Search results for: decision tree algorithm
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7911

Search results for: decision tree algorithm

6561 A Quinary Coding and Matrix Structure Based Channel Hopping Algorithm for Blind Rendezvous in Cognitive Radio Networks

Authors: Qinglin Liu, Zhiyong Lin, Zongheng Wei, Jianfeng Wen, Congming Yi, Hai Liu

Abstract:

The multi-channel blind rendezvous problem in distributed cognitive radio networks (DCRNs) refers to how users in the network can hop to the same channel at the same time slot without any prior knowledge (i.e., each user is unaware of other users' information). The channel hopping (CH) technique is a typical solution to this blind rendezvous problem. In this paper, we propose a quinary coding and matrix structure-based CH algorithm called QCMS-CH. The QCMS-CH algorithm can guarantee the rendezvous of users using only one cognitive radio in the scenario of the asynchronous clock (i.e., arbitrary time drift between the users), heterogeneous channels (i.e., the available channel sets of users are distinct), and symmetric role (i.e., all users play a same role). The QCMS-CH algorithm first represents a randomly selected channel (denoted by R) as a fixed-length quaternary number. Then it encodes the quaternary number into a quinary bootstrapping sequence according to a carefully designed quaternary-quinary coding table with the prefix "R00". Finally, it builds a CH matrix column by column according to the bootstrapping sequence and six different types of elaborately generated subsequences. The user can access the CH matrix row by row and accordingly perform its channel, hoping to attempt rendezvous with other users. We prove the correctness of QCMS-CH and derive an upper bound on its Maximum Time-to-Rendezvous (MTTR). Simulation results show that the QCMS-CH algorithm outperforms the state-of-the-art in terms of the MTTR and the Expected Time-to-Rendezvous (ETTR).

Keywords: channel hopping, blind rendezvous, cognitive radio networks, quaternary-quinary coding

Procedia PDF Downloads 91
6560 Implications of Meteorological Parameters in Decision Making for Public Protective Actions during a Nuclear Emergency

Authors: M. Hussaina, K. Mahboobb, S. Z. Ilyasa, S. Shaheena

Abstract:

Plume dispersion modeling is a computational procedure to establish a relationship between emissions, meteorology, atmospheric concentrations, deposition and other factors. The emission characteristics (stack height, stack diameter, release velocity, heat contents, chemical and physical properties of the gases/particle released etc.), terrain (surface roughness, local topography, nearby buildings) and meteorology (wind speed, stability, mixing height, etc.) are required for the modeling of the plume dispersion and estimation of ground and air concentration. During the early phase of Fukushima accident, plume dispersion modeling and decisions were taken for the implementation of protective measures. A difference in estimated results and decisions made by different countries for taking protective actions created a concern in local and international community regarding the exact identification of the safe zone. The current study is focused to highlight the importance of accurate and exact weather data availability, scientific approach for decision making for taking urgent protective actions, compatible and harmonized approach for plume dispersion modeling during a nuclear emergency. As a case study, the influence of meteorological data on plume dispersion modeling and decision-making process has been performed.

Keywords: decision making process, radiation doses, nuclear emergency, meteorological implications

Procedia PDF Downloads 181
6559 Application of the Critical Decision Method for Monitoring and Improving Safety in the Construction Industry

Authors: Juan Carlos Rubio Romero, Francico Salguero Caparros, Virginia Herrera-Pérez

Abstract:

No one is in the slightest doubt about the high levels of risk involved in work in the construction industry. They are even higher in structural construction work. The Critical Decision Method (CDM) is a semi-structured interview technique that uses cognitive tests to identify the different disturbances that workers have to deal with in their work activity. At present, the vision of safety focused on daily performance and things that go well for safety and health management is facing the new paradigm known as Resilience Engineering. The aim of this study has been to describe the variability in formwork labour on concrete structures in the construction industry and, from there, to find out the resilient attitude of workers to unexpected events that they have experienced during their working lives. For this purpose, a series of semi-structured interviews were carried out with construction employees with extensive experience in formwork labour in Spain by applying the Critical Decision Method. This work has been the first application of the Critical Decision Method in the field of construction and, more specifically, in the execution of structures. The results obtained show that situations categorised as unthought-of are identified to a greater extent than potentially unexpected situations. The identification during these interviews of both expected and unexpected events provides insight into the critical decisions made and actions taken to improve resilience in daily practice in this construction work. From this study, it is clear that it is essential to gain more knowledge about the nature of the human cognitive process in work situations within complex socio-technical systems such as construction sites. This could lead to a more effective design of workplaces in the search for improved human performance.

