Search results for: second law efficiency
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6608

Search results for: second law efficiency

5258 Intelligent Building as a Pragmatic Approach towards Achieving a Sustainable Environment

Authors: Zahra Hamedani

Abstract:

Many wonderful technological developments in recent years has opened up the possibility of using intelligent buildings for a number of important applications, ranging from minimizing resource usage as well as increasing building efficiency to maximizing comfort, adaption to inhabitants and responsiveness to environmental changes. The concept of an intelligent building refers to the highly embedded, interactive environment within which by exploiting the use of artificial intelligence provides the ability to know its configuration, anticipate the optimum dynamic response to prevailing environmental stimuli, and actuate the appropriate physical reaction to provide comfort and efficiency. This paper contains a general identification of the intelligence paradigm and its impacts on the architecture arena, that with examining the performance of artificial intelligence, a mechanism to analyze and finally for decision-making to control the environment will be described. This mechanism would be a hierarchy of the rational agents which includes decision-making, information, communication and physical layers. This multi-agent system relies upon machine learning techniques for automated discovery, prediction and decision-making. Then, the application of this mechanism regarding adaptation and responsiveness of intelligent building will be provided in two scales of environmental and user. Finally, we review the identifications of sustainability and evaluate the potentials of intelligent building systems in the creation of sustainable architecture and environment.

Keywords: artificial intelligence, intelligent building, responsiveness, adaption, sustainability

Procedia PDF Downloads 410
5257 The Development of Online-Class Scheduling Management System Conducted by the Case Study of Department of Social Science: Faculty of Humanities and Social Sciences Suan Sunandha Rajabhat University

Authors: Wipada Chaiwchan, Patcharee Klinhom

Abstract:

This research is aimed to develop the online-class scheduling management system and improve as a complex problem solution, this must take into consideration in various conditions and factors. In addition to the number of courses, the number of students and a timetable to study, the physical characteristics of each class room and regulations used in the class scheduling must also be taken into consideration. This system is developed to assist management in the class scheduling for convenience and efficiency. It can provide several instructors to schedule simultaneously. Both lecturers and students can check and publish a timetable and other documents associated with the system online immediately. It is developed in a web-based application. PHP is used as a developing tool. The database management system was MySQL. The tool that is used for efficiency testing of the system is questionnaire. The system was evaluated by using a Black-Box testing. The sample was composed of 2 groups: 5 experts and 100 general users. The average and the standard deviation of results from the experts were 3.50 and 0.67. The average and the standard deviation of results from the general users were 3.54 and 0.54. In summary, the results from the research indicated that the satisfaction of users was in a good level. Therefore, this system could be implemented in an actual workplace and satisfy the users’ requirement effectively

Keywords: timetable, schedule, management system, online

Procedia PDF Downloads 237
5256 Multiphase Equilibrium Characterization Model For Hydrate-Containing Systems Based On Trust-Region Method Non-Iterative Solving Approach

Authors: Zhuoran Li, Guan Qin

Abstract:

A robust and efficient compositional equilibrium characterization model for hydrate-containing systems is required, especially for time-critical simulations such as subsea pipeline flow assurance analysis, compositional simulation in hydrate reservoirs etc. A multiphase flash calculation framework, which combines Gibbs energy minimization function and cubic plus association (CPA) EoS, is developed to describe the highly non-ideal phase behavior of hydrate-containing systems. A non-iterative eigenvalue problem-solving approach for the trust-region sub-problem is selected to guarantee efficiency. The developed flash model is based on the state-of-the-art objective function proposed by Michelsen to minimize the Gibbs energy of the multiphase system. It is conceivable that a hydrate-containing system always contains polar components (such as water and hydrate inhibitors), introducing hydrogen bonds to influence phase behavior. Thus, the cubic plus associating (CPA) EoS is utilized to compute the thermodynamic parameters. The solid solution theory proposed by van der Waals and Platteeuw is applied to represent hydrate phase parameters. The trust-region method combined with the trust-region sub-problem non-iterative eigenvalue problem-solving approach is utilized to ensure fast convergence. The developed multiphase flash model's accuracy performance is validated by three available models (one published and two commercial models). Hundreds of published hydrate-containing system equilibrium experimental data are collected to act as the standard group for the accuracy test. The accuracy comparing results show that our model has superior performances over two models and comparable calculation accuracy to CSMGem. Efficiency performance test also has been carried out. Because the trust-region method can determine the optimization step's direction and size simultaneously, fast solution progress can be obtained. The comparison results show that less iteration number is needed to optimize the objective function by utilizing trust-region methods than applying line search methods. The non-iterative eigenvalue problem approach also performs faster computation speed than the conventional iterative solving algorithm for the trust-region sub-problem, further improving the calculation efficiency. A new thermodynamic framework of the multiphase flash model for the hydrate-containing system has been constructed in this work. Sensitive analysis and numerical experiments have been carried out to prove the accuracy and efficiency of this model. Furthermore, based on the current thermodynamic model in the oil and gas industry, implementing this model is simple.

Keywords: equation of state, hydrates, multiphase equilibrium, trust-region method

Procedia PDF Downloads 172
5255 Novel IPN Hydrogel Beads as pH Sensitive Drug Delivery System for an Anti-Ulcer Drug

Authors: Vishal Kumar Gupta

Abstract:

Purpose: This study has been undertaken to develop novel pH sensitive interpenetrating network hydrogel beads. Methods: The pH sensitive PAAM-g-Guar gum copolymer was synthesized by free radical polymerization followed by alkaline hydrolysis. Beads of guar gum-grafted-polyacrylamide and sodium Carboxy methyl cellulose (Na CMC) loaded with Pantoprazole sodium were prepared and evaluated for pH sensitivity, swelling properties, drug entrapment efficiency and in vitro drug release characteristics. Seven formulations were prepared for the drug with varying polymer and cross linker concentrations. Results: The grafting and alkaline hydrolysis reactions were confirmed by FT-IR spectroscopy. Differential scanning calorimetry was carried out to know the compatibility of encapsulated drug with the polymers. Scanning electron microscopic study revealed that the IPN beads were spherical. The entrapment efficiency was found to be in the range of 85-92%. Particle size analysis was carried out by optical microscopy. As the pH of the medium was changed from 1.2 to 7.4, a considerable increase in swelling was observed for all beads. Increase in the copolymer concentration showed sustained the drug release up to 12 hrs. Drug release from the beads followed super case II transport mechanism. Conclusion: It was concluded that guar gum-acrylamide beads, cross-linked with aluminum chloride offer an opportunity for controlled drug release of pantoprazole sodium.

