Search results for: Atomic data
24357 Analysis of the Impact of Climate Change on Maize (Zea Mays) Yield in Central Ethiopia
Authors: Takele Nemomsa, Girma Mamo, Tesfaye Balemi
Abstract:
Climate change refers to a change in the state of the climate that can be identified (e.g. using statistical tests) by changes in the mean and/or variance of its properties and that persists for an extended period, typically decades or longer. In Ethiopia; Maize production in relation to climate change at regional and sub- regional scales have not been studied in detail. Thus, this study was aimed to analyse the impact of climate change on maize yield in Ambo Districts, Central Ethiopia. To this effect, weather data, soil data and maize experimental data for Arganne hybrid were used. APSIM software was used to investigate the response of maize (Zea mays) yield to different agronomic management practices using current and future (2020s–2080s) climate data. The climate change projections data which were downscaled using SDSM were used as input of climate data for the impact analysis. Compared to agronomic practices the impact of climate change on Arganne in Central Ethiopia is minute. However, within 2020s-2080s in Ambo area; the yield of Arganne hybrid is projected to reduce by 1.06% to 2.02%, and in 2050s it is projected to reduce by 1.56 While in 2080s; it is projected to increase by 1.03% to 2.07%. Thus, to adapt to the changing climate; farmers should consider increasing plant density and fertilizer rate per hectare.Keywords: APSIM, downscaling, response, SDSM
Procedia PDF Downloads 38324356 Aerodynamic Modeling Using Flight Data at High Angle of Attack
Authors: Rakesh Kumar, A. K. Ghosh
Abstract:
The paper presents the modeling of linear and nonlinear longitudinal aerodynamics using real flight data of Hansa-3 aircraft gathered at low and high angles of attack. The Neural-Gauss-Newton (NGN) method has been applied to model the linear and nonlinear longitudinal dynamics and estimate parameters from flight data. Unsteady aerodynamics due to flow separation at high angles of attack near stall has been included in the aerodynamic model using Kirchhoff’s quasi-steady stall model. NGN method is an algorithm that utilizes Feed Forward Neural Network (FFNN) and Gauss-Newton optimization to estimate the parameters and it does not require any a priori postulation of mathematical model or solving of equations of motion. NGN method was validated on real flight data generated at moderate angles of attack before application to the data at high angles of attack. The estimates obtained from compatible flight data using NGN method were validated by comparing with wind tunnel values and the maximum likelihood estimates. Validation was also carried out by comparing the response of measured motion variables with the response generated by using estimates a different control input. Next, NGN method was applied to real flight data generated by executing a well-designed quasi-steady stall maneuver. The results obtained in terms of stall characteristics and aerodynamic parameters were encouraging and reasonably accurate to establish NGN as a method for modeling nonlinear aerodynamics from real flight data at high angles of attack.Keywords: parameter estimation, NGN method, linear and nonlinear, aerodynamic modeling
Procedia PDF Downloads 44524355 Big Data’s Mechanistic View of Human Behavior May Displace Traditional Library Missions That Empower Users
Authors: Gabriel Gomez
Abstract:
The very concept of information seeking behavior, and the means by which librarians teach users to gain information, that is information literacy, are at the heart of how libraries deliver information, but big data will forever change human interaction with information and the way such behavior is both studied and taught. Just as importantly, big data will orient the study of behavior towards commercial ends because of a tendency towards instrumentalist views of human behavior, something one might also call a trend towards behaviorism. This oral presentation seeks to explore how the impact of big data on understandings of human behavior might impact a library information science (LIS) view of human behavior and information literacy, and what this might mean for social justice aims and concomitant community action normally at the center of librarianship. The methodology employed here is a non-empirical examination of current understandings of LIS in regards to social justice alongside an examination of the benefits and dangers foreseen with the growth of big data analysis. The rise of big data within the ever-changing information environment encapsulates a shift to a more mechanistic view of human behavior, one that can easily encompass information seeking behavior and information use. As commercial aims displace the important political and ethical aims that are often central to the missions espoused by libraries and the social sciences, the very altruism and power relations found in LIS are at risk. In this oral presentation, an examination of the social justice impulses of librarians regarding power and information demonstrates how such impulses can be challenged by big data, particularly as librarians understand user behavior and promote information literacy. The creeping behaviorist impulse inherent in the emphasis big data places on specific solutions, that is answers to question that ask how, as opposed to larger questions that hint at an understanding of why people learn or use information threaten library information science ideals. Together with the commercial nature of most big data, this existential threat can harm the social justice nature of librarianship.Keywords: big data, library information science, behaviorism, librarianship
Procedia PDF Downloads 38324354 Data Collection with Bounded-Sized Messages in Wireless Sensor Networks
Authors: Min Kyung An
Abstract:
In this paper, we study the data collection problem in Wireless Sensor Networks (WSNs) adopting the two interference models: The graph model and the more realistic physical interference model known as Signal-to-Interference-Noise-Ratio (SINR). The main issue of the problem is to compute schedules with the minimum number of timeslots, that is, to compute the minimum latency schedules, such that data from every node can be collected without any collision or interference to a sink node. While existing works studied the problem with unit-sized and unbounded-sized message models, we investigate the problem with the bounded-sized message model, and introduce a constant factor approximation algorithm. To the best known of our knowledge, our result is the first result of the data collection problem with bounded-sized model in both interference models.Keywords: data collection, collision-free, interference-free, physical interference model, SINR, approximation, bounded-sized message model, wireless sensor networks