Keywords: resilience engineering, construction industry, unthought-of situations, critical decision method

Procedia PDF Downloads 147
6558 Carbon Skimming: Towards an Application to Summarise and Compare Embodied Carbon to Aid Early-Stage Decision Making

Authors: Rivindu Nethmin Bandara Menik Hitihamy Mudiyanselage, Matthias Hank Haeusler, Ben Doherty

Abstract:

Investors and clients in the Architectural, Engineering and Construction industry find it difficult to understand complex datasets and reports with little to no graphic representation. The stakeholders examined in this paper include designers, design clients and end-users. Communicating embodied carbon information graphically and concisely can aid with decision support early in a building's life cycle. It is essential to create a common visualisation approach as the level of knowledge about embodied carbon varies between stakeholders. The tool, designed in conjunction with Bates Smart, condenses Tally Life Cycle Assessment data to a carbon hot-spotting visualisation, highlighting the sections with the highest amounts of embodied carbon. This allows stakeholders at every stage of a given project to have a better understanding of the carbon implications with minimal effort. It further allows stakeholders to differentiate building elements by their carbon values, which enables the evaluation of the cost-effectiveness of the selected materials at an early stage. To examine and build a decision-support tool, an action-design research methodology of cycles of iterations was used along with precedents of embodied carbon visualising tools. Accordingly, the importance of visualisation and Building Information Modelling are also explored to understand the best format for relaying these results.

Keywords: embodied carbon, visualisation, summarisation, data filtering, early-stage decision-making, materiality

Procedia PDF Downloads 81
6557 iCCS: Development of a Mobile Web-Based Student Integrated Information System using Hill Climbing Algorithm

Authors: Maria Cecilia G. Cantos, Lorena W. Rabago, Bartolome T. Tanguilig III

Abstract:

This paper describes a conducive and structured information exchange environment for the students of the College of Computer Studies in Manuel S. Enverga University Foundation in. The system was developed to help the students to check their academic result, manage profile, make self-enlistment and assist the students to manage their academic status that can be viewed also in mobile phones. Developing class schedules in a traditional way is a long process that involves making many numbers of choices. With Hill Climbing Algorithm, however, the process of class scheduling, particularly with regards to courses to be taken by the student aligned with the curriculum, can perform these processes and end up with an optimum solution. The proponent used Rapid Application Development (RAD) for the system development method. The proponent also used the PHP as the programming language and MySQL as the database.

Keywords: hill climbing algorithm, integrated system, mobile web-based, student information system

Procedia PDF Downloads 383
6556 Optimizing Boiler Combustion System in a Petrochemical Plant Using Neuro-Fuzzy Inference System and Genetic Algorithm

Authors: Yul Y. Nazaruddin, Anas Y. Widiaribowo, Satriyo Nugroho

Abstract:

Boiler is one of the critical unit in a petrochemical plant. Steam produced by the boiler is used for various processes in the plant such as urea and ammonia plant. An alternative method to optimize the boiler combustion system is presented in this paper. Adaptive Neuro-Fuzzy Inference System (ANFIS) approach is applied to model the boiler using real-time operational data collected from a boiler unit of the petrochemical plant. Nonlinear equation obtained is then used to optimize the air to fuel ratio using Genetic Algorithm, resulting an optimal ratio of 15.85. This optimal ratio is then maintained constant by ratio controller designed using inverse dynamics based on ANFIS. As a result, constant value of oxygen content in the flue gas is obtained which indicates more efficient combustion process.

Keywords: ANFIS, boiler, combustion process, genetic algorithm, optimization.

Procedia PDF Downloads 249
6555 A Parallel Algorithm for Solving the PFSP on the Grid

Authors: Samia Kouki

Abstract:

Solving NP-hard combinatorial optimization problems by exact search methods, such as Branch-and-Bound, may degenerate to complete enumeration. For that reason, exact approaches limit us to solve only small or moderate size problem instances, due to the exponential increase in CPU time when problem size increases. One of the most promising ways to reduce significantly the computational burden of sequential versions of Branch-and-Bound is to design parallel versions of these algorithms which employ several processors. This paper describes a parallel Branch-and-Bound algorithm called GALB for solving the classical permutation flowshop scheduling problem as well as its implementation on a Grid computing infrastructure. The experimental study of our distributed parallel algorithm gives promising results and shows clearly the benefit of the parallel paradigm to solve large-scale instances in moderate CPU time.