Keywords: IPN, hydrogels, DSC, SEM

Procedia PDF Downloads 269
5254 Green Synthesis of Nano Liposomes Containing Berberine Chlorideagainst Leishmania major

Authors: Ali Fattahi Bafghi, Abolghasem Siyadatpanah, Farzaneh Mirzaei, Fahimeh Pournasir, Roghayeh Norouzi, Maria De Lourdes Pereira

Abstract:

Leishmaniasis caused by Leishmania major is one of the main infectious diseases that affect populations in developing countries around the world. We assessed the effectiveness of berberine chloride nano-liposome (BcNLs) against L. major promastigotes in vitro. Nano-liposomal berberine chloride was prepared using the thin-film hydration method and characterized based on encapsulation efficiency, size, and zeta potential. Anti-Leishmania effect of different concentrations (0.05-60 µg/ml) of BcNLs as studied in L. major [MRHO/IR/75/ER] at 24, 48, and 72 h using the hemocytometer technique. Berberine chloride was successfully loaded into nano-liposomes with an encapsulation efficiency of 85.54%. The surface charge of nanoparticles is neutral, and the morphology of nano-liposomal berberine chloride is spherical without any agglomeration. Cell viability assay was performed on the HFF cell line to show the biocompatibility of liposome nanoparticles. IC50 of BcNPs at 24, 48, and 72 h against L. major were found to be 7.6, 5.96, and 3.19 µg/ml, respectively. BcNLs showed a significant anti-Leishmania effect and induced a better and more tangible effect on the survival of L. major promastigotes and could be suitable candidates for further investigation. The results showed that the BcNLs agent is effective against L. major promastigotes and may be a promising alternative to current treatments.

Keywords: Leishmania major, berberine chloride, nano-liposomes, cutaneous leishmaniasis

Procedia PDF Downloads 151
5253 Employee Well-being in the Age of AI: Perceptions, Concerns, Behaviors, and Outcomes

Authors: Soheila Sadeghi

Abstract:

— The growing integration of Artificial Intelligence (AI) into Human Resources (HR) processes has transformed the way organizations manage recruitment, performance evaluation, and employee engagement. While AI offers numerous advantages—such as improved efficiency, reduced bias, and hyper-personalization—it raises significant concerns about employee well-being, job security, fairness, and transparency. The study examines how AI shapes employee perceptions, job satisfaction, mental health, and retention. Key findings reveal that: (a) while AI can enhance efficiency and reduce bias, it also raises concerns about job security, fairness, and privacy; (b) transparency in AI systems emerges as a critical factor in fostering trust and positive employee attitudes; and (c) AI systems can both support and undermine employee well-being, depending on how they are implemented and perceived. The research introduces an AI-employee well-being Interaction Framework, illustrating how AI influences employee perceptions, behaviors, and outcomes. Organizational strategies, such as (a) clear communication, (b) upskilling programs, and (c) employee involvement in AI implementation, are identified as crucial for mitigating negative impacts and enhancing positive outcomes. The study concludes that the successful integration of AI in HR requires a balanced approach that (a) prioritizes employee well-being, (b) facilitates human-AI collaboration, and (c) ensures ethical and transparent AI practices alongside technological advancement.

Keywords: artificial intelligence, human resources, employee well-being, job satisfaction, organizational support, transparency in AI

Procedia PDF Downloads 29
5252 The Impact of Quality Management System Establishment over the Performance of Public Administration Services in Kosovo

Authors: Ilir Rexhepi, Naim Ismajli

Abstract:

Quality and quality management are key factors of success nowadays. Public sector and quality management in this sector contains many challenges and difficulties, most notably in a new country like Kosovo. This study analyses the process of implementation of quality management system in public administration institutions in this country. The main objective is to show how to set up a quality management system and how does the quality management system setup affect the overall public administration services in Kosovo. This study shows how the efficiency and effectiveness of public institution services/performance is rapidly improving through the establishment and functionalization of Quality Management System. The specific impact of established QMC within the organization has resulted with the identification of mission related processes within the entire system including input identification, the person in charge and the way of conversion to the output of each activity though the interference with other service processes within the system. By giving detailed analyses of all steps of implementation of the Quality Management System, its effect and consequences towards the overall public institution service performance, we try to go one step further, by showing it as a very good example or tool of other public institutions for improving their service performance. Interviews with employees, middle and high level managers including the quality manager and general secretaries are also part of analyses in this paper.

Keywords: quality, quality management system, efficiency, public administration institutions

Procedia PDF Downloads 282
5251 Simulation, Design, and 3D Print of Novel Highly Integrated TEG Device with Improved Thermal Energy Harvest Efficiency

Authors: Jaden Lu, Olivia Lu

Abstract:

Despite the remarkable advancement of solar cell technology, the challenge of optimizing total solar energy harvest efficiency persists, primarily due to significant heat loss. This excess heat not only diminishes solar panel output efficiency but also curtails its operational lifespan. A promising approach to address this issue is the conversion of surplus heat into electricity. In recent years, there is growing interest in the use of thermoelectric generators (TEG) as a potential solution. The integration of efficient TEG devices holds the promise of augmenting overall energy harvest efficiency while prolonging the longevity of solar panels. While certain research groups have proposed the integration of solar cells and TEG devices, a substantial gap between conceptualization and practical implementation remains, largely attributed to low thermal energy conversion efficiency of TEG devices. To bridge this gap and meet the requisites of practical application, a feasible strategy involves the incorporation of a substantial number of p-n junctions within a confined unit volume. However, the manufacturing of high-density TEG p-n junctions presents a formidable challenge. The prevalent solution often leads to large device sizes to accommodate enough p-n junctions, consequently complicating integration with solar cells. Recently, the adoption of 3D printing technology has emerged as a promising solution to address this challenge by fabricating high-density p-n arrays. Despite this, further developmental efforts are necessary. Presently, the primary focus is on the 3D printing of vertically layered TEG devices, wherein p-n junction density remains constrained by spatial limitations and the constraints of 3D printing techniques. This study proposes a novel device configuration featuring horizontally arrayed p-n junctions of Bi2Te3. The structural design of the device is subjected to simulation through the Finite Element Method (FEM) within COMSOL Multiphysics software. Various device configurations are simulated to identify optimal device structure. Based on the simulation results, a new TEG device is fabricated utilizing 3D Selective laser melting (SLM) printing technology. Fusion 360 facilitates the translation of the COMSOL device structure into a 3D print file. The horizontal design offers a unique advantage, enabling the fabrication of densely packed, three-dimensional p-n junction arrays. The fabrication process entails printing a singular row of horizontal p-n junctions using the 3D SLM printing technique in a single layer. Subsequently, successive rows of p-n junction arrays are printed within the same layer, interconnected by thermally conductive copper. This sequence is replicated across multiple layers, separated by thermal insulating glass. This integration created in a highly compact three-dimensional TEG device with high density p-n junctions. The fabricated TEG device is then attached to the bottom of the solar cell using thermal glue. The whole device is characterized, with output data closely matching with COMSOL simulation results. Future research endeavors will encompass the refinement of thermoelectric materials. This includes the advancement of high-resolution 3D printing techniques tailored to diverse thermoelectric materials, along with the optimization of material microstructures such as porosity and doping. The objective is to achieve an optimal and highly integrated PV-TEG device that can substantially increase the solar energy harvest efficiency.

