Search results for: light weight algorithm
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10746

Search results for: light weight algorithm

9396 Effects of Stirring Time and Reinforcement Preheating on the Porosity of Particulate Periwinkle Shell-Aluminium 6063 Metal Matrix Composite (PPS-ALMMC) Produced by Two-Step Casting

Authors: Reginald Umunakwe, Obinna Chibuzor Okoye, Uzoma Samuel Nwigwe, Damilare John Olaleye, Akinlabi Oyetunji

Abstract:

The potential for the development of PPS-AlMMCs as light weight material for industrial applications was investigated. Periwinkle shells were milled and the density of the particles determined. Particulate periwinkle shell of particle size 75µm was used to reinforce aluminium 6063 alloy at 10wt% filler loading using two-step stir casting technique. The composite materials were stirred for five minutes in a semi-solid state and the stirring time varied as 3, 6 and 9 minutes at above the liquidus temperature. A specimen was also produced with pre-heated filler. The effect of variation in stirring time and reinforcement pre-heating on the porosity of the composite materials was investigated. The results of the analysis show that a composition of reinforcement pre-heating and stirring for 3 minutes produced a composite material with the lowest porosity of 1.05%.

Keywords: composites, periwinkle shell, two-step casting, porosity

Procedia PDF Downloads 350
9395 Optimal Design of Concrete Shells by Modified Particle Community Algorithm Using Spinless Curves

Authors: Reza Abbasi, Ahmad Hamidi Benam

Abstract:

Shell structures have many geometrical variables that modify some of these parameters to improve the mechanical behavior of the shell. On the other hand, the behavior of such structures depends on their geometry rather than on mass. Optimization techniques are useful in finding the geometrical shape of shell structures to improve mechanical behavior, especially to prevent or reduce bending anchors. The overall objective of this research is to optimize the shape of concrete shells using the thickness and height parameters along the reference curve and the overall shape of this curve. To implement the proposed scheme, the geometry of the structure was formulated using nonlinear curves. Shell optimization was performed under equivalent static loading conditions using the modified bird community algorithm. The results of this optimization show that without disrupting the initial design and with slight changes in the shell geometry, the structural behavior is significantly improved.

Keywords: concrete shells, shape optimization, spinless curves, modified particle community algorithm

Procedia PDF Downloads 234
9394 Material Parameter Identification of Modified AbdelKarim-Ohno Model

Authors: Martin Cermak, Tomas Karasek, Jaroslav Rojicek

Abstract:

The key role in phenomenological modelling of cyclic plasticity is good understanding of stress-strain behaviour of given material. There are many models describing behaviour of materials using numerous parameters and constants. Combination of individual parameters in those material models significantly determines whether observed and predicted results are in compliance. Parameter identification techniques such as random gradient, genetic algorithm, and sensitivity analysis are used for identification of parameters using numerical modelling and simulation. In this paper genetic algorithm and sensitivity analysis are used to study effect of 4 parameters of modified AbdelKarim-Ohno cyclic plasticity model. Results predicted by Finite Element (FE) simulation are compared with experimental data from biaxial ratcheting test with semi-elliptical loading path.

Keywords: genetic algorithm, sensitivity analysis, inverse approach, finite element method, cyclic plasticity, ratcheting

Procedia PDF Downloads 454
9393 Using Genetic Algorithms to Outline Crop Rotations and a Cropping-System Model

Authors: Nicolae Bold, Daniel Nijloveanu

Abstract:

The idea of cropping-system is a method used by farmers. It is an environmentally-friendly method, protecting the natural resources (soil, water, air, nutritive substances) and increase the production at the same time, taking into account some crop particularities. The combination of this powerful method with the concepts of genetic algorithms results into a possibility of generating sequences of crops in order to form a rotation. The usage of this type of algorithms has been efficient in solving problems related to optimization and their polynomial complexity allows them to be used at solving more difficult and various problems. In our case, the optimization consists in finding the most profitable rotation of cultures. One of the expected results is to optimize the usage of the resources, in order to minimize the costs and maximize the profit. In order to achieve these goals, a genetic algorithm was designed. This algorithm ensures the finding of several optimized solutions of cropping-systems possibilities which have the highest profit and, thus, which minimize the costs. The algorithm uses genetic-based methods (mutation, crossover) and structures (genes, chromosomes). A cropping-system possibility will be considered a chromosome and a crop within the rotation is a gene within a chromosome. Results about the efficiency of this method will be presented in a special section. The implementation of this method would bring benefits into the activity of the farmers by giving them hints and helping them to use the resources efficiently.

Keywords: chromosomes, cropping, genetic algorithm, genes

Procedia PDF Downloads 429
9392 Improving Axial-Attention Network via Cross-Channel Weight Sharing

Authors: Nazmul Shahadat, Anthony S. Maida

Abstract:

In recent years, hypercomplex inspired neural networks improved deep CNN architectures due to their ability to share weights across input channels and thus improve cohesiveness of representations within the layers. The work described herein studies the effect of replacing existing layers in an Axial Attention ResNet with their quaternion variants that use cross-channel weight sharing to assess the effect on image classification. We expect the quaternion enhancements to produce improved feature maps with more interlinked representations. We experiment with the stem of the network, the bottleneck layer, and the fully connected backend by replacing them with quaternion versions. These modifications lead to novel architectures which yield improved accuracy performance on the ImageNet300k classification dataset. Our baseline networks for comparison were the original real-valued ResNet, the original quaternion-valued ResNet, and the Axial Attention ResNet. Since improvement was observed regardless of which part of the network was modified, there is a promise that this technique may be generally useful in improving classification accuracy for a large class of networks.