Procedia PDF Downloads 22124353 The Twin Terminal of Pedestrian Trajectory Based on City Intelligent Model (CIM) 4.0
Authors: Chen Xi, Lao Xuerui, Li Junjie, Jiang Yike, Wang Hanwei, Zeng Zihao
Abstract:
To further promote the development of smart cities, the microscopic "nerve endings" of the City Intelligent Model (CIM) are extended to be more sensitive. In this paper, we develop a pedestrian trajectory twin terminal based on the CIM and CNN technology. It also uses 5G networks, architectural and geoinformatics technologies, convolutional neural networks, combined with deep learning networks for human behaviour recognition models, to provide empirical data such as 'pedestrian flow data and human behavioural characteristics data', and ultimately form spatial performance evaluation criteria and spatial performance warning systems, to make the empirical data accurate and intelligent for prediction and decision making.Keywords: urban planning, urban governance, CIM, artificial intelligence, convolutional neural network
Procedia PDF Downloads 14924352 Investigating the Molecular Behavior of H₂O in Caso 4 -2h₂o Two-Dimensional Nanoscale System
Authors: Manal Alhazmi, Artem Mishchenko
Abstract:
A molecular fluids' behavior and interaction with other materials at the nanoscale is a complex process. Nanoscale fluids behave so differently than macroscale fluids and interact with other materials in unique ways. It is, therefore, feasible to understand the molecular behavior of H₂O in such two-dimensional nanoscale systems by studying (CaSO4-2H2O), commonly known as gypsum. In the present study, spectroscopic measurements on a 2D structure of exfoliated gypsum crystals are carried out by Raman and IR spectroscopy. An array of gypsum flakes with thicknesses ranging from 8nm to 100nm were observed and analyzed for their Raman and IR spectrum. Water molecules stretching modes spectra lines were also measured and observed in nanoscale gypsum flakes and compared with those of bulk crystals. CaSO4-2H2O crystals have Raman and infrared bands at 3341 cm-1 resulting from the weak hydrogen bonds between the water molecules. This internal vibration of water molecules, together with external vibrations with other atoms, are responsible for these bands. There is a shift of about 70 cm-1 In the peak position of thin flakes with respect to the bulk crystal, which is a result of the different atomic arrangement from bulk to thin flake on the nano scale. An additional peak was observed in Raman spectra around 2910-3137 cm⁻¹ in thin flakes but is missing in bulk crystal. This additional peak is attributed to a combined mode of water internal (stretching mode at 3394cm⁻¹) and external vibrations. In addition to Raman and infra- red analysis of gypsum 2D structure, electrical measurements were conducted to reveal the water molecules transport behavior in such systems. Electrical capacitance of the fabricated device is measured and found to be (0.0686 *10-12) F, and the calculated dielectric constant (ε) is (12.26).Keywords: gypsum, infra-red spectroscopy, raman spectroscopy, H₂O behavior
Procedia PDF Downloads 10324351 Understanding Cyber Terrorism from Motivational Perspectives: A Qualitative Data Analysis
Authors: Yunos Zahri, Ariffin Aswami
Abstract:
Cyber terrorism represents the convergence of two worlds: virtual and physical. The virtual world is a place in which computer programs function and data move, whereas the physical world is where people live and function. The merging of these two domains is the interface being targeted in the incidence of cyber terrorism. To better understand why cyber terrorism acts are committed, this study presents the context of cyber terrorism from motivational perspectives. Motivational forces behind cyber terrorism can be social, political, ideological and economic. In this research, data are analyzed using a qualitative method. A semi-structured interview with purposive sampling was used for data collection. With the growing interconnectedness between critical infrastructures and Information & Communication Technology (ICT), selecting targets that facilitate maximum disruption can significantly influence terrorists. This work provides a baseline for defining the concept of cyber terrorism from motivational perspectives.Keywords: cyber terrorism, terrorism, motivation, qualitative analysis
Procedia PDF Downloads 42124350 Research Analysis of Urban Area Expansion Based on Remote Sensing
Authors: Sheheryar Khan, Weidong Li, Fanqian Meng
Abstract:
The Urban Heat Island (UHI) effect is one of the foremost problems out of other ecological and socioeconomic issues in urbanization. Due to this phenomenon that human-made urban areas have replaced the rural landscape with the surface that increases thermal conductivity and urban warmth; as a result, the temperature in the city is higher than in the surrounding rural areas. To affect the evidence of this phenomenon in the Zhengzhou city area, an observation of the temperature variations in the urban area is done through a scientific method that has been followed. Landsat 8 satellite images were taken from 2013 to 2015 to calculate the effect of Urban Heat Island (UHI) along with the NPP-VRRIS night-time remote sensing data to analyze the result for a better understanding of the center of the built-up area. To further support the evidence, the correlation between land surface temperatures and the normalized difference vegetation index (NDVI) was calculated using the Red band 4 and Near-infrared band 5 of the Landsat 8 data. Mono-window algorithm was applied to retrieve the land surface temperature (LST) distribution from the Landsat 8 data using Band 10 and 11 accordingly to convert the top-of-atmosphere radiance (TOA) and to convert the satellite brightness temperature. Along with Landsat 8 data, NPP-VIIRS night-light data is preprocessed to get the research area data. The analysis between Landsat 8 data and NPP night-light data was taken to compare the output center of the Built-up area of Zhengzhou city.Keywords: built-up area, land surface temperature, mono-window algorithm, NDVI, remote sensing, threshold method, Zhengzhou
Procedia PDF Downloads 13924349 From Homogeneous to Phase Separated UV-Cured Interpenetrating Polymer Networks: Influence of the System Composition on Properties and Microstructure
Authors: Caroline Rocco, Feyza Karasu, Céline Croutxé-Barghorn, Xavier Allonas, Maxime Lecompère, Gérard Riess, Yujing Zhang, Catarina Esteves, Leendert van der Ven, Rolf van Benthem Gijsbertus de With