Keywords: thermoelectric, finite element method, 3d print, energy conversion

Procedia PDF Downloads 62
5250 The Role of Hemoglobin in Psychological Well Being and Academic Achievement of College Female Students

Authors: Ramesh Adsul, Vikas Minchekar

Abstract:

The present study attempts to explore the differences in academic achievement and psychological well being and its components – satisfaction, efficiency, sociability, mental health, interpersonal relations in low and moderate level of hemoglobin of college female students. It also tries to find out how hemoglobin, psychological well –being and academic achievement correlate to each other. For this study 200 (100 low hemoglobin level and 100 moderate hemoglobin level) college female students were selected by random sampling method. This sample is collected from the project ‘Health awareness and hemoglobin improvement programme’, which is being collaboratively conducted by ‘Akshyabhasha, MESA, U.S.A. and Smt. M.G. Kanya Mahavidyalaya, Sangli, Maharashtra, India. Psychological Well-Being Scale was used to collect the data. Students’ academic achievement was collected through college record, and hemoglobin level of female students was collected from project record. Data was analyzed by using independent ‘t’ test and Pearson’s correlation coefficient. The finding of the study revealed significant differences between low hemoglobin and moderate hemoglobin groups regarding efficiency and mental health. No significant difference was observed on satisfaction, sociability and interpersonal relations. It is also found that there is significant difference between low hemoglobin and moderate hemoglobin groups on academic achievement. The study revealed positive correlation between hemoglobin and academic achievement and psychological well-being and academic achievement. Moderate hemoglobin level create more efficiency, better mental health and good academic achievement in female students. One could say that there is significant role hemoglobin plays in psychological well being and academic achievement of college female students. Anemia is widely prevalent in all the states if India among all age groups. In India, college girls contribute major portion of population. It has been reported that 80% female population has hemoglobin deficiency, due to illiteracy of female, family structure, status of women, diet habits, gender discrimination and various superstitions. The deficiency of hemoglobin affects physical and mental health, general behavior and academic performance of students. This study is useful to educational managements, counselors, parents, students and Government also. In the development of personality physical as well as psychological health is essential. This research findings will create awareness about physical and mental health among people and society.

Keywords: academic achievement, college female students, hemoglobin, psychological well-being

Procedia PDF Downloads 293
5249 A Comprehensive Study of Accounting for Growth in China and India

Authors: Yousef Rostami Gharainy

Abstract:

We look at the late financial exhibitions of China and India utilizing a simple growth accounting framework that creates assessments of the commitment of work, capital, training, and aggregate variable profitability for the three parts of agribusiness, industry, and administrations and in addition for the total economy. Our examination consolidates late information updates in both nations and incorporates broad examination of the basic information arrangement. The development records demonstrate a generally square with division in each nation between the commitments of capital gathering and TFP to development in yield every specialist over the period 1980-2007, and an increasing speed of development when the period is separated at 1993. Be that as it may, the size of yield development in China is generally twofold that of India at the total level, and additionally higher in each of the three segments in both sub-periods. In China the post-1993 increasing speed was amassed generally in industry, which contributed about 61 percent of China’s total efficiency development. Interestingly, 48 percent of the development in India in the second sub-period came in administrations. Reallocation of specialists from farming to industry and administrations has contributed 1.3 rate focuses to efficiency development in every nation.

Keywords: China, India, growth accounting framework, work, capital, training, aggregate variable profitability

Procedia PDF Downloads 297
5248 Information Technology Pattern for Traceability to Increase the Exporting Efficiency of Thailand’s Orchid

Authors: Pimploi Tirastittam, Phutthiwat Waiyawuththanapoom, Manop Tirastittam

Abstract:

Traceability system is one of the tools which can ensure the product’s confident of the consumer as it can trace the product back to its origin and can reduce the operation cost of recall. Nowadays, there are so many technologies which can be applied to the traceability system and also able to increase the efficiency of the system such as QR Code, barcode, GS1 and GTIN. As the result, this research is aimed to study and design the information technology pattern that suits for the traceability of Thailand’s orchid because Thailand’s orchid is the popular export product for Japan, USA, China, Netherlands and Italy. This study will enhance the value of Thailand’s orchid and able to prevent the unexpected event of the defects or damaged product. The traceability pattern was received IOC test from 12 experts from 4 fields of study which are traceability field, information technology field, information communication technology field and orchid export field. The result of the in-depth interview and questionnaire showed that the technology which most compatibility with the traceability system is the QR code. The mean of the score was 4.25 and the standard deviation was 0.5 as the QR code is the new technology and user-friendly. The traceability system should start from the farm to the consumer in the consuming country as the traceability system will enhance the quality level of the product and increase the value of its as well. The other outcome from this research is the supply chain model of Thailand’s Orchid along with the system architecture and working system diagram.