Keywords: axial attention, representational networks, weight sharing, cross-channel correlations, quaternion-enhanced axial attention, deep networks

Procedia PDF Downloads 84
9391 A Generalized Sparse Bayesian Learning Algorithm for Near-Field Synthetic Aperture Radar Imaging: By Exploiting Impropriety and Noncircularity

Authors: Pan Long, Bi Dongjie, Li Xifeng, Xie Yongle

Abstract:

The near-field synthetic aperture radar (SAR) imaging is an advanced nondestructive testing and evaluation (NDT&E) technique. This paper investigates the complex-valued signal processing related to the near-field SAR imaging system, where the measurement data turns out to be noncircular and improper, meaning that the complex-valued data is correlated to its complex conjugate. Furthermore, we discover that the degree of impropriety of the measurement data and that of the target image can be highly correlated in near-field SAR imaging. Based on these observations, A modified generalized sparse Bayesian learning algorithm is proposed, taking impropriety and noncircularity into account. Numerical results show that the proposed algorithm provides performance gain, with the help of noncircular assumption on the signals.

Keywords: complex-valued signal processing, synthetic aperture radar, 2-D radar imaging, compressive sensing, sparse Bayesian learning

Procedia PDF Downloads 134
9390 Food Intake Patterns in Omani University Students

Authors: Nasiruddin Khan, Saud Iqbal

Abstract:

Arabian Gulf region has undergone enormous development due to oil boom resulting in overwhelming changes in the lifestyle of the population over the past few decades. This study focused on food consumption patterns of Omani university students. Information, on anthropometric measurements, dietary intakes (measured by a food frequency questionnaire) of students was recorded. Anthropometric data revealed 62.5% of the subjects to be of normal weight and approximately 25% being overweight. Female students appeared to be more weight conscious than males. Dietary intakes in terms of servings (Mean ± S.D) per day among normal weight (BMI 18.5 – 24.9) males vs. females were approximately; cereals (7.5 ± 5.9 vs. 4.9 ± 2.9 servings), meat and alternatives (1.9 ± 0.9 vs. 1.5 ± 0.9 servings), dairy foods (0.9 ± 0.8 vs. 1.1 ± 0.9 servings) per day, respectively. Overall 55.3% of both males (average 1.9 servings) as well as females (average 1.7 servings) had severely inadequate intakes of vegetables on a daily basis as per the food guide pyramid recommendations. Only the fruit group intakes were adequate in about 70% of the population. Adequate intakes of dairy and meat and alternatives group were found in only 22% and 32% of the subjects, respectively. These results indicate a significant influence of a modern lifestyle on dietary habits and food selection of the target population.

Keywords: dietary pattern, food guide pyramid, lifestyle, Oman

Procedia PDF Downloads 314
9389 Incorporating Multiple Supervised Learning Algorithms for Effective Intrusion Detection

Authors: Umar Albalawi, Sang C. Suh, Jinoh Kim

Abstract:

As internet continues to expand its usage with an enormous number of applications, cyber-threats have significantly increased accordingly. Thus, accurate detection of malicious traffic in a timely manner is a critical concern in today’s Internet for security. One approach for intrusion detection is to use Machine Learning (ML) techniques. Several methods based on ML algorithms have been introduced over the past years, but they are largely limited in terms of detection accuracy and/or time and space complexity to run. In this work, we present a novel method for intrusion detection that incorporates a set of supervised learning algorithms. The proposed technique provides high accuracy and outperforms existing techniques that simply utilizes a single learning method. In addition, our technique relies on partial flow information (rather than full information) for detection, and thus, it is light-weight and desirable for online operations with the property of early identification. With the mid-Atlantic CCDC intrusion dataset publicly available, we show that our proposed technique yields a high degree of detection rate over 99% with a very low false alarm rate (0.4%).

Keywords: intrusion detection, supervised learning, traffic classification, computer networks

Procedia PDF Downloads 353
9388 Influence of Machine Resistance Training on Selected Strength Variables among Two Categories of Body Composition

Authors: Hassan Almoslim

Abstract:

Background: The machine resistance training is an exercise that uses the equipment as loads to strengthen and condition the musculoskeletal system and improving muscle tone. The machine resistance training is easy to use, allow the individual to train with heavier weights without assistance, useful for beginners and elderly populations and specific muscle groups. Purpose: The purpose of this study was to examine the impact of nine weeks of machine resistance training on maximum strength among lean and normal weight male college students. Method: Thirty-six male college students aged between 19 and 21 years from King Fahd University of petroleum & minerals participated in the study. The subjects were divided into two an equal groups called Lean Group (LG, n = 18) and Normal Weight Group (NWG, n = 18). The subjects whose body mass index (BMI) is less than 18.5 kg / m2 is considered lean and who is between 18.5 to 24.9 kg / m2 is normal weight. Both groups performed machine resistance training nine weeks, twice per week for 40 min per training session. The strength measurements, chest press, leg press and abdomen exercises were performed before and after the training period. 1RM test was used to determine the maximum strength of all subjects. The training program consisted of several resistance machines such as leg press, abdomen, chest press, pulldown, seated row, calf raises, leg extension, leg curls and back extension. The data were analyzed using independent t-test (to compare mean differences) and paired t-test. The level of significance was set at 0.05. Results: No change was (P ˃ 0.05) observed in all body composition variables between groups after training. In chest press, the NWG recorded a significantly greater mean different value than the LG (19.33 ± 7.78 vs. 13.88 ± 5.77 kg, respectively, P ˂ 0.023). In leg press and abdomen exercises, both groups revealed similar mean different values (P ˃ 0.05). When the post-test was compared with the pre-test, the NWG showed significant increases in the chest press by 47% (from 41.16 ± 12.41 to 60.49 ± 11.58 kg, P ˂ 001), abdomen by 34% (from 45.46 ± 6.97 to 61.06 ± 6.45 kg, P ˂ 0.001) and leg press by 23.6% (from 85.27 ± 15.94 to 105.48 ± 21.59 kg, P ˂ 0.001). The LG also illustrated significant increases by 42.6% in the chest press (from 32.58 ± 7.36 to 46.47 ± 8.93 kg, P ˂ 0.001), the abdomen by 28.5% (from 38.50 ± 7.84 to 49.50 ± 7.88 kg, P ˂ 0.001) and the leg press by 30.8% (from 70.2 ± 20.57 to 92.01 ± 22.83 kg, P ˂ 0.001). Conclusion: It was concluded that the lean and the normal weight male college students can benefit from the machine resistance-training program remarkably.