Abstract:
Acrylates are widely used in UV-curing technology. Their high reactivity can, however, limit their conversion due to early vitrification. In addition, the free radical photopolymerization is known to be sensitive to oxygen inhibition leading to tacky surfaces. Although epoxides can lead to full polymerization, they are sensitive to humidity and exhibit low polymerization rate. To overcome the intrinsic limitations of both classes of monomers, Interpenetrating Polymer Networks (IPNs) can be synthesized. They consist of at least two cross linked polymers which are permanently entangled. They can be achieved under thermal and/or light induced polymerization in one or two steps approach. IPNs can display homogeneous to heterogeneous morphologies with various degrees of phase separation strongly linked to the monomer miscibility and also synthesis parameters. In this presentation, we synthesize UV-cured methacrylate - epoxide based IPNs with different chemical compositions in order to get a better understanding of their formation and phase separation. Miscibility before and during the photopolymerization, reaction kinetics, as well as mechanical properties and morphology have been investigated. The key parameters controlling the morphology and the phase separation, namely monomer miscibility and synthesis parameters have been identified. By monitoring the stiffness changes on the film surface, atomic force acoustic microscopy (AFAM) gave, in conjunction with polymerization kinetic profiles and thermomechanical properties, explanations and corroborated the miscibility predictions. When varying the methacrylate / epoxide ratio, it was possible to move from a miscible and highly-interpenetrated IPN to a totally immiscible and phase-separated one.Keywords: investigation of properties and morphology, kinetics, phase separation, UV-cured IPNs
Procedia PDF Downloads 36724348 A Comparative Study of the Athlete Health Records' Minimum Data Set in Selected Countries and Presenting a Model for Iran
Authors: Robab Abdolkhani, Farzin Halabchi, Reza Safdari, Goli Arji
Abstract:
Background and purpose: The quality of health record depends on the quality of its content and proper documentation. Minimum data set makes a standard method for collecting key data elements that make them easy to understand and enable comparison. The aim of this study was to determine the minimum data set for Iranian athletes’ health records. Methods: This study is an applied research of a descriptive comparative type which was carried out in 2013. By using internal and external forms of documentation, a checklist was created that included data elements of athletes health record and was subjected to debate in Delphi method by experts in the field of sports medicine and health information management. Results: From 97 elements which were subjected to discussion, 85 elements by more than 75 percent of the participants (as the main elements) and 12 elements by 50 to 75 percent of the participants (as the proposed elements) were agreed upon. In about 97 elements of the case, there was no significant difference between responses of alumni groups of sport pathology and sports medicine specialists with medical record, medical informatics and information management professionals. Conclusion: Minimum data set of Iranian athletes’ health record with four information categories including demographic information, health history, assessment and treatment plan was presented. The proposed model is available for manual and electronic medical records.Keywords: Documentation, Health record, Minimum data set, Sports medicine
Procedia PDF Downloads 47924347 Data Collection in Protected Agriculture for Subsequent Big Data Analysis: Methodological Evaluation in Venezuela
Authors: Maria Antonieta Erna Castillo Holly
Abstract:
During the last decade, data analysis, strategic decision making, and the use of artificial intelligence (AI) tools in Latin American agriculture have been a challenge. In some countries, the availability, quality, and reliability of historical data, in addition to the current data recording methodology in the field, makes it difficult to use information systems, complete data analysis, and their support for making the right strategic decisions. This is something essential in Agriculture 4.0. where the increase in the global demand for fresh agricultural products of tropical origin, during all the seasons of the year requires a change in the production model and greater agility in the responses to the consumer market demands of quality, quantity, traceability, and sustainability –that means extensive data-. Having quality information available and updated in real-time on what, how much, how, when, where, at what cost, and the compliance with production quality standards represents the greatest challenge for sustainable and profitable agriculture in the region. The objective of this work is to present a methodological proposal for the collection of georeferenced data from the protected agriculture sector, specifically in production units (UP) with tall structures (Greenhouses), initially for Venezuela, taking the state of Mérida as the geographical framework, and horticultural products as target crops. The document presents some background information and explains the methodology and tools used in the 3 phases of the work: diagnosis, data collection, and analysis. As a result, an evaluation of the process is carried out, relevant data and dashboards are displayed, and the first satellite maps integrated with layers of information in a geographic information system are presented. Finally, some improvement proposals and tentatively recommended applications are added to the process, understanding that their objective is to provide better qualified and traceable georeferenced data for subsequent analysis of the information and more agile and accurate strategic decision making. One of the main points of this study is the lack of quality data treatment in the Latin America area and especially in the Caribbean basin, being one of the most important points how to manage the lack of complete official data. The methodology has been tested with horticultural products, but it can be extended to other tropical crops.Keywords: greenhouses, protected agriculture, data analysis, geographic information systems, Venezuela
Procedia PDF Downloads 13124346 Chemical Speciation and Bioavailability of Some Essential Metal Ions In Different Fish Organs at Lake Chamo, Ethiopia
Authors: Adane Gebresilassie Hailemariam, Belete Yilma Hirpaye
Abstract:
The enhanced concentrations of heavy metals, especially in sediments, may indicate human-induced perturbations rather than natural enrichment through geological weathering. Heavy metals are non-biodegradable, persist in the environment, and are concentrated up to the food chain, leading to enhanced levels in the liver and muscle tissues of fishes, aquatic bryophytes, and aquatic biota. Marine organisms, in general fish in particular, accumulate metals to concentrations many times higher than present in water or sediment as they can take up metals in their organs and concentrate at different levels. Thus, metals acquired through the food chain due to pollution are potential chemical hazards, threatening consumers. The Nile tilapia (oreochromic niloticus), catfish (clarius garpinus), and water samples were collected from five sampling sites, namely, inlet-1, inlet-2, center, outlet-1 and outlet-2 of Lake Chamo. The concentration of major and trace metals Na, K, Mg, Ca, Cr, Co, Ni, Mn and Cu in the two fish muscles, gill and liver, was determined using an atomic absorption spectrometer (AAS) and flame photometer (FP). Metal concentrations in the water have also been evaluated within the two consecutive seasons, winter (dry) and spring (wet). The results revealed that the concentration of those metals in Tilapia’s (O. niloticus) muscle, gill, and liver were Na 44.5, 35.1, 28, Mg 2.8, 8.41, 4.61, K 43, 32, 30, Ca 1.5, 6.0, 5.5, Cr 0.91, 1.2, 3.5, Co 3.0, 2.89, 2.62, Ni 0.94, 1.99, 2.2, Mn 1.23, 1.51, 1.6 and Cu 1.1, 1.99, 3.5 mg kg-1 respectively and in catfish’s muscle, gill and liver Na 25, 39, 41.5, Mg 4.8, 2.87, 6, K 29, 38, 40, Ca 2.5, 8.10, 3.0, Cr 0.65, 3.5, 5.0, Co 2.62, 1.86, 1.73, Ni 1.10, 2.3, 3.1, Mn 1.54, 1.57, 1.59 and Cu 1.01, 1.10, 3.70 mg kg-1 respectively. The highest accumulation of Na and K were observed for tilapia muscle and catfish gill, Mg and Ca got higher in tilapia gill and catfish liver, while Co is higher in muscle of the two fish. The Cr, Ni, Mn and Cu levels were higher in the livers of the two fish species. In conculusion, metal toxicity through food chain is the current dangerous issue for human and othe animals. This needs deep focus to promot the health of living animals. The Details of the work are going to be discussed at the conference.Keywords: bioaccumulation, catfish, essential metals, nile tilapia
Procedia PDF Downloads 7824345 Reliable Consensus Problem for Multi-Agent Systems with Sampled-Data
Authors: S. H. Lee, M. J. Park, O. M. Kwon
Abstract:
In this paper, reliable consensus of multi-agent systems with sampled-data is investigated. By using a suitable Lyapunov-Krasovskii functional and some techniques such as Wirtinger Inequality, Schur Complement and Kronecker Product, the results of this systems are obtained by solving a set of Linear Matrix Inequalities(LMIs). One numerical example is included to show the effectiveness of the proposed criteria.Keywords: multi-agent, linear matrix inequalities (LMIs), kronecker product, sampled-data, Lyapunov method
Procedia PDF Downloads 52824344 Materialized View Effect on Query Performance
Authors: Yusuf Ziya Ayık, Ferhat Kahveci
Abstract:
Currently, database management systems have various tools such as backup and maintenance, and also provide statistical information such as resource usage and security. In terms of query performance, this paper covers query optimization, views, indexed tables, pre-computation materialized view, query performance analysis in which query plan alternatives can be created and the least costly one selected to optimize a query. Indexes and views can be created for related table columns. The literature review of this study showed that, in the course of time, despite the growing capabilities of the database management system, only database administrators are aware of the need for dealing with archival and transactional data types differently. These data may be constantly changing data used in everyday life, and also may be from the completed questionnaire whose data input was completed. For both types of data, the database uses its capabilities; but as shown in the findings section, instead of repeating similar heavy calculations which are carrying out same results with the same query over a survey results, using materialized view results can be in a more simple way. In this study, this performance difference was observed quantitatively considering the cost of the query.Keywords: cost of query, database management systems, materialized view, query performance
Procedia PDF Downloads 28024343 An AK-Chart for the Non-Normal Data
Authors: Chia-Hau Liu, Tai-Yue Wang
Abstract:
Traditional multivariate control charts assume that measurement from manufacturing processes follows a multivariate normal distribution. However, this assumption may not hold or may be difficult to verify because not all the measurement from manufacturing processes are normal distributed in practice. This study develops a new multivariate control chart for monitoring the processes with non-normal data. We propose a mechanism based on integrating the one-class classification method and the adaptive technique. The adaptive technique is used to improve the sensitivity to small shift on one-class classification in statistical process control. In addition, this design provides an easy way to allocate the value of type I error so it is easier to be implemented. Finally, the simulation study and the real data from industry are used to demonstrate the effectiveness of the propose control charts.Keywords: multivariate control chart, statistical process control, one-class classification method, non-normal data
Procedia PDF Downloads 42224342 Text Mining of Veterinary Forums for Epidemiological Surveillance Supplementation
Authors: Samuel Munaf, Kevin Swingler, Franz Brülisauer, Anthony O’Hare, George Gunn, Aaron Reeves
Abstract:
Web scraping and text mining are popular computer science methods deployed by public health researchers to augment traditional epidemiological surveillance. However, within veterinary disease surveillance, such techniques are still in the early stages of development and have not yet been fully utilised. This study presents an exploration into the utility of incorporating internet-based data to better understand the smallholder farming communities within Scotland by using online text extraction and the subsequent mining of this data. Web scraping of the livestock fora was conducted in conjunction with text mining of the data in search of common themes, words, and topics found within the text. Results from bi-grams and topic modelling uncover four main topics of interest within the data pertaining to aspects of livestock husbandry: feeding, breeding, slaughter, and disposal. These topics were found amongst both the poultry and pig sub-forums. Topic modeling appears to be a useful method of unsupervised classification regarding this form of data, as it has produced clusters that relate to biosecurity and animal welfare. Internet data can be a very effective tool in aiding traditional veterinary surveillance methods, but the requirement for human validation of said data is crucial. This opens avenues of research via the incorporation of other dynamic social media data, namely Twitter and Facebook/Meta, in addition to time series analysis to highlight temporal patterns.Keywords: veterinary epidemiology, disease surveillance, infodemiology, infoveillance, smallholding, social media, web scraping, sentiment analysis, geolocation, text mining, NLP