Keywords: grid computing, permutation flow shop problem, branch and bound, load balancing

Procedia PDF Downloads 282
6554 An Improved OCR Algorithm on Appearance Recognition of Electronic Components Based on Self-adaptation of Multifont Template

Authors: Zhu-Qing Jia, Tao Lin, Tong Zhou

Abstract:

The recognition method of Optical Character Recognition has been expensively utilized, while it is rare to be employed specifically in recognition of electronic components. This paper suggests a high-effective algorithm on appearance identification of integrated circuit components based on the existing methods of character recognition, and analyze the pros and cons.

Keywords: optical character recognition, fuzzy page identification, mutual correlation matrix, confidence self-adaptation

Procedia PDF Downloads 538
6553 A Proposed Algorithm for Obtaining the Map of Subscribers’ Density Distribution for a Mobile Wireless Communication Network

Authors: C. Temaneh-Nyah, F. A. Phiri, D. Karegeya

Abstract:

This paper presents an algorithm for obtaining the map of subscriber’s density distribution for a mobile wireless communication network based on the actual subscriber's traffic data obtained from the base station. This is useful in statistical characterization of the mobile wireless network.

Keywords: electromagnetic compatibility, statistical analysis, simulation of communication network, subscriber density

Procedia PDF Downloads 308
6552 Analyzing the Impact of Global Financial Crisis on Interconnectedness of Asian Stock Markets Using Network Science

Authors: Jitendra Aswani

Abstract:

In the first section of this study, impact of Global Financial Crisis (GFC) on the synchronization of fourteen Asian Stock Markets (ASM’s) of countries like Hong Kong, India, Thailand, Singapore, Taiwan, Pakistan, Bangladesh, South Korea, Malaysia, Indonesia, Japan, China, Philippines and Sri Lanka, has been analysed using the network science and its metrics like degree of node, clustering coefficient and network density. Then in the second section of this study by introducing the US stock market in existing network and developing a Minimum Spanning Tree (MST) spread of crisis from the US stock market to Asian Stock Markets (ASM) has been explained. Data used for this study is adjusted the closing price of these indices from 6th January, 2000 to 15th September, 2013 which further divided into three sub-periods: Pre, during and post-crisis. Using network analysis, it is found that Asian stock markets become more interdependent during the crisis than pre and post crisis, and also Hong Kong, India, South Korea and Japan are systemic important stock markets in the Asian region. Therefore, failure or shock to any of these systemic important stock markets can cause contagion to another stock market of this region. This study is useful for global investors’ in portfolio management especially during the crisis period and also for policy makers in formulating the financial regulation norms by knowing the connections between the stock markets and how the system of these stock markets changes in crisis period and after that.

Keywords: global financial crisis, Asian stock markets, network science, Kruskal algorithm

Procedia PDF Downloads 421
6551 An Efficient Algorithm of Time Step Control for Error Correction Method

Authors: Youngji Lee, Yonghyeon Jeon, Sunyoung Bu, Philsu Kim

Abstract:

The aim of this paper is to construct an algorithm of time step control for the error correction method most recently developed by one of the authors for solving stiff initial value problems. It is achieved with the generalized Chebyshev polynomial and the corresponding error correction method. The main idea of the proposed scheme is in the usage of the duplicated node points in the generalized Chebyshev polynomials of two different degrees by adding necessary sample points instead of re-sampling all points. At each integration step, the proposed method is comprised of two equations for the solution and the error, respectively. The constructed algorithm controls both the error and the time step size simultaneously and possesses a good performance in the computational cost compared to the original method. Two stiff problems are numerically solved to assess the effectiveness of the proposed scheme.

Keywords: stiff initial value problem, error correction method, generalized Chebyshev polynomial, node points

Procedia PDF Downloads 571
6550 Human Immunodeficiency Virus (HIV) Test Predictive Modeling and Identify Determinants of HIV Testing for People with Age above Fourteen Years in Ethiopia Using Data Mining Techniques: EDHS 2011

Authors: S. Abera, T. Gidey, W. Terefe

Abstract:

Introduction: Testing for HIV is the key entry point to HIV prevention, treatment, and care and support services. Hence, predictive data mining techniques can greatly benefit to analyze and discover new patterns from huge datasets like that of EDHS 2011 data. Objectives: The objective of this study is to build a predictive modeling for HIV testing and identify determinants of HIV testing for adults with age above fourteen years using data mining techniques. Methods: Cross-Industry Standard Process for Data Mining (CRISP-DM) was used to predict the model for HIV testing and explore association rules between HIV testing and the selected attributes among adult Ethiopians. Decision tree, Naïve-Bayes, logistic regression and artificial neural networks of data mining techniques were used to build the predictive models. Results: The target dataset contained 30,625 study participants; of which 16, 515 (53.9%) were women. Nearly two-fifth; 17,719 (58%), have never been tested for HIV while the rest 12,906 (42%) had been tested. Ethiopians with higher wealth index, higher educational level, belonging 20 to 29 years old, having no stigmatizing attitude towards HIV positive person, urban residents, having HIV related knowledge, information about family planning on mass media and knowing a place where to get testing for HIV showed an increased patterns with respect to HIV testing. Conclusion and Recommendation: Public health interventions should consider the identified determinants to promote people to get testing for HIV.

Keywords: data mining, HIV, testing, ethiopia

Procedia PDF Downloads 495
6549 Radical Web Text Classification Using a Composite-Based Approach

Authors: Kolade Olawande Owoeye, George R. S. Weir

Abstract:

The widespread of terrorism and extremism activities on the internet has become a major threat to the government and national securities due to their potential dangers which have necessitated the need for intelligence gathering via web and real-time monitoring of potential websites for extremist activities. However, the manual classification for such contents is practically difficult or time-consuming. In response to this challenge, an automated classification system called composite technique was developed. This is a computational framework that explores the combination of both semantics and syntactic features of textual contents of a web. We implemented the framework on a set of extremist webpages dataset that has been subjected to the manual classification process. Therein, we developed a classification model on the data using J48 decision algorithm, this is to generate a measure of how well each page can be classified into their appropriate classes. The classification result obtained from our method when compared with other states of arts, indicated a 96% success rate in classifying overall webpages when matched against the manual classification.

Keywords: extremist, web pages, classification, semantics, posit

Procedia PDF Downloads 143
6548 A Context-Sensitive Algorithm for Media Similarity Search

Authors: Guang-Ho Cha

Abstract:

This paper presents a context-sensitive media similarity search algorithm. One of the central problems regarding media search is the semantic gap between the low-level features computed automatically from media data and the human interpretation of them. This is because the notion of similarity is usually based on high-level abstraction but the low-level features do not sometimes reflect the human perception. Many media search algorithms have used the Minkowski metric to measure similarity between image pairs. However those functions cannot adequately capture the aspects of the characteristics of the human visual system as well as the nonlinear relationships in contextual information given by images in a collection. Our search algorithm tackles this problem by employing a similarity measure and a ranking strategy that reflect the nonlinearity of human perception and contextual information in a dataset. Similarity search in an image database based on this contextual information shows encouraging experimental results.

Keywords: context-sensitive search, image search, similarity ranking, similarity search

Procedia PDF Downloads 363
6547 Application of a Model-Free Artificial Neural Networks Approach for Structural Health Monitoring of the Old Lidingö Bridge

Authors: Ana Neves, John Leander, Ignacio Gonzalez, Raid Karoumi

Abstract:

Systematic monitoring and inspection are needed to assess the present state of a structure and predict its future condition. If an irregularity is noticed, repair actions may take place and the adequate intervention will most probably reduce the future costs with maintenance, minimize downtime and increase safety by avoiding the failure of the structure as a whole or of one of its structural parts. For this to be possible decisions must be made at the right time, which implies using systems that can detect abnormalities in their early stage. In this sense, Structural Health Monitoring (SHM) is seen as an effective tool for improving the safety and reliability of infrastructures. This paper explores the decision-making problem in SHM regarding the maintenance of civil engineering structures. The aim is to assess the present condition of a bridge based exclusively on measurements using the suggested method in this paper, such that action is taken coherently with the information made available by the monitoring system. Artificial Neural Networks are trained and their ability to predict structural behavior is evaluated in the light of a case study where acceleration measurements are acquired from a bridge located in Stockholm, Sweden. This relatively old bridge is presently still in operation despite experiencing obvious problems already reported in previous inspections. The prediction errors provide a measure of the accuracy of the algorithm and are subjected to further investigation, which comprises concepts like clustering analysis and statistical hypothesis testing. These enable to interpret the obtained prediction errors, draw conclusions about the state of the structure and thus support decision making regarding its maintenance.