Keywords: body composition, lean, machine resistance training, normal weight

Procedia PDF Downloads 357
9387 Analysis of Fault Tolerance on Grid Computing in Real Time Approach

Authors: Parampal Kaur, Deepak Aggarwal

Abstract:

In the computational Grid, fault tolerance is an imperative issue to be considered during job scheduling. Due to the widespread use of resources, systems are highly prone to errors and failures. Hence, fault tolerance plays a key role in the grid to avoid the problem of unreliability. Scheduling the task to the appropriate resource is a vital requirement in computational Grid. The fittest resource scheduling algorithm searches for the appropriate resource based on the job requirements, in contrary to the general scheduling algorithms where jobs are scheduled to the resources with best performance factor. The proposed method is to improve the fault tolerance of the fittest resource scheduling algorithm by scheduling the job in coordination with job replication when the resource has low reliability. Based on the reliability index of the resource, the resource is identified as critical. The tasks are scheduled based on the criticality of the resources. Results show that the execution time of the tasks is comparatively reduced with the proposed algorithm using real-time approach rather than a simulator.

Keywords: computational grid, fault tolerance, task replication, job scheduling

Procedia PDF Downloads 437
9386 Effect of Incorporation of Seaweed Extract in Gelatin Based Film on Physic-Chemical and Bioactive Properties of Film

Authors: Shekhar U. Kadam, S. K. Pankaj, Brijesh K. Tiwari, P. J. Cullen, Colm P. O’Donnell

Abstract:

Brown seaweed L. hyperborea is a rich source of phenolic compounds with antioxidant and antimicrobial properties. The aim of this work was to study the effect of incorporation of L. hyperborea extract to bovine gelatin film on the physicochemical and antioxidant properties of film. Films with fraction of 25% by weight of bovine gelatin sample were cast with addition of glycerol as a plasticizer. The total phenolic content and antioxidant activity of the films showed higher levels with addition of seaweed extract. Also film appearance properties such as film thickness, color and light transparency were evaluated. Film appearance was slightly modified whereas microstructure of films showed rough patches at 50% level of extract in the film. Hydrophilicity and glass transition temperature of the films also increased with increased level of seaweed extract. It was found that seaweed extract can be incorporated within gelatin and casein for development of biofunctional films.

Keywords: Laminaria hyperborea, ultrasound, seaweed extract, bovine gelatin film, antioxidant, phenolic compounds

Procedia PDF Downloads 521
9385 Assessment of Very Low Birth Weight Neonatal Tracking and a High-Risk Approach to Minimize Neonatal Mortality in Bihar, India

Authors: Aritra Das, Tanmay Mahapatra, Prabir Maharana, Sridhar Srikantiah

Abstract:

In the absence of adequate well-equipped neonatal-care facilities serving rural Bihar, India, the practice of essential home-based newborn-care remains critically important for reduction of neonatal and infant mortality, especially among pre-term and small-for-gestational-age (Low-birth-weight) newborns. To improve the child health parameters in Bihar, ‘Very-Low-Birth-Weight (vLBW) Tracking’ intervention is being conducted by CARE India, since 2015, targeting public facility-delivered newborns weighing ≤2000g at birth, to improve their identification and provision of immediate post-natal care. To assess the effectiveness of the intervention, 200 public health facilities were randomly selected from all functional public-sector delivery points in Bihar and various outcomes were tracked among the neonates born there. Thus far, one pre-intervention (Feb-Apr’2015-born neonates) and three post-intervention (for Sep-Oct’2015, Sep-Oct’2016 and Sep-Oct’2017-born children) follow-up studies were conducted. In each round, interviews were conducted with the mothers/caregivers of successfully-tracked children to understand outcome, service-coverage and care-seeking during the neonatal period. Data from 171 matched facilities common across all rounds were analyzed using SAS-9.4. Identification of neonates with birth-weight ≤ 2000g improved from 2% at baseline to 3.3%-4% during post-intervention. All indicators pertaining to post-natal home-visits by frontline-workers (FLWs) improved. Significant improvements between baseline and post-intervention rounds were also noted regarding mothers being informed about ‘weak’ child – at the facility (R1 = 25 to R4 = 50%) and at home by FLW (R1 = 19%, to R4 = 30%). Practice of ‘Kangaroo-Mother-Care (KMC)’– an important component of essential newborn care – showed significant improvement in postintervention period compared to baseline in both facility (R1 = 15% to R4 = 31%) and home (R1 = 10% to R4=29%). Increasing trend was noted regarding detection and birth weight-recording of the extremely low-birth-weight newborns (< 1500 g) showed an increasing trend. Moreover, there was a downward trend in mortality across rounds, in each birth-weight strata (< 1500g, 1500-1799g and >= 1800g). After adjustment for the differential distribution of birth-weights, mortality was found to decline significantly from R1 (22.11%) to R4 (11.87%). Significantly declining trend was also observed for both early and late neonatal mortality and morbidities. Multiple regression analysis identified - birth during immediate post-intervention phase as well as that during the maintenance phase, birth weight > 1500g, children of low-parity mothers, receiving visit from FLW in the first week and/or receiving advice on extra care from FLW as predictors of survival during neonatal period among vLBW newborns. vLBW tracking was found to be a successful and sustainable intervention and has already been handed over to the Government.