Procedia PDF Downloads 9924341 Panel Application for Determining Impact of Real Exchange Rate and Security on Tourism Revenues: Countries with Middle and High Level Tourism Income
Authors: M. Koray Cetin, Mehmet Mert
Abstract:
The purpose of the study is to examine impacts on tourism revenues of the exchange rate and country overall security level. There are numerous studies that examine the bidirectional relation between macroeconomic factors and tourism revenues and tourism demand. Most of the studies support the existence of impact of tourism revenues on growth rate but not vice versa. Few studies examine the impact of factors like real exchange rate or purchasing power parity on the tourism revenues. In this context, firstly impact of real exchange rate on tourism revenues examination is aimed. Because exchange rate is one of the main determinants of international tourism services price in guests currency unit. Another determinant of tourism demand for a country is country’s overall security level. This issue can be handled in the context of the relationship between tourism revenues and overall security including turmoil, terrorism, border problem, political violence. In this study, factors are handled for several countries which have tourism revenues on a certain level. With this structure, it is a panel data, and it is evaluated with panel data analysis techniques. Panel data have at least two dimensions, and one of them is time dimensions. The panel data analysis techniques are applied to data gathered from Worldbank data web page. In this study, it is expected to find impacts of real exchange rate and security factors on tourism revenues for the countries that have noteworthy tourism revenues.Keywords: exchange rate, panel data analysis, security, tourism revenues
Procedia PDF Downloads 35124340 The Effect of General Data Protection Regulation on South Asian Data Protection Laws
Authors: Sumedha Ganjoo, Santosh Goswami
Abstract:
The rising reliance on technology places national security at the forefront of 21st-century issues. It complicates the efforts of emerging and developed countries to combat cyber threats and increases the inherent risk factors connected with technology. The inability to preserve data securely might have devastating repercussions on a massive scale. Consequently, it is vital to establish national, regional, and global data protection rules and regulations that penalise individuals who participate in immoral technology usage and exploit the inherent vulnerabilities of technology. This study paper seeks to analyse GDPR-inspired Bills in the South Asian Region and determine their suitability for the development of a worldwide data protection framework, considering that Asian countries are much more diversified than European ones. In light of this context, the objectives of this paper are to identify GDPR-inspired Bills in the South Asian Region, identify their similarities and differences, as well as the obstacles to developing a regional-level data protection mechanism, thereby satisfying the need to develop a global-level mechanism. Due to the qualitative character of this study, the researcher did a comprehensive literature review of prior research papers, journal articles, survey reports, and government publications on the aforementioned topics. Taking into consideration the survey results, the researcher conducted a critical analysis of the significant parameters highlighted in the literature study. Many nations in the South Asian area are in the process of revising their present data protection measures in accordance with GDPR, according to the primary results of this study. Consideration is given to the data protection laws of Thailand, Malaysia, China, and Japan. Significant parallels and differences in comparison to GDPR have been discussed in detail. The conclusion of the research analyses the development of various data protection legislation regimes in South Asia.Keywords: data privacy, GDPR, Asia, data protection laws
Procedia PDF Downloads 8224339 Longitudinal Analysis of Internet Speed Data in the Gulf Cooperation Council Region
Authors: Musab Isah
Abstract:
This paper presents a longitudinal analysis of Internet speed data in the Gulf Cooperation Council (GCC) region, focusing on the most populous cities of each of the six countries – Riyadh, Saudi Arabia; Dubai, UAE; Kuwait City, Kuwait; Doha, Qatar; Manama, Bahrain; and Muscat, Oman. The study utilizes data collected from the Measurement Lab (M-Lab) infrastructure over a five-year period from January 1, 2019, to December 31, 2023. The analysis includes downstream and upstream throughput data for the cities, covering significant events such as the launch of 5G networks in 2019, COVID-19-induced lockdowns in 2020 and 2021, and the subsequent recovery period and return to normalcy. The results showcase substantial increases in Internet speeds across the cities, highlighting improvements in both download and upload throughput over the years. All the GCC countries have achieved above-average Internet speeds that can conveniently support various online activities and applications with excellent user experience.Keywords: internet data science, internet performance measurement, throughput analysis, internet speed, measurement lab, network diagnostic tool
Procedia PDF Downloads 6224338 A Web Service Based Sensor Data Management System
Authors: Rose A. Yemson, Ping Jiang, Oyedeji L. Inumoh
Abstract:
The deployment of wireless sensor network has rapidly increased, however with the increased capacity and diversity of sensors, and applications ranging from biological, environmental, military etc. generates tremendous volume of data’s where more attention is placed on the distributed sensing and little on how to manage, analyze, retrieve and understand the data generated. This makes it more quite difficult to process live sensor data, run concurrent control and update because sensor data are either heavyweight, complex, and slow. This work will focus on developing a web service platform for automatic detection of sensors, acquisition of sensor data, storage of sensor data into a database, processing of sensor data using reconfigurable software components. This work will also create a web service based sensor data management system to monitor physical movement of an individual wearing wireless network sensor technology (SunSPOT). The sensor will detect movement of that individual by sensing the acceleration in the direction of X, Y and Z axes accordingly and then send the sensed reading to a database that will be interfaced with an internet platform. The collected sensed data will determine the posture of the person such as standing, sitting and lying down. The system is designed using the Unified Modeling Language (UML) and implemented using Java, JavaScript, html and MySQL. This system allows real time monitoring an individual closely and obtain their physical activity details without been physically presence for in-situ measurement which enables you to work remotely instead of the time consuming check of an individual. These details can help in evaluating an individual’s physical activity and generate feedback on medication. It can also help in keeping track of any mandatory physical activities required to be done by the individuals. These evaluations and feedback can help in maintaining a better health status of the individual and providing improved health care.Keywords: HTML, java, javascript, MySQL, sunspot, UML, web-based, wireless network sensor
Procedia PDF Downloads 21224337 Unlocking Health Insights: Studying Data for Better Care
Authors: Valentina Marutyan
Abstract:
Healthcare data mining is a rapidly developing field at the intersection of technology and medicine that has the potential to change our understanding and approach to providing healthcare. Healthcare and data mining is the process of examining huge amounts of data to extract useful information that can be applied in order to improve patient care, treatment effectiveness, and overall healthcare delivery. This field looks for patterns, trends, and correlations in a variety of healthcare datasets, such as electronic health records (EHRs), medical imaging, patient demographics, and treatment histories. To accomplish this, it uses advanced analytical approaches. Predictive analysis using historical patient data is a major area of interest in healthcare data mining. This enables doctors to get involved early to prevent problems or improve results for patients. It also assists in early disease detection and customized treatment planning for every person. Doctors can customize a patient's care by looking at their medical history, genetic profile, current and previous therapies. In this way, treatments can be more effective and have fewer negative consequences. Moreover, helping patients, it improves the efficiency of hospitals. It helps them determine the number of beds or doctors they require in regard to the number of patients they expect. In this project are used models like logistic regression, random forests, and neural networks for predicting diseases and analyzing medical images. Patients were helped by algorithms such as k-means, and connections between treatments and patient responses were identified by association rule mining. Time series techniques helped in resource management by predicting patient admissions. These methods improved healthcare decision-making and personalized treatment. Also, healthcare data mining must deal with difficulties such as bad data quality, privacy challenges, managing large and complicated datasets, ensuring the reliability of models, managing biases, limited data sharing, and regulatory compliance. Finally, secret code of data mining in healthcare helps medical professionals and hospitals make better decisions, treat patients more efficiently, and work more efficiently. It ultimately comes down to using data to improve treatment, make better choices, and simplify hospital operations for all patients.Keywords: data mining, healthcare, big data, large amounts of data
Procedia PDF Downloads 7624336 A Novel Heuristic for Analysis of Large Datasets by Selecting Wrapper-Based Features
Authors: Bushra Zafar, Usman Qamar
Abstract:
Large data sample size and dimensions render the effectiveness of conventional data mining methodologies. A data mining technique are important tools for collection of knowledgeable information from variety of databases and provides supervised learning in the form of classification to design models to describe vital data classes while structure of the classifier is based on class attribute. Classification efficiency and accuracy are often influenced to great extent by noisy and undesirable features in real application data sets. The inherent natures of data set greatly masks its quality analysis and leave us with quite few practical approaches to use. To our knowledge first time, we present a new approach for investigation of structure and quality of datasets by providing a targeted analysis of localization of noisy and irrelevant features of data sets. Machine learning is based primarily on feature selection as pre-processing step which offers us to select few features from number of features as a subset by reducing the space according to certain evaluation criterion. The primary objective of this study is to trim down the scope of the given data sample by searching a small set of important features which may results into good classification performance. For this purpose, a heuristic for wrapper-based feature selection using genetic algorithm and for discriminative feature selection an external classifier are used. Selection of feature based on its number of occurrence in the chosen chromosomes. Sample dataset has been used to demonstrate proposed idea effectively. A proposed method has improved average accuracy of different datasets is about 95%. Experimental results illustrate that proposed algorithm increases the accuracy of prediction of different diseases.Keywords: data mining, generic algorithm, KNN algorithms, wrapper based feature selection
Procedia PDF Downloads 31624335 Evaluation of Health Risk Degree Arising from Heavy Metals Present in Drinking Water
Authors: Alma Shehu, Majlinda Vasjari, Sonila Duka, Loreta Vallja, Nevila Broli
Abstract:
Humans consume drinking water from several sources, including tap water, bottled water, natural springs, filtered tap water, etc. The quality of drinking water is crucial for human survival given the fact that the consumption of contaminated drinking water is related to many diseases and deaths all over the world. This study represents the investigation of the quality and health risks of different types of drinking waters being consumed by the population in Albania, arising from heavy metals content. Investigated water included industrialized water, tap water, and spring water. In total, 20 samples were analyzed for the content of Pb, Cd, Cr, Ni, Cu, Fe, Zn, Al, and Mn. Determination of each metal concentration in selected samples was conducted by atomic absorption spectroscopy method with electrothermal atomization, GFAAS. Water quality was evaluated by comparing the obtained metals concentrations with the recommended maximum limits, according to the European Directive (98/83/EC) and Guidelines for Drinking Water Quality (WHO, 2017). Metal Index (MI) was used to assess the overall water quality due to heavy metals content. Health risk assessment was conducted based on the recommendations of the USEPA (1996), human health risk assessment, via ingestion. Results of this investigation showed that Al, Ni, Fe, and Cu were the metals found in higher concentrations while Cd exhibited the lowest concentration. Among the analyzed metals, Al (one sample) and Ni (in five samples) exceeded the maximum allowed limit. Based on the pollution metal index, it was concluded that the overall quality of Glina bottled water can be considered as toxic to humans, while the quality of bottled water (Trebeshina) was classified as moderately toxic. Values of health risk quotient (HQ) varied between 1x10⁻⁶-1.3x10⁻¹, following the order Ni > Cd > Pb > Cu > Al > Fe > Zn > Mn. All the values were lower than 1, which suggests that the analyzed samples exhibit no health risk for humans.Keywords: drinking water, health risk assessment, heavy metals, pollution index
Procedia PDF Downloads 13024334 Improve Student Performance Prediction Using Majority Vote Ensemble Model for Higher Education
Authors: Wade Ghribi, Abdelmoty M. Ahmed, Ahmed Said Badawy, Belgacem Bouallegue
Abstract:
In higher education institutions, the most pressing priority is to improve student performance and retention. Large volumes of student data are used in Educational Data Mining techniques to find new hidden information from students' learning behavior, particularly to uncover the early symptom of at-risk pupils. On the other hand, data with noise, outliers, and irrelevant information may provide incorrect conclusions. By identifying features of students' data that have the potential to improve performance prediction results, comparing and identifying the most appropriate ensemble learning technique after preprocessing the data, and optimizing the hyperparameters, this paper aims to develop a reliable students' performance prediction model for Higher Education Institutions. Data was gathered from two different systems: a student information system and an e-learning system for undergraduate students in the College of Computer Science of a Saudi Arabian State University. The cases of 4413 students were used in this article. The process includes data collection, data integration, data preprocessing (such as cleaning, normalization, and transformation), feature selection, pattern extraction, and, finally, model optimization and assessment. Random Forest, Bagging, Stacking, Majority Vote, and two types of Boosting techniques, AdaBoost and XGBoost, are ensemble learning approaches, whereas Decision Tree, Support Vector Machine, and Artificial Neural Network are supervised learning techniques. Hyperparameters for ensemble learning systems will be fine-tuned to provide enhanced performance and optimal output. The findings imply that combining features of students' behavior from e-learning and students' information systems using Majority Vote produced better outcomes than the other ensemble techniques.Keywords: educational data mining, student performance prediction, e-learning, classification, ensemble learning, higher education
Procedia PDF Downloads 10824333 Foundation of the Information Model for Connected-Cars
Authors: Hae-Won Seo, Yong-Gu Lee
Abstract:
Recent progress in the next generation of automobile technology is geared towards incorporating information technology into cars. Collectively called smart cars are bringing intelligence to cars that provides comfort, convenience and safety. A branch of smart cars is connected-car system. The key concept in connected-cars is the sharing of driving information among cars through decentralized manner enabling collective intelligence. This paper proposes a foundation of the information model that is necessary to define the driving information for smart-cars. Road conditions are modeled through a unique data structure that unambiguously represent the time variant traffics in the streets. Additionally, the modeled data structure is exemplified in a navigational scenario and usage using UML. Optimal driving route searching is also discussed using the proposed data structure in a dynamically changing road conditions.Keywords: connected-car, data modeling, route planning, navigation system
Procedia PDF Downloads 37424332 A Supervised Learning Data Mining Approach for Object Recognition and Classification in High Resolution Satellite Data
Authors: Mais Nijim, Rama Devi Chennuboyina, Waseem Al Aqqad
Abstract:
Advances in spatial and spectral resolution of satellite images have led to tremendous growth in large image databases. The data we acquire through satellites, radars and sensors consists of important geographical information that can be used for remote sensing applications such as region planning, disaster management. Spatial data classification and object recognition are important tasks for many applications. However, classifying objects and identifying them manually from images is a difficult task. Object recognition is often considered as a classification problem, this task can be performed using machine-learning techniques. Despite of many machine-learning algorithms, the classification is done using supervised classifiers such as Support Vector Machines (SVM) as the area of interest is known. We proposed a classification method, which considers neighboring pixels in a region for feature extraction and it evaluates classifications precisely according to neighboring classes for semantic interpretation of region of interest (ROI). A dataset has been created for training and testing purpose; we generated the attributes by considering pixel intensity values and mean values of reflectance. We demonstrated the benefits of using knowledge discovery and data-mining techniques, which can be on image data for accurate information extraction and classification from high spatial resolution remote sensing imagery.Keywords: remote sensing, object recognition, classification, data mining, waterbody identification, feature extraction