Keywords: artificial neural networks, clustering analysis, model-free damage detection, statistical hypothesis testing, structural health monitoring

Procedia PDF Downloads 207
6546 Segmentation of Gray Scale Images of Dropwise Condensation on Textured Surfaces

Authors: Helene Martin, Solmaz Boroomandi Barati, Jean-Charles Pinoli, Stephane Valette, Yann Gavet

Abstract:

In the present work we developed an image processing algorithm to measure water droplets characteristics during dropwise condensation on pillared surfaces. The main problem in this process is the similarity between shape and size of water droplets and the pillars. The developed method divides droplets into four main groups based on their size and applies the corresponding algorithm to segment each group. These algorithms generate binary images of droplets based on both their geometrical and intensity properties. The information related to droplets evolution during time including mean radius and drops number per unit area are then extracted from the binary images. The developed image processing algorithm is verified using manual detection and applied to two different sets of images corresponding to two kinds of pillared surfaces.

Keywords: dropwise condensation, textured surface, image processing, watershed

Procedia PDF Downloads 221
6545 'Explainable Artificial Intelligence' and Reasons for Judicial Decisions: Why Justifications and Not Just Explanations May Be Required

Authors: Jacquelyn Burkell, Jane Bailey

Abstract:

Artificial intelligence (AI) solutions deployed within the justice system face the critical task of providing acceptable explanations for decisions or actions. These explanations must satisfy the joint criteria of public and professional accountability, taking into account the perspectives and requirements of multiple stakeholders, including judges, lawyers, parties, witnesses, and the general public. This research project analyzes and integrates two existing literature on explanations in order to propose guidelines for explainable AI in the justice system. Specifically, we review three bodies of literature: (i) explanations of the purpose and function of 'explainable AI'; (ii) the relevant case law, judicial commentary and legal literature focused on the form and function of reasons for judicial decisions; and (iii) the literature focused on the psychological and sociological functions of these reasons for judicial decisions from the perspective of the public. Our research suggests that while judicial ‘reasons’ (arguably accurate descriptions of the decision-making process and factors) do serve similar explanatory functions as those identified in the literature on 'explainable AI', they also serve an important ‘justification’ function (post hoc constructions that justify the decision that was reached). Further, members of the public are also looking for both justification and explanation in reasons for judicial decisions, and that the absence of either feature is likely to contribute to diminished public confidence in the legal system. Therefore, artificially automated judicial decision-making systems that simply attempt to document the process of decision-making are unlikely in many cases to be useful to and accepted within the justice system. Instead, these systems should focus on the post-hoc articulation of principles and precedents that support the decision or action, especially in cases where legal subjects’ fundamental rights and liberties are at stake.

Keywords: explainable AI, judicial reasons, public accountability, explanation, justification

Procedia PDF Downloads 125
6544 Analysis of Cooperative Learning Behavior Based on the Data of Students' Movement

Authors: Wang Lin, Li Zhiqiang

Abstract:

The purpose of this paper is to analyze the cooperative learning behavior pattern based on the data of students' movement. The study firstly reviewed the cooperative learning theory and its research status, and briefly introduced the k-means clustering algorithm. Then, it used clustering algorithm and mathematical statistics theory to analyze the activity rhythm of individual student and groups in different functional areas, according to the movement data provided by 10 first-year graduate students. It also focused on the analysis of students' behavior in the learning area and explored the law of cooperative learning behavior. The research result showed that the cooperative learning behavior analysis method based on movement data proposed in this paper is feasible. From the results of data analysis, the characteristics of behavior of students and their cooperative learning behavior patterns could be found.

Keywords: behavior pattern, cooperative learning, data analyze, k-means clustering algorithm

Procedia PDF Downloads 186
6543 An Algorithm for Determining the Arrival Behavior of a Secondary User to a Base Station in Cognitive Radio Networks

Authors: Danilo López, Edwin Rivas, Leyla López

Abstract:

This paper presents the development of an algorithm that predicts the arrival of a secondary user (SU) to a base station (BS) in a cognitive network based on infrastructure, requesting a Best Effort (BE) or Real Time (RT) type of service with a determined bandwidth (BW) implementing neural networks. The algorithm dynamically uses a neural network construction technique using the geometric pyramid topology and trains a Multilayer Perceptron Neural Networks (MLPNN) based on the historical arrival of an SU to estimate future applications. This will allow efficiently managing the information in the BS, since it precedes the arrival of the SUs in the stage of selection of the best channel in CRN. As a result, the software application determines the probability of arrival at a future time point and calculates the performance metrics to measure the effectiveness of the predictions made.