Keywords: exporting, information technology pattern, orchid, traceability

Procedia PDF Downloads 225
5247 The Mechanical and Electrochemical Properties of DC-Electrodeposited Ni-Mn Alloy Coating with Low Internal Stress

Authors: Chun-Ying Lee, Kuan-Hui Cheng, Mei-Wen Wu

Abstract:

The nickel-manganese (Ni-Mn) alloy coating prepared from DC electrodeposition process in sulphamate bath was studied. The effects of process parameters, such as current density and electrolyte composition, on the cathodic current efficiency, microstructure, internal stress and mechanical properties were investigated. Because of its crucial effect on the application to the electroforming of microelectronic components, the development of low internal stress coating with high leveling power was emphasized. It was found that both the coating’s manganese content and the cathodic current efficiency increased with the raise in current density. In addition, the internal stress of the deposited coating showed compressive nature at low current densities while changed to tensile one at higher current densities. Moreover, the metallographic observation, X-ray diffraction measurement, transmission electron microscope (TEM) examination, and polarization curve measurement were conducted. It was found that the Ni-Mn coating consisted of nano-sized columnar grains and the maximum hardness of the coating was associated with (111) preferred orientation in the microstructure. The grain size was refined along with the increase in the manganese content of the coating, which accordingly, raised its hardness and mechanical tensile strength. In summary, the Ni-Mn coating prepared at lower current density of 1-2 A/dm2 had low internal stress, high leveling power, and better corrosion resistance.

Keywords: Ni-Mn coating, DC plating, internal stress, leveling power

Procedia PDF Downloads 369
5246 Graphic Procession Unit-Based Parallel Processing for Inverse Computation of Full-Field Material Properties Based on Quantitative Laser Ultrasound Visualization

Authors: Sheng-Po Tseng, Che-Hua Yang

Abstract:

Motivation and Objective: Ultrasonic guided waves become an important tool for nondestructive evaluation of structures and components. Guided waves are used for the purpose of identifying defects or evaluating material properties in a nondestructive way. While guided waves are applied for evaluating material properties, instead of knowing the properties directly, preliminary signals such as time domain signals or frequency domain spectra are first revealed. With the measured ultrasound data, inversion calculation can be further employed to obtain the desired mechanical properties. Methods: This research is development of high speed inversion calculation technique for obtaining full-field mechanical properties from the quantitative laser ultrasound visualization system (QLUVS). The quantitative laser ultrasound visualization system (QLUVS) employs a mirror-controlled scanning pulsed laser to generate guided acoustic waves traveling in a two-dimensional target. Guided waves are detected with a piezoelectric transducer located at a fixed location. With a gyro-scanning of the generation source, the QLUVS has the advantage of fast, full-field, and quantitative inspection. Results and Discussions: This research introduces two important tools to improve the computation efficiency. Firstly, graphic procession unit (GPU) with large amount of cores are introduced. Furthermore, combining the CPU and GPU cores, parallel procession scheme is developed for the inversion of full-field mechanical properties based on the QLUVS data. The newly developed inversion scheme is applied to investigate the computation efficiency for single-layered and double-layered plate-like samples. The computation efficiency is shown to be 80 times faster than unparalleled computation scheme. Conclusions: This research demonstrates a high-speed inversion technique for the characterization of full-field material properties based on quantitative laser ultrasound visualization system. Significant computation efficiency is shown, however not reaching the limit yet. Further improvement can be reached by improving the parallel computation. Utilizing the development of the full-field mechanical property inspection technology, full-field mechanical property measured by non-destructive, high-speed and high-precision measurements can be obtained in qualitative and quantitative results. The developed high speed computation scheme is ready for applications where full-field mechanical properties are needed in a nondestructive and nearly real-time way.

Keywords: guided waves, material characterization, nondestructive evaluation, parallel processing

Procedia PDF Downloads 202
5245 Fluid Catalytic Cracking: Zeolite Catalyzed Chemical Industry Processes

Authors: Mithil Pandey, Ragunathan Bala Subramanian

Abstract:

One of the major conversion technologies in the oil refinery industry is Fluid catalytic cracking (FCC) which produces the majority of the world’s gasoline. Some useful products are generated from the vacuum gas oil, heavy gas oil and residue feedstocks by the FCC unit in an oil refinery. Moreover, Zeolite catalysts (zeo-catalysts) have found widespread applications and have proved to be substantial and paradigmatic in oil refining and petrochemical processes, such as FCC because of their porous features. Several famous zeo-catalysts have been fabricated and applied in industrial processes as milestones in history, and have brought on huge changes in petrochemicals. So far, more than twenty types of zeolites have been industrially applied, and their versatile porous architectures with their essential features have contributed to affect the catalytic efficiency. This poster depicts the evolution of pore models in zeolite catalysts which are accompanied by an increase in environmental and demands. The crucial roles of modulating pore models are outlined for zeo-catalysts for the enhancement of their catalytic performances in various industrial processes. The development of industrial processes for the FCC process, aromatic conversions and olefin production, makes it obvious that the pore architecture plays a very important role in zeo-catalysis processes. By looking at the different necessities of industrial processes, rational construction of the pore model is critically essential. Besides, the pore structure of the zeolite would have a substantial and direct effect on the utilization efficiency of the zeo-catalyst.

Keywords: catalysts, fluid catalytic cracking, industrial processes, zeolite

Procedia PDF Downloads 354
5244 Kinetic and Mechanistic Study on the Degradation of Typical Pharmaceutical and Personal Care Products in Water by Using Carbon Nanodots/C₃N₄ Composite and Ultrasonic Irradiation

Authors: Miao Yang

Abstract:

PPCPs (pharmaceutical and personal care products) in water, as an environmental pollutant, becomes an issue of increasing concern. Therefore, the techniques for degradation of PPCPs has been a hotspot in water pollution control field. Since there are several disadvantages for common degradation techniques of PPCPs, such as low degradation efficiency for certain PPCPs (ibuprofen and Carbamazepine) this proposal will adopt a combined technique by using CDs (carbon nanodots)/C₃N₄ composite and ultrasonic irradiation to mitigate or overcome these shortages. There is a significant scientific problem that the mechanism including PPCPs, major reactants, and interfacial active sites is not clear yet in the study of PPCPs degradation. This work aims to solve this problem by using both theoretical and experimental methodologies. Firstly, optimized parameters will be obtained by evaluating the kinetics and oxidation efficiency under different conditions. The competition between H₂O₂ and PPCPs with HO• will be elucidated, after which the degradation mechanism of PPCPs by the synergy of CDs/C₃N₄ composite and ultrasonic irradiation will be proposed. Finally, a sonolysis-adsorption-catalysis coupling mechanism will be established which is the theoretical basis and technical support for developing new efficient degradation techniques for PPCPs in the future.