Keywords: weak newborn tracking, very low birth weight babies, newborn care, community response

Procedia PDF Downloads 162
9384 ACO-TS: an ACO-based Algorithm for Optimizing Cloud Task Scheduling

Authors: Fahad Y. Al-dawish

Abstract:

The current trend by a large number of organizations and individuals to use cloud computing. Many consider it a significant shift in the field of computing. Cloud computing are distributed and parallel systems consisting of a collection of interconnected physical and virtual machines. With increasing request and profit of cloud computing infrastructure, diverse computing processes can be executed on cloud environment. Many organizations and individuals around the world depend on the cloud computing environments infrastructure to carry their applications, platform, and infrastructure. One of the major and essential issues in this environment related to allocating incoming tasks to suitable virtual machine (cloud task scheduling). Cloud task scheduling is classified as optimization problem, and there are several meta-heuristic algorithms have been anticipated to solve and optimize this problem. Good task scheduler should execute its scheduling technique on altering environment and the types of incoming task set. In this research project a cloud task scheduling methodology based on ant colony optimization ACO algorithm, we call it ACO-TS Ant Colony Optimization for Task Scheduling has been proposed and compared with different scheduling algorithms (Random, First Come First Serve FCFS, and Fastest Processor to the Largest Task First FPLTF). Ant Colony Optimization (ACO) is random optimization search method that will be used for assigning incoming tasks to available virtual machines VMs. The main role of proposed algorithm is to minimizing the makespan of certain tasks set and maximizing resource utilization by balance the load among virtual machines. The proposed scheduling algorithm was evaluated by using Cloudsim toolkit framework. Finally after analyzing and evaluating the performance of experimental results we find that the proposed algorithm ACO-TS perform better than Random, FCFS, and FPLTF algorithms in each of the makespaan and resource utilization.

Keywords: cloud Task scheduling, ant colony optimization (ACO), cloudsim, cloud computing

Procedia PDF Downloads 423
9383 High Aspect Ratio Sio2 Capillary Based On Silicon Etching and Thermal Oxidation Process for Optical Modulator

Authors: Nguyen Van Toan, Suguru Sangu, Tetsuro Saito, Naoki Inomata, Takahito Ono

Abstract:

This paper presents the design and fabrication of an optical window for an optical modulator toward image sensing applications. An optical window consists of micrometer-order SiO2 capillaries (porous solid) that can modulate transmission light intensity by moving the liquid in and out of porous solid. A high optical transmittance of the optical window can be achieved due to refractive index matching when the liquid is penetrated into the porous solid. Otherwise, its light transmittance is lower because of light reflection and scattering by air holes and capillary walls. Silicon capillaries fabricated by deep reactive ion etching (DRIE) process are completely oxidized to form the SiO2 capillaries. Therefore, high aspect ratio SiO2 capillaries can be achieved based on silicon capillaries formed by DRIE technique. Large compressive stress of the oxide causes bending of the capillary structure, which is reduced by optimizing the design of device structure. The large stress of the optical window can be released via thin supporting beams. A 7.2 mm x 9.6 mm optical window area toward a fully integrated with the image sensor format is successfully fabricated and its optical transmittance is evaluated with and without inserting liquids (ethanol and matching oil). The achieved modulation range is approximately 20% to 35% with and without liquid penetration in visible region (wavelength range from 450 nm to 650 nm).

Keywords: thermal oxidation process, SiO2 capillaries, optical window, light transmittance, image sensor, liquid penetration

Procedia PDF Downloads 495
9382 Pre and Post Mordant Effect of Alum on Gamma Rays Assisted Cotton Fabric by Using Ipomoea indica Leaves Extract

Authors: Abdul Hafeez, Shahid Adeel, Ayesha Hussain

Abstract:

There are number of plants species in the universe which give the protections from different diseases and give colour for the foods and textiles. The environmental condition of the universe suggested toward the ecofriendly textiles. The aim of the paper is to analyze the influence of pre & post mordanting of alum on radiated cotton fabric with Gamma Radiation of different doses by using Ipomoea indica leaves extract. Alum used as mordant with the concentration of 2, 4, 6, 8 and 10% as pre and post mordanting to observe the effect of light and colour fastness of radiated cotton. 6% of alum concentration in pre mordanting gave good colour strength 117.82 with darker in shade toward the greenish tone and in post mordanting 6% concentration gave good colour strength 102.19. The lab values show that the colour is darker in tone and gave bluish effect. Further results showed that alum gave good light and rubbing fastness on gamma radiated cotton fabric.