Keywords: cognitive radio, base station, best effort, MLPNN, prediction, real time

Procedia PDF Downloads 330
6542 Integrated Marketing Communication to Influencing International Standard Energy Economy Car Buying Decision of Consumers in Bangkok

Authors: Pisit Potjanajaruwit

Abstract:

The objective of this research was to study the influence of Integrated Marketing Communication on Buying Decision of Consumers in Bangkok. A total of 397 respondents were collected from customers who drive in Bangkok. A questionnaire was utilized as a tool to collect data. Statistics utilized in this research included frequency, percentage, mean, standard deviation, and multiple regression analysis. Data were analyzed by using Statistical Package for the Social Sciences. The findings revealed that the majority of respondents were male with the age between 25-34 years old, hold undergraduate degree, married and stay together. The average income of respondents was between 10,001-20,000 baht. In terms of occupation, the majority worked for private companies. The effect to the Buying Decision of Consumers in Bangkok to including sale promotion with the low interest and discount for an installment, selling by introducing and gave product information through sales persons, public relation by website, direct marketing by annual motor show and advertisement by television media.

Keywords: Bangkok metropolis, ECO car, integrated marketing communication, international standard

Procedia PDF Downloads 316
6541 Image Reconstruction Method Based on L0 Norm

Authors: Jianhong Xiang, Hao Xiang, Linyu Wang

Abstract:

Compressed sensing (CS) has a wide range of applications in sparse signal reconstruction. Aiming at the problems of low recovery accuracy and long reconstruction time of existing reconstruction algorithms in medical imaging, this paper proposes a corrected smoothing L0 algorithm based on compressed sensing (CSL0). First, an approximate hyperbolic tangent function (AHTF) that is more similar to the L0 norm is proposed to approximate the L0 norm. Secondly, in view of the "sawtooth phenomenon" in the steepest descent method and the problem of sensitivity to the initial value selection in the modified Newton method, the use of the steepest descent method and the modified Newton method are jointly optimized to improve the reconstruction accuracy. Finally, the CSL0 algorithm is simulated on various images. The results show that the algorithm proposed in this paper improves the reconstruction accuracy of the test image by 0-0. 98dB.

Keywords: smoothed L0, compressed sensing, image processing, sparse reconstruction

Procedia PDF Downloads 113
6540 A Financial Analysis of the Current State of IKEA: A Case Study

Authors: Isabela Vieira, Leonor Carvalho Garcez, Adalmiro Pereira, Tânia Teixeira

Abstract:

In the present work, we aim to analyse IKEA as a company, by focusing on its development, financial analysis and future benchmarks, as well as applying some of the knowledge learned in class, namely hedging and other financial risk mitigation solutions, to understand how IKEA navigates and protects itself from risk. The decision that led us to choose IKEA for our casework has to do with the long history of the company since the 1940s and its high internationalization in 63 different markets. The company also has clear financial reports which aided us in the making of the present essay and naturally, was a factor that contributed to our decision.

Keywords: Ikea, financial risk, risk management, hedge

Procedia PDF Downloads 51
6539 FE Analysis of Blade-Disc Dovetail Joints Using Mortar Base Frictional Contact Formulation

Authors: Abbas Moradi, Mohsen Safajoy, Reza Yazdanparast

Abstract:

Analysis of blade-disc dovetail joints is one of the biggest challenges facing designers of aero-engines. To avoid comparatively expensive experimental full-scale tests, numerical methods can be used to simulate loaded disc-blades assembly. Mortar method provides a powerful and flexible tool for solving frictional contact problems. In this study, 2D frictional contact in dovetail has been analysed based on the mortar algorithm. In order to model the friction, the classical law of coulomb and moving friction cone algorithm is applied. The solution is then obtained by solving the resulting set of non-linear equations using an efficient numerical algorithm based on Newton–Raphson Method. The numerical results show that this approach has better convergence rate and accuracy than other proposed numerical methods.