Keywords: carbon nanodots/C₃N₄, pharmaceutical and personal care products, ultrasonic irradiation, hydroxyl radical, heterogeneous catalysis

Procedia PDF Downloads 180
5243 Condition Monitoring for Twin-Fluid Nozzles with Internal Mixing

Authors: C. Lanzerstorfer

Abstract:

Liquid sprays of water are frequently used in air pollution control for gas cooling purposes and for gas cleaning. Twin-fluid nozzles with internal mixing are often used for these purposes because of the small size of the drops produced. In these nozzles the liquid is dispersed by compressed air or another pressurized gas. In high efficiency scrubbers for particle separation, several nozzles are operated in parallel because of the size of the cross section. In such scrubbers, the scrubbing water has to be re-circulated. Precipitation of some solid material can occur in the liquid circuit, caused by chemical reactions. When such precipitations are detached from the place of formation, they can partly or totally block the liquid flow to a nozzle. Due to the resulting unbalanced supply of the nozzles with water and gas, the efficiency of separation decreases. Thus, the nozzles have to be cleaned if a certain fraction of blockages is reached. The aim of this study was to provide a tool for continuously monitoring the status of the nozzles of a scrubber based on the available operation data (water flow, air flow, water pressure and air pressure). The difference between the air pressure and the water pressure is not well suited for this purpose, because the difference is quite small and therefore very exact calibration of the pressure measurement would be required. Therefore, an equation for the reference air flow of a nozzle at the actual water flow and operation pressure was derived. This flow can be compared with the actual air flow for assessment of the status of the nozzles.

Keywords: condition monitoring, dual flow nozzles, flow equation, operation data

Procedia PDF Downloads 266
5242 Design of Multi-Loop Controller for Minimization of Energy Consumption in the Distillation Column

Authors: Vinayambika S. Bhat, S. Shanmuga Priya, I. Thirunavukkarasu, Shreeranga Bhat

Abstract:

An attempt has been made to design a decoupling controller for systems with more inputs more outputs with dead time in it. The de-coupler is designed for the chemical process industry 3×3 plant transfer function with dead time. The Quantitative Feedback Theory (QFT) based controller has also been designed here for the 2×2 distillation column transfer function. The developed control techniques were simulated using the MATLAB/Simulink. Also, the stability of the process was analyzed, together with the presence of various perturbations in it. Time domain specifications like setting time along with overshoot and oscillations were analyzed to prove the efficiency of the de-coupler method. The load disturbance rejection was tested along with its performance. The QFT control technique was synthesized based on the stability and performance specifications in the presence of uncertainty in time constant of the plant transfer function through sequential loop shaping technique. Further, the energy efficiency of the distillation column was improved by proper tuning of the controller. A distillation column consumes 3% of the total energy consumption of the world. A suitable control technique is very important from an economic point of view. The real time implementation of the process is under process in our laboratory.

Keywords: distillation, energy, MIMO process, time delay, robust stability

Procedia PDF Downloads 414
5241 Validation of Modern Work Modules and Their Impact on Sustainable Human Resource Management in the Construction Industry

Authors: Robin Becker, Nane Roetmann, Manfred Helmus

Abstract:

The construction industry faces a significant challenge due to a shortage of skilled work-ers, especially in construction management, despite an increase in graduates. This is main-ly because the job is associated with high stress, long hours, and poor work-life balance. A survey revealed that the profession is unattractive to students, who prioritize personal growth, flexibility, and digitalization in their careers. To address this issue, companies can consider implementing various work modules like "working time documentation," "home office," "job sharing," and "time off." These modules can improve control, work-life bal-ance, and efficiency if tailored to the company's framework. They offer a way to make the field more appealing to future employees while benefiting existing staff, provided that both employers and employees are flexible and considerate of project-specific conditions and teams. The feasibility of these models depends on the company's overall framework, with potential for cost-neutral implementation and positive effects on efficiency and men-tal health. However, their success also relies on the specific context of the company, and more data is needed to assess their full impact.

Keywords: modern construction management, construction industry, work modules, shortage of junior staff, sustainable personnel management, making construction management more attractive, working time model

Procedia PDF Downloads 40
5240 Evaluation of Indoor Radon as Air Pollutant in Schools and Control of Exposure of the Children

Authors: Kremena Ivanona, Bistra Kunovska, Jana Djunova, Desislava Djunakova, Zdenka Stojanovska

Abstract:

In recent decades, the general public has become increasingly interested in the impact of air pollutions on their health. Currently, numerous studies are aimed at identifying pollutants in the indoor environment where they carry out daily activities. Internal pollutants can be of both natural and artificial origin. With regard to natural pollutants, special attention is paid to natural radioactivity. In recent years, radon has been one of the most studied indoor pollutants because it has the greatest contribution to human exposure to natural radionuclides. It is a known fact that lung cancer can be caused by radon radiation and it is the second risk factor after smoking for the onset of the disease. The main objective of the study under the National Science Fund of Bulgaria, in the framework of grant No КП-06-Н23/1/07.12.2018 is to evaluate the indoor radon as an important air pollutant in school buildings in order to reduce the exposure to children. The measurements were performed in 48 schools located in 55 buildings in one Bulgarian administrative district (Kardjaly). The nuclear track detectors (CR-39) were used for measurements. The arithmetic and geometric means of radon concentrations are AM = 140 Bq/m3, and GM = 117 Bq/m3 respectively. In 51 school rooms, the radon levels were greater than 200 Bq/m3, and in 28 rooms, located in 17 school buildings, it exceeded the national reference level of 300 Bq/m3, defined in the Bulgarian ordinance on radiation protection (or 30% of the investigated buildings). The statistically significant difference in the values of radon concentration by municipalities (KW, р < 0.001) obtained showed that the most likely reason for the differences between the groups is the geographical location of the buildings and the possible influence of the geological composition. The combined effect of the year of construction (technical condition of the buildings) and the energy efficiency measures was considered. The values of the radon concentration in the buildings where energy efficiency measures have been implemented are higher than those in buildings where they have not been performed. This result confirms the need for investigation of radon levels before conducting the energy efficiency measures in buildings. Corrective measures for reducing the radon levels have been recommended in school buildings with high radon levels in order to decrease the children's exposure.