Keywords: Ipomoea indica, gamma radiation, alum, light fastness

Procedia PDF Downloads 172
9381 O2 Saturation Comparison Between Breast Milk Feeding and Tube Feeding in Very Low Birth Weight Neonates

Authors: Ashraf Mohammadzadeh, Ahmad Shah Farhat, Azin Vaezi, Aradokht Vaezi

Abstract:

Background & Aim: Preterm infants born at less than 34 weeks postconceptional age are not as neurologically mature as their term counterparts and thus have difficulty coordinating sucking, swallowing and breathing. As a result, they are traditionally gavage fed until they are able to oral feed successfully. The aim of study was to evaluate comparative effect of orogastric and breast feeding on oxygen saturation in very low birth weight infant (<1500gm). Patients and Methods: In this clinical trial all babies admitted in the Neonatal Research Center of Imamreza Hospital, Mashhad during a 4 months period were elected. Criteria for entrance to study included birth weight ≤ 1500 grams, exclusive breastfeeding, having no special problem after 48 hours, receivinge only routine care and intake of milk was 100cc/kg/day. Each neonate received two rounds of orogastric and breast feeding in the morning and in the afternoon, during which mean oxygen saturation was measured by pulse-oxymetry. During the study the heart rate and temperature of the neonates were monitored, and in case of hypothermia, bradycardia(less than 100 per minute) or apnea the feeding was discontinued and the study was repeated the following day. Data analysis was carried out using SPSS. Results: Fifty neonates were studied. The average birth weight was 1267.20±165.42 grams and average gestational age was 31.81±1.92 and female/male ratio was 1.2. There was no significant statistical difference in arterial oxygen saturation in orogastric and breast feeding in the morning and in the afternoon. (p=0.16 in the morning and p=0.6 in the afternoon). There was no complication of apnea, hypothermia or bradycardia. Conclusion: There was no significant statistical difference between the two methods in arterial oxygen saturation. It seems that oral feeding (which is a natural route) and skin contact between the mother and neonate causes a strong emotional bonding between the two and brings about better social adaptation for the neonate. Also shorter period of stay in hospital is more preferred, and breast feeding should be started at the earliest possible time after birth.

Keywords: Very low birth weight (V.L.B.W), O2 Saturation, Breast Feeding, Tube Feeding

Procedia PDF Downloads 87
9380 Spatial Data Mining by Decision Trees

Authors: Sihem Oujdi, Hafida Belbachir

Abstract:

Existing methods of data mining cannot be applied on spatial data because they require spatial specificity consideration, as spatial relationships. This paper focuses on the classification with decision trees, which are one of the data mining techniques. We propose an extension of the C4.5 algorithm for spatial data, based on two different approaches Join materialization and Querying on the fly the different tables. Similar works have been done on these two main approaches, the first - Join materialization - favors the processing time in spite of memory space, whereas the second - Querying on the fly different tables- promotes memory space despite of the processing time. The modified C4.5 algorithm requires three entries tables: a target table, a neighbor table, and a spatial index join that contains the possible spatial relationship among the objects in the target table and those in the neighbor table. Thus, the proposed algorithms are applied to a spatial data pattern in the accidentology domain. A comparative study of our approach with other works of classification by spatial decision trees will be detailed.

Keywords: C4.5 algorithm, decision trees, S-CART, spatial data mining

Procedia PDF Downloads 617
9379 An Effect of Organic Supplements on Stimulating Growth of Vanda and Mokara Seedlings in Tissue Culture

Authors: Kullanart Obsuwan, Chockpisit Thepsithar

Abstract:

This study aimed to investigate effect of different organic supplements on growth of Vanda and Mokara seedlings. Vanda and Mokara seedlings approximately 0.2 and 0.3 cm. in height were sub-cultured onto VW supplemented with 150 ml/L coconut water, 100 g/L potato extract, 100 g/L ‘Gros Michel’ banana (AAA group) and 100 g/L ‘Namwa’ banana (ABB group). The explants were sub-cultured onto the same medium every month for 3 months. The best medium increased stem height to 0.52 and 0.44 Cm. in Vanda and Mokara respectively was supplemented with coconut water. The maximum fresh weight of Vanda (0.59 g) was found on medium supplemented with ‘Gros Michel’ banana while Mokara cultured on medium supplemented with Potato extract had the maximum fresh weight (0.27 g) and number of roots (5.20 roots/shoot) statistically different (p≤ 0.05) to other treatments. However, Vanda cultured on medium supplemented with ‘Namwa’ banana had the maximum number of roots (3.80 roots/shoot). Our results suggested that growth of different orchid genera was responded diversely to different organic supplements.

Keywords: orchid, in vitro propagation, fresh weight, plant height

Procedia PDF Downloads 371
9378 Cluster Based Ant Colony Routing Algorithm for Mobile Ad-Hoc Networks

Authors: Alaa Eddien Abdallah, Bajes Yousef Alskarnah

Abstract:

Ant colony based routing algorithms are known to grantee the packet delivery, but they su ffer from the huge overhead of control messages which are needed to discover the route. In this paper we utilize the network nodes positions to group the nodes in connected clusters. We use clusters-heads only on forwarding the route discovery control messages. Our simulations proved that the new algorithm has decreased the overhead dramatically without affecting the delivery rate.