Keywords: computational contact mechanics, dovetail joints, nonlinear FEM, mortar approach

Procedia PDF Downloads 351
6538 Visual Aid and Imagery Ramification on Decision Making: An Exploratory Study Applicable in Emergency Situations

Authors: Priyanka Bharti

Abstract:

Decades ago designs were based on common sense and tradition, but after an enhancement in visualization technology and research, we are now able to comprehend the cognitive ability involved in the decoding of the visual information. However, many fields in visuals need intense research to deliver an efficient explanation for the events. Visuals are an information representation mode through images, symbols and graphics. It plays an impactful role in decision making by facilitating quick recognition, comprehension, and analysis of a situation. They enhance problem-solving capabilities by enabling the processing of more data without overloading the decision maker. As research proves that, visuals offer an improved learning environment by a factor of 400 compared to textual information. Visual information engages learners at a cognitive level and triggers the imagination, which enables the user to process the information faster (visuals are processed 60,000 times faster in the brain than text). Appropriate information, visualization, and its presentation are known to aid and intensify the decision-making process for the users. However, most literature discusses the role of visual aids in comprehension and decision making during normal conditions alone. Unlike emergencies, in a normal situation (e.g. our day to day life) users are neither exposed to stringent time constraints nor face the anxiety of survival and have sufficient time to evaluate various alternatives before making any decision. An emergency is an unexpected probably fatal real-life situation which may inflict serious ramifications on both human life and material possessions unless corrective measures are taken instantly. The situation demands the exposed user to negotiate in a dynamic and unstable scenario in the absence or lack of any preparation, but still, take swift and appropriate decisions to save life/lives or possessions. But the resulting stress and anxiety restricts cue sampling, decreases vigilance, reduces the capacity of working memory, causes premature closure in evaluating alternative options, and results in task shedding. Limited time, uncertainty, high stakes and vague goals negatively affect cognitive abilities to take appropriate decisions. More so, theory of natural decision making by experts has been understood with far more depth than that of an ordinary user. Therefore, in this study, the author aims to understand the role of visual aids in supporting rapid comprehension to take appropriate decisions during an emergency situation.

Keywords: cognition, visual, decision making, graphics, recognition

Procedia PDF Downloads 268
6537 A Project Screening System for Energy Enterprise Based on Dempster-Shafer Theory

Authors: Woosik Jang, Seung Heon Han, Seung Won Baek

Abstract:

Natural gas (NG) is an energy resource in a few countries, and most NG producers do business in politically unstable countries. In addition, as 90% of the LNG market is controlled by a small number of international oil companies (IOCs) and national oil companies (NOCs), entry of latecomers into the market is extremely limited. To meet these challenges, project viability needs to be assessed based on limited information from a project screening perspective. However, the early stages of the project have the following difficulties: (1) What are the factors to consider? (2) How many professionals do you need to decide? (3) How to make the best decision with limited information? To address this problem, this study proposes a model for evaluating LNG project viability based on the Dempster-Shafer theory (DST). A total of 11 indicators for analyzing the gas field, reflecting the characteristics of the LNG industry, and 23 indicators for analyzing the market environment, were identified. The proposed model also evaluates the LNG project based on the survey and provides uncertainty of the results based on DST as well as quantified results. Thus, the proposed model is expected to be able to support the decision-making process of the gas field project using quantitative results as a systematic framework, and it was developed as a stand-alone system to improve its usefulness in practice. Consequently, the amount of information and the mathematical approach are expected to improve the quality and opportunity of decision making for LNG projects for enterprises.

Keywords: project screen, energy enterprise, decision support system, Dempster-Shafer theory

Procedia PDF Downloads 340
6536 Offset Dependent Uniform Delay Mathematical Optimization Model for Signalized Traffic Network Using Differential Evolution Algorithm

Authors: Tahseen Saad, Halim Ceylan, Jonathan Weaver, Osman Nuri Çelik, Onur Gungor Sahin

Abstract:

A new concept of uniform delay offset dependent mathematical optimization problem is derived as the main objective for this study using a differential evolution algorithm. To control the coordination problem, which depends on offset selection and to estimate uniform delay based on the offset choice in a traffic signal network. The assumption is the periodic sinusoidal function for arrival and departure patterns. The cycle time is optimized at the entry links and the optimized value is used in the non-entry links as a common cycle time. The offset optimization algorithm is used to calculate the uniform delay at each link. The results are illustrated by using a case study and are compared with the canonical uniform delay model derived by Webster and the highway capacity manual’s model. The findings show new model minimizes the total uniform delay to almost half compared to conventional models. The mathematical objective function is robust. The algorithm convergence time is fast.