Keywords: air pollution, indoor radon, children exposure, schools

Procedia PDF Downloads 173
5239 Purification of Bilge Water by Adsorption

Authors: Fatiha Atmani, Lamia Djellab, Nacera Yeddou Mezenner, Zohra Bensaadi

Abstract:

Generally, bilge waters can be briefly defined as saline and greasy wastewaters. The oil and grease are mixed with the sea water, which affects many marine species. Bilge water is a complex mixture of various compounds such as solvents, surfactants, fuel, lubricating oils, and hydraulic oils. It is resulted mainly by the leakage from the machinery and fresh water washdowns,which are allowed to drain to the lowest inner part of the ship's hull. There are several physicochemical methods used for bilge water treatment such as biodegradation electrochemical and electro-coagulation/flotation.The research herein presented discusses adsorption as a method to treat bilge water and eggshells were studied as an adsorbent. The influence of operating parameters as contact time, temperature and adsorbent dose (0,2 - 2g/l) on the removal efficiency of Chemical oxygen demand, COD, and turbidity was analyzed. The bilge wastewater used for this study was supplied by Harbour Bouharoune. Chemical oxygen demand removal increased from 26.7% to 68.7% as the adsorbent dose increased from 0.2 to 2 g. The kinetics of adsorption by eggshells were fast, reaching 55 % of the total adsorption capacity in ten minutes (T= 20°C, pH =7.66, m=2g/L). It was found that the turbidity removal efficiency decreased and 95% were achieved at the end of 90 min reaction. The adsorption process was found to be effective for the purification of bilge water and pseudo-second-order kinetic model was fitted for COD removal.

Keywords: adsorption, bilge water, eggshells and kinetics, equilibrium and kinetics

Procedia PDF Downloads 355
5238 Modeling and Energy Analysis of Limestone Decomposition with Microwave Heating

Authors: Sofia N. Gonçalves, Duarte M. S. Albuquerque, José C. F. Pereira

Abstract:

The energy transition is spurred by structural changes in energy demand, supply, and prices. Microwave technology was first proposed as a faster alternative for cooking food. It was found that food heated instantly when interacting with high-frequency electromagnetic waves. The dielectric properties account for a material’s ability to absorb electromagnetic energy and dissipate this energy in the form of heat. Many energy-intense industries could benefit from electromagnetic heating since many of the raw materials are dielectric at high temperatures. Limestone sedimentary rock is a dielectric material intensively used in the cement industry to produce unslaked lime. A numerical 3D model was implemented in COMSOL Multiphysics to study the limestone continuous processing under microwave heating. The model solves the two-way coupling between the Energy equation and Maxwell’s equations as well as the coupling between heat transfer and chemical interfaces. Complementary, a controller was implemented to optimize the overall heating efficiency and control the numerical model stability. This was done by continuously matching the cavity impedance and predicting the required energy for the system, avoiding energy inefficiencies. This controller was developed in MATLAB and successfully fulfilled all these goals. The limestone load influence on thermal decomposition and overall process efficiency was the main object of this study. The procedure considered the Verification and Validation of the chemical kinetics model separately from the coupled model. The chemical model was found to correctly describe the chosen kinetic equation, and the coupled model successfully solved the equations describing the numerical model. The interaction between flow of material and electric field Poynting vector revealed to influence limestone decomposition, as a result from the low dielectric properties of limestone. The numerical model considered this effect and took advantage from this interaction. The model was demonstrated to be highly unstable when solving non-linear temperature distributions. Limestone has a dielectric loss response that increases with temperature and has low thermal conductivity. For this reason, limestone is prone to produce thermal runaway under electromagnetic heating, as well as numerical model instabilities. Five different scenarios were tested by considering a material fill ratio of 30%, 50%, 65%, 80%, and 100%. Simulating the tube rotation for mixing enhancement was proven to be beneficial and crucial for all loads considered. When uniform temperature distribution is accomplished, the electromagnetic field and material interaction is facilitated. The results pointed out the inefficient development of the electric field within the bed for 30% fill ratio. The thermal efficiency showed the propensity to stabilize around 90%for loads higher than 50%. The process accomplished a maximum microwave efficiency of 75% for the 80% fill ratio, sustaining that the tube has an optimal fill of material. Electric field peak detachment was observed for the case with 100% fill ratio, justifying the lower efficiencies compared to 80%. Microwave technology has been demonstrated to be an important ally for the decarbonization of the cement industry.

Keywords: CFD numerical simulations, efficiency optimization, electromagnetic heating, impedance matching, limestone continuous processing

Procedia PDF Downloads 175
5237 Reduction of Toxic Matter from Marginal Water Using Sludge Recycling from Combination of Stepped Cascade Weir with Limestone Trickling Filter

Authors: Dheyaa Wajid Abbood, Eitizaz Awad Jasim

Abstract:

The aim of this investigation is to confirm the activity of a sludge recycling process in trickling filter filled with limestone as an alternative biological process over conventional high-cost treatment process with regard to toxic matter reduction from marginal water. The combination system of stepped cascade weir with limestone trickling filter has been designed and constructed in the environmental hydraulic laboratory, Al-Mustansiriya University, College of Engineering. A set of experiments has been conducted during the period from August 2013 to July 2014. Seven days of continuous operation with different continuous flow rates (0.4m3/hr, 0.5 m3/hr, 0.6 m3/hr, 0.7m3/hr,0.8 m3/hr, 0.9 m3/hr, and 1m3/hr) after ten days of acclimatization experiments were carried out. Results indicate that the concentrations of toxic matter were decreasing with increasing of operation time, sludge recirculation ratio, and flow rate. The toxic matter measured includes (Mineral oils, Petroleum products, Phenols, Biocides, Polychlorinated biphenyls (PCBs), and Surfactants) which are used in these experiments were ranged between (0.074 nm-0.156 nm). Results indicated that the overall reduction efficiency after 4, 28, 52, 76, 100, 124, and 148 hours of operation were (55%, 48%, 42%, 50%, 59%, 61%, and 64%) when the combination of stepped cascade weir with limestone trickling filter is used.

Keywords: toxic matter, marginal water, trickling filter, stepped cascade weir, removal efficiency

Procedia PDF Downloads 297
5236 Characteristics and Quality of Chilean Abalone Undergoing Different Drying Emerging Technologies

Authors: Mario Pérez-Won, Anais Palma-Acevedo, Luis González-Cavieres, Roberto Lemus-Mondaca, Gipsy Tabilo-Munizaga

Abstract:

The Chilean abalone (Concholepas Concholepas) is a gastropod mollusk; it has a high commercial value due to the qualities of its meat, especially hardness, as a critical acceptance parameter. However, its main problem is its short shelf-life which is usually extended using traditional technologies with high energy consumption. Therefore, applying different technologies for the pre-treatment and drying process is necessary. In this research, pulsed electric field (PEF) was used as a pre-treatment for vacuum microwave drying (VMD), freeze-drying (FD), and hot-air drying (HAD). Drying conditions and characteristics were set according to previous experiments. The Drying samples were analyzed in terms of physical quality (color, texture, microstructure, and rehydration capacity), protein quality (degree of hydrolysis and computer protein efficiency ratio), and energy parameters. Regarding quality, the treatment that obtained lower harness was PEF+FD (195 N ± 10), the lowest change of color was for treatment PEF+VMD (ΔE: 17 ± 1.5), and the best rehydration capacity was for treatment PEF+VMD (1.2 h for equilibrium). For protein quality, the highest Computer-Protein Efficiency Ratio was the sample 2.0 kV/ cm of PEF (index of 4.18 ± 0.26 at the end of the digestion). Moreover, about energetic consumption, results show that VMD decreases the drying process by 97% whether PEF was used or not. Consequently, it is possible to conclude that using PEF as a pre-treatment for VMD and FD treatments has advantages that must be used following the consumer’s needs or preferences.