Keywords: ad-hoc network, MANET, ant colony routing, position based routing

Procedia PDF Downloads 426
9377 Maximum Likelihood Estimation Methods on a Two-Parameter Rayleigh Distribution under Progressive Type-Ii Censoring

Authors: Daniel Fundi Murithi

Abstract:

Data from economic, social, clinical, and industrial studies are in some way incomplete or incorrect due to censoring. Such data may have adverse effects if used in the estimation problem. We propose the use of Maximum Likelihood Estimation (MLE) under a progressive type-II censoring scheme to remedy this problem. In particular, maximum likelihood estimates (MLEs) for the location (µ) and scale (λ) parameters of two Parameter Rayleigh distribution are realized under a progressive type-II censoring scheme using the Expectation-Maximization (EM) and the Newton-Raphson (NR) algorithms. These algorithms are used comparatively because they iteratively produce satisfactory results in the estimation problem. The progressively type-II censoring scheme is used because it allows the removal of test units before the termination of the experiment. Approximate asymptotic variances and confidence intervals for the location and scale parameters are derived/constructed. The efficiency of EM and the NR algorithms is compared given root mean squared error (RMSE), bias, and the coverage rate. The simulation study showed that in most sets of simulation cases, the estimates obtained using the Expectation-maximization algorithm had small biases, small variances, narrower/small confidence intervals width, and small root of mean squared error compared to those generated via the Newton-Raphson (NR) algorithm. Further, the analysis of a real-life data set (data from simple experimental trials) showed that the Expectation-Maximization (EM) algorithm performs better compared to Newton-Raphson (NR) algorithm in all simulation cases under the progressive type-II censoring scheme.

Keywords: expectation-maximization algorithm, maximum likelihood estimation, Newton-Raphson method, two-parameter Rayleigh distribution, progressive type-II censoring

Procedia PDF Downloads 165
9376 A Study of Anthraquinone Dye Removal by Using Chitosan Nanoparticles

Authors: Pyar S. Jassal, Sonal Gupta, Neema Chand, Rajni Johar

Abstract:

In present study, Low molecular weight chitosan naoparticles (LMWCNP) were synthesized by using low molecular weight chitosan (LMWC) and sodium tripolyphosphate for the adsorption of anthraquinone dyes from waste water. The ionic-gel technique was used for this purpose. Size of nanoparticles was determined by “Scherrer equation”. The absorbance was carried out with UV-visible spectrophotometer for Acid Green 25 (AG25) and Reactive Blue 4 (RB4) dyes solutions at λmax 644 and λmax 598 nm respectively. The removal of dyes was dependent on the pH and the optimum adsorption was between pH 2 to 9. The extraction of dyes was linearly dependent on temperature. The equilibrium parameters, RL was calculated by using the Langmuir isotherm and shows that adsorption of dyes is favorable on the LMWCNP. The XRD images of LMWC show a crystalline nature whereas LMWCNP is amorphous one. The thermo gravimetric analysis (TGA) shows that LMWCNP thermally more stable than LMWC. As the contact time increases, percentage removal of Acid Green 25 and Reactive Blue 4 dyes also increases. TEM images reveal the size of the LMWCNP were in the range of 45-50 nm. The capacity of AG25 dye on LMWC was 5.23 mg/g, it compared with LMWCNP capacity which was 6.83 mg/g respectively. The capacity of RB4 dye on LMWC was 2.30 mg/g and 2.34 mg/g was on LMWCNP.

Keywords: low molecular weight chitosan nanoparticles, anthraquinone dye, removal efficiency, adsorption isotherm

Procedia PDF Downloads 137
9375 The Quantitative Optical Modulation of Dopamine Receptor-Mediated Endocytosis Using an Optogenetic System

Authors: Qiaoyue Kuang, Yang Li, Mizuki Endo, Takeaki Ozawa

Abstract:

G protein-coupled receptors (GPCR) are the largest family of receptor proteins that detect molecules outside the cell and activate cellular responses. Of the GPCRs, dopamine receptors, which recognize extracellular dopamine, are essential to mammals due to their roles in numerous physiological events, including autonomic movement, hormonal regulation, emotions, and the reward system in the brain. To precisely understand the physiological roles of dopamine receptors, it is important to spatiotemporally control the signaling mediated by dopamine receptors, which is strongly dependent on their surface expression. Conventionally, chemical-induced interactions were applied to trigger the endocytosis of cell surface receptors. However, these methods were subjected to diffusion and therefore lacked temporal and special precision. To further understand the receptor-mediated signaling and to control the plasma membrane expression of receptors, an optogenetic tool called E-fragment was developed. The C-terminus of a light-sensitive photosensory protein cyptochrome2 (CRY2) was attached to β-Arrestin, and the E-fragment was generated by fusing the C-terminal peptide of vasopressin receptor (V2R) to CRY2’s binding partner protein CIB. The CRY2-CIB heterodimerization triggered by blue light stimulation brings β-Arrestin to the vicinity of membrane receptors and results in receptor endocytosis. In this study, the E-fragment system was applied to dopamine receptors 1 and 2 (DRD1 and DRD2) to control dopamine signaling. First, confocal fluorescence microscope observation qualitatively confirmed the light-induced endocytosis of E-fragment fused receptors. Second, NanoBiT bioluminescence assay verified quantitatively that the surface amount of E-fragment labeled receptors decreased after light treatment. Finally, GloSensor bioluminescence assay results suggested that the E-fragment-dependent receptor light-induced endocytosis decreased cAMP production in DRD1 signaling and attenuated the inhibition effect of DRD2 on cAMP production. The developed optogenetic tool was able to induce receptor endocytosis by external light, providing opportunities to further understand numerous physiological activities by controlling receptor-mediated signaling spatiotemporally.

