used to investigate the impact of urbanization on LST on a macroclimate level where the LST and Urban Heat Island (UHI) will be compared in the three cities using data from the past two decades. Stage two will investigate the impact on microclimate scale by investigating the LST and UHI using a particular land use/land cover type. In both stages, an LST and urban land cover maps will be generated over the study area. The outcome of this study should represent an important contribution to recent urban climate studies, particularly in the UAE. Based on the aim and objectives of this study, the expected outcomes are as follow: i) to determine the increase or decrease of LST as a result of urbanization in these four cities, ii) to determine the effect of different land uses/land covers on increasing or decreasing the LST.Keywords: land use/land cover, global warming, land surface temperature, remote sensing
Procedia PDF Downloads 2484592 Human Action Recognition Using Variational Bayesian HMM with Dirichlet Process Mixture of Gaussian Wishart Emission Model
Authors: Wanhyun Cho, Soonja Kang, Sangkyoon Kim, Soonyoung Park
Abstract:
In this paper, we present the human action recognition method using the variational Bayesian HMM with the Dirichlet process mixture (DPM) of the Gaussian-Wishart emission model (GWEM). First, we define the Bayesian HMM based on the Dirichlet process, which allows an infinite number of Gaussian-Wishart components to support continuous emission observations. Second, we have considered an efficient variational Bayesian inference method that can be applied to drive the posterior distribution of hidden variables and model parameters for the proposed model based on training data. And then we have derived the predictive distribution that may be used to classify new action. Third, the paper proposes a process of extracting appropriate spatial-temporal feature vectors that can be used to recognize a wide range of human behaviors from input video image. Finally, we have conducted experiments that can evaluate the performance of the proposed method. The experimental results show that the method presented is more efficient with human action recognition than existing methods.Keywords: human action recognition, Bayesian HMM, Dirichlet process mixture model, Gaussian-Wishart emission model, Variational Bayesian inference, prior distribution and approximate posterior distribution, KTH dataset
Procedia PDF Downloads 353