Keywords: area traffic control, traffic flow, differential evolution, sinusoidal periodic function, uniform delay, offset variable

Procedia PDF Downloads 274
6535 Evaluation of the MCFLIRT Correction Algorithm in Head Motion from Resting State fMRI Data

Authors: V. Sacca, A. Sarica, F. Novellino, S. Barone, T. Tallarico, E. Filippelli, A. Granata, P. Valentino, A. Quattrone

Abstract:

In the last few years, resting-state functional MRI (rs-fMRI) was widely used to investigate the architecture of brain networks by investigating the Blood Oxygenation Level Dependent response. This technique represented an interesting, robust and reliable approach to compare pathologic and healthy subjects in order to investigate neurodegenerative diseases evolution. On the other hand, the elaboration of rs-fMRI data resulted to be very prone to noise due to confounding factors especially the head motion. Head motion has long been known to be a source of artefacts in task-based functional MRI studies, but it has become a particularly challenging problem in recent studies using rs-fMRI. The aim of this work was to evaluate in MS patients a well-known motion correction algorithm from the FMRIB's Software Library - MCFLIRT - that could be applied to minimize the head motion distortions, allowing to correctly interpret rs-fMRI results.

Keywords: head motion correction, MCFLIRT algorithm, multiple sclerosis, resting state fMRI

Procedia PDF Downloads 212
6534 Web Data Scraping Technology Using Term Frequency Inverse Document Frequency to Enhance the Big Data Quality on Sentiment Analysis

Authors: Sangita Pokhrel, Nalinda Somasiri, Rebecca Jeyavadhanam, Swathi Ganesan

Abstract:

Tourism is a booming industry with huge future potential for global wealth and employment. There are countless data generated over social media sites every day, creating numerous opportunities to bring more insights to decision-makers. The integration of Big Data Technology into the tourism industry will allow companies to conclude where their customers have been and what they like. This information can then be used by businesses, such as those in charge of managing visitor centers or hotels, etc., and the tourist can get a clear idea of places before visiting. The technical perspective of natural language is processed by analysing the sentiment features of online reviews from tourists, and we then supply an enhanced long short-term memory (LSTM) framework for sentiment feature extraction of travel reviews. We have constructed a web review database using a crawler and web scraping technique for experimental validation to evaluate the effectiveness of our methodology. The text form of sentences was first classified through Vader and Roberta model to get the polarity of the reviews. In this paper, we have conducted study methods for feature extraction, such as Count Vectorization and TFIDF Vectorization, and implemented Convolutional Neural Network (CNN) classifier algorithm for the sentiment analysis to decide the tourist’s attitude towards the destinations is positive, negative, or simply neutral based on the review text that they posted online. The results demonstrated that from the CNN algorithm, after pre-processing and cleaning the dataset, we received an accuracy of 96.12% for the positive and negative sentiment analysis.

Keywords: counter vectorization, convolutional neural network, crawler, data technology, long short-term memory, web scraping, sentiment analysis

Procedia PDF Downloads 85
6533 Fixed Point of Lipschitz Quasi Nonexpansive Mappings

Authors: Maryam Moosavi, Hadi Khatibzadeh

Abstract:

The main purpose of this paper is to study the proximal point algorithm for quasi-nonexpansive mappings in Hadamard spaces. △-convergence and strong convergence of cyclic resolvents for a finite family of quasi-nonexpansive mappings one to a fixed point of the mappings are established

Keywords: Fixed point, Hadamard space, Proximal point algorithm, Quasi-nonexpansive sequence of mappings, Resolvent

Procedia PDF Downloads 88
6532 Expert Based System Design for Integrated Waste Management

Authors: A. Buruzs, M. F. Hatwágner, A. Torma, L. T. Kóczy

Abstract:

Recently, an increasing number of researchers have been focusing on working out realistic solutions to sustainability problems. As sustainability issues gain higher importance for organisations, the management of such decisions becomes critical. Knowledge representation is a fundamental issue of complex knowledge based systems. Many types of sustainability problems would benefit from models based on experts’ knowledge. Cognitive maps have been used for analyzing and aiding decision making. A cognitive map can be made of almost any system or problem. A fuzzy cognitive map (FCM) can successfully represent knowledge and human experience, introducing concepts to represent the essential elements and the cause and effect relationships among the concepts to model the behavior of any system. Integrated waste management systems (IWMS) are complex systems that can be decomposed to non-related and related subsystems and elements, where many factors have to be taken into consideration that may be complementary, contradictory, and competitive; these factors influence each other and determine the overall decision process of the system. The goal of the present paper is to construct an efficient IWMS which considers various factors. The authors’ intention is to propose an expert based system design approach for implementing expert decision support in the area of IWMSs and introduces an appropriate methodology for the development and analysis of group FCM. A framework for such a methodology consisting of the development and application phases is presented.

Keywords: factors, fuzzy cognitive map, group decision, integrated waste management system

Procedia PDF Downloads 275