Keywords: dopamine receptors, endocytosis, G protein-coupled receptors, optogenetics

Procedia PDF Downloads 104
9374 PID Sliding Mode Control with Sliding Surface Dynamics based Continuous Control Action for Robotic Systems

Authors: Wael M. Elawady, Mohamed F. Asar, Amany M. Sarhan

Abstract:

This paper adopts a continuous sliding mode control scheme for trajectory tracking control of robot manipulators with structured and unstructured uncertain dynamics and external disturbances. In this algorithm, the equivalent control in the conventional sliding mode control is replaced by a PID control action. Moreover, the discontinuous switching control signal is replaced by a continuous proportional-integral (PI) control term such that the implementation of the proposed control algorithm does not require the prior knowledge of the bounds of unknown uncertainties and external disturbances and completely eliminates the chattering phenomenon of the conventional sliding mode control approach. The closed-loop system with the adopted control algorithm has been proved to be globally stable by using Lyapunov stability theory. Numerical simulations using the dynamical model of robot manipulators with modeling uncertainties demonstrate the superiority and effectiveness of the proposed approach in high speed trajectory tracking problems.

Keywords: PID, robot, sliding mode control, uncertainties

Procedia PDF Downloads 509
9373 Ketones Emission during Pad Printing Process

Authors: Kiurski S. Jelena, Aksentijević M. Snežana, Oros B. Ivana, Kecić S. Vesna, Djogo Z. Maja

Abstract:

The paper investigates the effect of light intensity on the formation of two ketones, acetone and methyl ethyl ketone, in working premises of five pad printing departments in Novi Sad, Serbia. Multiple linear regression analysis examined the form of interdependency concentrations of methyl ethyl ketone, acetone and light intensity in five printing presses at seven sampling points, using Statistica software package version 10th. The results show an average stacking variation investigated variable and can be presented by the general regression model: y = b0 + b1xi1 + b2xi2.

Keywords: acetone, methyl ethyl ketone, multiple linear regression analysis, pad printing

Procedia PDF Downloads 421
9372 Osmotic Dehydration of Fruit Slices in Concentrated Sugar Solution

Authors: Neda Amidi Fazli, Farid Amidi Fazli

Abstract:

Enriched fruits by minerals provide minerals which are needed to human body the minerals are used by body cells for daily activities. This paper indicates the result of mass transfer in fruit slices in 55% sucrose syrup in presence of calcium and phosphorus ions. Osmosis agent 55% (w/w) was prepared by solving sucrose in deionized water and adding calcium or phosphorus in 1 and 2% concentration. Dry matter, solid gain, water loss as well as weight reduction were calculated. Results showed that by increasing of calcium concentration in osmosis solution solid gain, water loss and weight reduction were increased in short experiment time in kiwi fruit but the parameters decreased in long experiment time by concentration increasing and rise of calcium concentration caused decrease of osmosis parameters in banana. In the case of phosphorus, increasing of ion concentration had adverse effect on all treatments, this may be due to different osmosis force that is created by two types of ions. The mentioned parameters decreased in all treatments by increasing of ion concentration. Highest mass transfer in kiwi fruit occurs when 1% calcium solution applied for 60 minutes, values obtained for solid gain, water loss and weight reduction were 42.60, 51.97, and 9.37 respectively. In the case of banana, when 2% phosphorus concentration was applied as osmosis agent for 60 minutes highest values for solid gain, water loss and weight reduction obtained as 21, 25.84, and 4.84 respectively.

Keywords: calcium, concentration, osmotic dehydration, phosphorus

Procedia PDF Downloads 277
9371 FlexPoints: Efficient Algorithm for Detection of Electrocardiogram Characteristic Points

Authors: Daniel Bulanda, Janusz A. Starzyk, Adrian Horzyk

Abstract:

The electrocardiogram (ECG) is one of the most commonly used medical tests, essential for correct diagnosis and treatment of the patient. While ECG devices generate a huge amount of data, only a small part of them carries valuable medical information. To deal with this problem, many compression algorithms and filters have been developed over the past years. However, the rapid development of new machine learning techniques poses new challenges. To address this class of problems, we created the FlexPoints algorithm that searches for characteristic points on the ECG signal and ignores all other points that do not carry relevant medical information. The conducted experiments proved that the presented algorithm can significantly reduce the number of data points which represents ECG signal without losing valuable medical information. These sparse but essential characteristic points (flex points) can be a perfect input for some modern machine learning models, which works much better using flex points as an input instead of raw data or data compressed by many popular algorithms.

Keywords: characteristic points, electrocardiogram, ECG, machine learning, signal compression

Procedia PDF Downloads 165
9370 Predicting Polyethylene Processing Properties Based on Reaction Conditions via a Coupled Kinetic, Stochastic and Rheological Modelling Approach

Authors: Kristina Pflug, Markus Busch

Abstract:

Being able to predict polymer properties and processing behavior based on the applied operating reaction conditions in one of the key challenges in modern polymer reaction engineering. Especially, for cost-intensive processes such as the high-pressure polymerization of low-density polyethylene (LDPE) with high safety-requirements, the need for simulation-based process optimization and product design is high. A multi-scale modelling approach was set-up and validated via a series of high-pressure mini-plant autoclave reactor experiments. The approach starts with the numerical modelling of the complex reaction network of the LDPE polymerization taking into consideration the actual reaction conditions. While this gives average product properties, the complex polymeric microstructure including random short- and long-chain branching is calculated via a hybrid Monte Carlo-approach. Finally, the processing behavior of LDPE -its melt flow behavior- is determined in dependence of the previously determined polymeric microstructure using the branch on branch algorithm for randomly branched polymer systems. All three steps of the multi-scale modelling approach can be independently validated against analytical data. A triple-detector GPC containing an IR, viscosimetry and multi-angle light scattering detector is applied. It serves to determine molecular weight distributions as well as chain-length dependent short- and long-chain branching frequencies. 13C-NMR measurements give average branching frequencies, and rheological measurements in shear and extension serve to characterize the polymeric flow behavior. The accordance of experimental and modelled results was found to be extraordinary, especially taking into consideration that the applied multi-scale modelling approach does not contain parameter fitting of the data. This validates the suggested approach and proves its universality at the same time. In the next step, the modelling approach can be applied to other reactor types, such as tubular reactors or industrial scale. Moreover, sensitivity analysis for systematically varying process conditions is easily feasible. The developed multi-scale modelling approach finally gives the opportunity to predict and design LDPE processing behavior simply based on process conditions such as feed streams and inlet temperatures and pressures.

Keywords: low-density polyethylene, multi-scale modelling, polymer properties, reaction engineering, rheology

Procedia PDF Downloads 126
9369 Facile Fabrication of TiO₂NT/Fe₂O₃@Ag₂CO₃ Nanocomposite and Its Highly Efficient Visible Light Photocatalytic and Antibacterial Activity

Authors: Amal A. Al-Kahlawy, Heba H. El-Maghrabi

Abstract:

Due to the increasing need to environment protection in real time need to energize new materials are under extensive investigations. Between others, TiO2 nanotubes (TNTs) nanocomposite with iron oxide and silver carbonate, are promising alternatives as high-efficiency visible light photocatalyst due to their unique properties and their superior charge transport properties. Our efforts in this domain aim the construction of novel nanocomposite of TiO2NT/Fe2O3@Ag2CO3. The structure, surface morphology, chemical composition and optical properties were characterized by X-ray diffraction (XRD), Raman, Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray spectrometer (EDS), transmission electron microscopy (TEM), selected area electron diffraction (SAED) and UV–vis diffuse reflectance spectroscopy (DRS). XRD results confirm the interaction of TiO2-NT with iron oxide. This novel nanocomposite shows remarkably enhanced performance for phenol compounds photodegradation. The experimental data shows a promising photocatalytic activity. In particular, a maximum value of 450 mg/g was removed within 60 min at solar light irradiation with degradation efficiency of 99.5%. The high photocatalytic activity of the nanocomposite is found to be related to the increased adsorption toward chemical species, enhanced light absorption and efficient charge separation and transfer. Finally, the designed TiO2NT/Fe2O3@Ag2CO3 nanocomposite has a great degree of sustainability and could has a potential application for the industrial treatment of wastewater containing toxic organic materials.

Keywords: nanocomposite, photocatalyst, solar energy, titanium dioxide nanotubes

Procedia PDF Downloads 248
9368 Pavement Maintenance and Rehabilitation Scheduling Using Genetic Algorithm Based Multi Objective Optimization Technique

Authors: Ashwini Gowda K. S, Archana M. R, Anjaneyappa V

Abstract:

This paper presents pavement maintenance and management system (PMMS) to obtain optimum pavement maintenance and rehabilitation strategies and maintenance scheduling for a network using a multi-objective genetic algorithm (MOGA). Optimal pavement maintenance & rehabilitation strategy is to maximize the pavement condition index of the road section in a network with minimum maintenance and rehabilitation cost during the planning period. In this paper, NSGA-II is applied to perform maintenance optimization; this maintenance approach was expected to preserve and improve the existing condition of the highway network in a cost-effective way. The proposed PMMS is applied to a network that assessed pavement based on the pavement condition index (PCI). The minimum and maximum maintenance cost for a planning period of 20 years obtained from the non-dominated solution was found to be 5.190x10¹⁰ ₹ and 4.81x10¹⁰ ₹, respectively.

Keywords: genetic algorithm, maintenance and rehabilitation, optimization technique, pavement condition index

Procedia PDF Downloads 153
9367 Localization of Buried People Using Received Signal Strength Indication Measurement of Wireless Sensor

Authors: Feng Tao, Han Ye, Shaoyi Liao

Abstract:

City constructions collapse after earthquake and people will be buried under ruins. Search and rescue should be conducted as soon as possible to save them. Therefore, according to the complicated environment, irregular aftershocks and rescue allow of no delay, a kind of target localization method based on RSSI (Received Signal Strength Indication) is proposed in this article. The target localization technology based on RSSI with the features of low cost and low complexity has been widely applied to nodes localization in WSN (Wireless Sensor Networks). Based on the theory of RSSI transmission and the environment impact to RSSI, this article conducts the experiments in five scenes, and multiple filtering algorithms are applied to original RSSI value in order to establish the signal propagation model with minimum test error respectively. Target location can be calculated from the distance, which can be estimated from signal propagation model, through improved centroid algorithm. Result shows that the localization technology based on RSSI is suitable for large-scale nodes localization. Among filtering algorithms, mixed filtering algorithm (average of average, median and Gaussian filtering) performs better than any other single filtering algorithm, and by using the signal propagation model, the minimum error of distance between known nodes and target node in the five scene is about 3.06m.

Keywords: signal propagation model, centroid algorithm, localization, mixed filtering, RSSI

Procedia PDF Downloads 303