Keywords: chilean abalone, freeze-drying, proteins, pulsed electric fields

Procedia PDF Downloads 109
5235 Efficiency of Lavandula angustifolia Mill and Zataria multiflora Boiss essential oils on nutritional indices of Tribolium confusum Jacquelin du Val (Col.: Tenebrionidae)

Authors: Karim Saeidi

Abstract:

One of the most important pests in the warehouses is the flour beetle, Tribolium confusum Jacquelin du Val (Col.: Tenebrionidae). Regarding the high degree of damage of stored product pests and dangerous effects of the chemical control using plant extracts and their components are some of the best approaches to control these pests. Antifeedant activity of plant extracts from Lavandula angustifolia Mill and Zataria multiflora Boiss using hydro-distillation were tested against the flour beetle, Tribolium confusum Jacquelin du Val. The nutritional indices: relative growth rate (RGR), relative consumption rate (RCR), the efficiency of conversion of ingested food (ECI), and feeding deterrence index (FDI) were measured for adult insects. Treatments were evaluated using a flour disk bioassay in the dark; at 25±1ᵒC and 60±5% R. H. Concentrations of 0, 0.1, 0.5, 0.75, 1, 1.5, and 2 μl/disk were prepared from each essential oil. After 72 h, nutritional indices were calculated. L. angustifolia oils were more effective than Z. multiflora oils by significantly decreasing the RGR, RCR, and ECI. Feeding deterrence index (FDI) of L. angustifolia essential oil was increased significantly as essential oil concentration increased. The essential oil of L. angustifolia was more effective on FDI than Z. multiflora in some concentration.

Keywords: essential oil, nutritional indices, Tribolium confusum

Procedia PDF Downloads 399
5234 Increasing Health Education Tools Satisfaction in Nursing Staffs

Authors: Lu Yu Jyun

Abstract:

Background: Health education is important nursing work aiming to strengthen patients’ self-caring ability and family members. Our department educates through three methods, including speech education, flyer and demonstration video education. The satisfaction rate of health education tool use is 54.3% in nursing staff. The main reason is there hadn’t been a storage area for flyers, causing extra workload in assessing flyers. The satisfaction rate of health education in patients and families is 70.7%. We aim to improve this situation between 13th April and 6th June 2021. Method: We introduce the ECRS method to erase repetitive and redundant actions. We redesign the health education tool usage workflow to improve nursing staffs’ efficiency and further enhance nursing staffs care quality and working satisfaction. Result: The satisfaction rate of health education tool usage in nursing staff elevated from 54.3% to 92.5%. The satisfaction rate of health education in patients and families elevated from 70.7% to 90.2%. Conclusion: The assessment time of health care tools dropped from 10minutes to 3minutes. This significantly reduced the nursing staffs’ workload. 1213 paper is saved in one month and 14,556 a year in the estimate; we save the environment via this action. Health education map implemented in other nursing departments since October due to its’ high efficiency and makes health care tools more humanize.

Keywords: health, education tools, satisfaction, nursing staff

Procedia PDF Downloads 148
5233 Catchment Yield Prediction in an Ungauged Basin Using PyTOPKAPI

Authors: B. S. Fatoyinbo, D. Stretch, O. T. Amoo, D. Allopi

Abstract:

This study extends the use of the Drainage Area Regionalization (DAR) method in generating synthetic data and calibrating PyTOPKAPI stream yield for an ungauged basin at a daily time scale. The generation of runoff in determining a river yield has been subjected to various topographic and spatial meteorological variables, which integers form the Catchment Characteristics Model (CCM). Many of the conventional CCM models adapted in Africa have been challenged with a paucity of adequate, relevance and accurate data to parameterize and validate the potential. The purpose of generating synthetic flow is to test a hydrological model, which will not suffer from the impact of very low flows or very high flows, thus allowing to check whether the model is structurally sound enough or not. The employed physically-based, watershed-scale hydrologic model (PyTOPKAPI) was parameterized with GIS-pre-processing parameters and remote sensing hydro-meteorological variables. The validation with mean annual runoff ratio proposes a decent graphical understanding between observed and the simulated discharge. The Nash-Sutcliffe efficiency and coefficient of determination (R²) values of 0.704 and 0.739 proves strong model efficiency. Given the current climate variability impact, water planner can now assert a tool for flow quantification and sustainable planning purposes.

Keywords: catchment characteristics model, GIS, synthetic data, ungauged basin

Procedia PDF Downloads 327
5232 Finite Element Method (FEM) Simulation, design and 3D Print of Novel Highly Integrated PV-TEG Device with Improved Solar Energy Harvest Efficiency

Authors: Jaden Lu, Olivia Lu

Abstract:

Despite the remarkable advancement of solar cell technology, the challenge of optimizing total solar energy harvest efficiency persists, primarily due to significant heat loss. This excess heat not only diminishes solar panel output efficiency but also curtails its operational lifespan. A promising approach to address this issue is the conversion of surplus heat into electricity. In recent years, there is growing interest in the use of thermoelectric generators (TEG) as a potential solution. The integration of efficient TEG devices holds the promise of augmenting overall energy harvest efficiency while prolonging the longevity of solar panels. While certain research groups have proposed the integration of solar cells and TEG devices, a substantial gap between conceptualization and practical implementation remains, largely attributed to low thermal energy conversion efficiency of TEG devices. To bridge this gap and meet the requisites of practical application, a feasible strategy involves the incorporation of a substantial number of p-n junctions within a confined unit volume. However, the manufacturing of high-density TEG p-n junctions presents a formidable challenge. The prevalent solution often leads to large device sizes to accommodate enough p-n junctions, consequently complicating integration with solar cells. Recently, the adoption of 3D printing technology has emerged as a promising solution to address this challenge by fabricating high-density p-n arrays. Despite this, further developmental efforts are necessary. Presently, the primary focus is on the 3D printing of vertically layered TEG devices, wherein p-n junction density remains constrained by spatial limitations and the constraints of 3D printing techniques. This study proposes a novel device configuration featuring horizontally arrayed p-n junctions of Bi2Te3. The structural design of the device is subjected to simulation through the Finite Element Method (FEM) within COMSOL Multiphysics software. Various device configurations are simulated to identify optimal device structure. Based on the simulation results, a new TEG device is fabricated utilizing 3D Selective laser melting (SLM) printing technology. Fusion 360 facilitates the translation of the COMSOL device structure into a 3D print file. The horizontal design offers a unique advantage, enabling the fabrication of densely packed, three-dimensional p-n junction arrays. The fabrication process entails printing a singular row of horizontal p-n junctions using the 3D SLM printing technique in a single layer. Subsequently, successive rows of p-n junction arrays are printed within the same layer, interconnected by thermally conductive copper. This sequence is replicated across multiple layers, separated by thermal insulating glass. This integration created in a highly compact three-dimensional TEG device with high density p-n junctions. The fabricated TEG device is then attached to the bottom of the solar cell using thermal glue. The whole device is characterized, with output data closely matching with COMSOL simulation results. Future research endeavors will encompass the refinement of thermoelectric materials. This includes the advancement of high-resolution 3D printing techniques tailored to diverse thermoelectric materials, along with the optimization of material microstructures such as porosity and doping. The objective is to achieve an optimal and highly integrated PV-TEG device that can substantially increase the solar energy harvest efficiency.

Keywords: thermoelectric, finite element method, 3d print, energy conversion

Procedia PDF Downloads 67
5231 A Comprehensive Review of Adaptive Building Energy Management Systems Based on Users’ Feedback

Authors: P. Nafisi Poor, P. Javid

Abstract:

Over the past few years, the idea of adaptive buildings and specifically, adaptive building energy management systems (ABEMS) has become popular. Well-performed management in terms of energy is to create a balance between energy consumption and user comfort; therefore, in new energy management models, efficient energy consumption is not the sole factor and the user's comfortability is also considered in the calculations. One of the main ways of measuring this factor is by analyzing user feedback on the conditions to understand whether they are satisfied with conditions or not. This paper provides a comprehensive review of recent approaches towards energy management systems based on users' feedbacks and subsequently performs a comparison between them premised upon their efficiency and accuracy to understand which approaches were more accurate and which ones resulted in a more efficient way of minimizing energy consumption while maintaining users' comfortability. It was concluded that the highest accuracy rate among the presented works was 95% accuracy in determining satisfaction and up to 51.08% energy savings can be achieved without disturbing user’s comfort. Considering the growing interest in designing and developing adaptive buildings, these studies can support diverse inquiries about this subject and can be used as a resource to support studies and researches towards efficient energy consumption while maintaining the comfortability of users.

Keywords: adaptive buildings, energy efficiency, intelligent buildings, user comfortability

Procedia PDF Downloads 133
5230 The Effects of Racial Cohesion among White and Maori Populations on Healthcare in New Zealand

Authors: Thomas C. Nash

Abstract:

New Zealand has a small, yet racially diverse, population of only 4.6 million people, consisting of a majority European immigrant population and a large indigenous Maori population. Because disparities in healthcare often exist among minority populations, it could be expected that the White and Maori populations of New Zealand would have unequal access to healthcare. In order to understand the ways these disparities may present themselves, it became important to travel to New Zealand in order to interview both Western and natural healthcare professionals, public health officials, health activists and Maori people. In observing the various mechanisms within the New Zealand healthcare system, some stand out as effective ways of alleviating the racial disparities often seen in healthcare. These include the efficiency of regional District Health Boards, the benefits of individuals making decisions regarding their treatment plans and the importance of cohesion among the Maori and White populations. In forming a conclusion around these observations, it is evident that the integration of Maori culture into contemporary New Zealand has benefited the healthcare system. This unity has generated support for non-Western medical treatments, in turn forming a healthcare system that creates low barriers to entry for non-traditional forms of healthcare. These low barriers allow individuals to allocate available healthcare resources in ways that are most beneficial for them and are consistent with their tastes and preferences, maximizing efficiency.

Keywords: alternative and complementary healthcare, low barriers to entry, Maori populations, racial cohesion

Procedia PDF Downloads 195
5229 Hansen Solubility Parameters, Quality by Design Tool for Developing Green Nanoemulsion to Eliminate Sulfamethoxazole from Contaminated Water

Authors: Afzal Hussain, Mohammad A. Altamimi, Syed Sarim Imam, Mudassar Shahid, Osamah Abdulrahman Alnemer

Abstract:

Exhaustive application of sulfamethoxazole (SUX) became as a global threat for human health due to water contamination through diverse sources. The addressed combined application of Hansen solubility (HSPiP software) parameters and Quality by Design tool for developing various green nanoemulsions. HSPiP program assisted to screen suitable excipients based on Hansen solubility parameters and experimental solubility data. Various green nanoemulsions were prepared and characterized for globular size, size distribution, zeta potential, and removal efficiency. Design Expert (DoE) software further helped to identify critical factors responsible to have direct impact on percent removal efficiency, size, and viscosity. Morphological investigation was visualized under transmission electron microscopy (TEM). Finally, the treated was studied to negate the presence of the tested drug employing ICP-OES (inductively coupled plasma optical emission microscopy) technique and HPLC (high performance liquid chromatography). Results showed that HSPiP predicted biocompatible lipid, safe surfactant (lecithin), and propylene glycol (PG). Experimental solubility of the drug in the predicted excipients were quite convincing and vindicated. Various green nanoemulsions were fabricated, and these were evaluated for in vitro findings. Globular size (100-300 nm), PDI (0.1-0.5), zeta potential (~ 25 mV), and removal efficiency (%RE = 70-98%) were found to be in acceptable range for deciding input factors with level in DoE. Experimental design tool assisted to identify the most critical variables controlling %RE and optimized content of nanoemulsion under set constraints. Dispersion time was varied from 5-30 min. Finally, ICP-OES and HPLC techniques corroborated the absence of SUX in the treated water. Thus, the strategy is simple, economic, selective, and efficient.

Keywords: quality by design, sulfamethoxazole, green nanoemulsion, water treatment, icp-oes, hansen program (hspip software

Procedia PDF Downloads 82