Procedia PDF Downloads 34024331 Automated Multisensory Data Collection System for Continuous Monitoring of Refrigerating Appliances Recycling Plants
Authors: Georgii Emelianov, Mikhail Polikarpov, Fabian Hübner, Jochen Deuse, Jochen Schiemann
Abstract:
Recycling refrigerating appliances plays a major role in protecting the Earth's atmosphere from ozone depletion and emissions of greenhouse gases. The performance of refrigerator recycling plants in terms of material retention is the subject of strict environmental certifications and is reviewed periodically through specialized audits. The continuous collection of Refrigerator data required for the input-output analysis is still mostly manual, error-prone, and not digitalized. In this paper, we propose an automated data collection system for recycling plants in order to deduce expected material contents in individual end-of-life refrigerating appliances. The system utilizes laser scanner measurements and optical data to extract attributes of individual refrigerators by applying transfer learning with pre-trained vision models and optical character recognition. Based on Recognized features, the system automatically provides material categories and target values of contained material masses, especially foaming and cooling agents. The presented data collection system paves the way for continuous performance monitoring and efficient control of refrigerator recycling plants.Keywords: automation, data collection, performance monitoring, recycling, refrigerators
Procedia PDF Downloads 16424330 Sales Patterns Clustering Analysis on Seasonal Product Sales Data
Authors: Soojin Kim, Jiwon Yang, Sungzoon Cho
Abstract:
As a seasonal product is only in demand for a short time, inventory management is critical to profits. Both markdowns and stockouts decrease the return on perishable products; therefore, researchers have been interested in the distribution of seasonal products with the aim of maximizing profits. In this study, we propose a data-driven seasonal product sales pattern analysis method for individual retail outlets based on observed sales data clustering; the proposed method helps in determining distribution strategies.Keywords: clustering, distribution, sales pattern, seasonal product
Procedia PDF Downloads 59524329 AFM Probe Sensor Designed for Cellular Membrane Components
Authors: Sarmiza Stanca, Wolfgang Fritzsche, Christoph Krafft, Jürgen Popp
Abstract:
Independent of the cell type a thin layer of a few nanometers thickness surrounds the cell interior as the cellular membrane. The transport of ions and molecules through the membrane is achieved in a very precise way by pores. Understanding the process of opening and closing the pores due to an electrochemical gradient across the membrane requires knowledge of the pore constitutive proteins. Recent reports prove the access to the molecular level of the cellular membrane by atomic force microscopy (AFM). This technique also permits an electrochemical study in the immediate vicinity of the tip. Specific molecules can be electrochemically localized in the natural cellular membrane. Our work aims to recognize the protein domains of the pores using an AFM probe as a miniaturized amperometric sensor, and to follow the protein behavior while changing the applied potential. The intensity of the current produced between the surface and the AFM probe is amplified and detected simultaneously with the surface imaging. The AFM probe plays the role of the working electrode and the substrate, a conductive glass on which the cells are grown, represent the counter electrode. For a better control of the electric potential on the probe, a third electrode Ag/AgCl wire is mounted in the circuit as a reference electrode. The working potential is applied between the electrodes with a programmable source and the current intensity in the circuit is recorded with a multimeter. The applied potential considers the overpotential at the electrode surface and the potential drop due to the current flow through the system. The reported method permits a high resolved electrochemical study of the protein domains on the living cell membrane. The amperometric map identifies areas of different current intensities on the pore depending on the applied potential. The reproducibility of this method is limited by the tip shape, the uncontrollable capacitance, which occurs at the apex and a potential local charge separation.Keywords: AFM, sensor, membrane, pores, proteins
Procedia PDF Downloads 30724328 Probability Sampling in Matched Case-Control Study in Drug Abuse
Authors: Surya R. Niraula, Devendra B Chhetry, Girish K. Singh, S. Nagesh, Frederick A. Connell
Abstract:
Background: Although random sampling is generally considered to be the gold standard for population-based research, the majority of drug abuse research is based on non-random sampling despite the well-known limitations of this kind of sampling. Method: We compared the statistical properties of two surveys of drug abuse in the same community: one using snowball sampling of drug users who then identified “friend controls” and the other using a random sample of non-drug users (controls) who then identified “friend cases.” Models to predict drug abuse based on risk factors were developed for each data set using conditional logistic regression. We compared the precision of each model using bootstrapping method and the predictive properties of each model using receiver operating characteristics (ROC) curves. Results: Analysis of 100 random bootstrap samples drawn from the snowball-sample data set showed a wide variation in the standard errors of the beta coefficients of the predictive model, none of which achieved statistical significance. One the other hand, bootstrap analysis of the random-sample data set showed less variation, and did not change the significance of the predictors at the 5% level when compared to the non-bootstrap analysis. Comparison of the area under the ROC curves using the model derived from the random-sample data set was similar when fitted to either data set (0.93, for random-sample data vs. 0.91 for snowball-sample data, p=0.35); however, when the model derived from the snowball-sample data set was fitted to each of the data sets, the areas under the curve were significantly different (0.98 vs. 0.83, p < .001). Conclusion: The proposed method of random sampling of controls appears to be superior from a statistical perspective to snowball sampling and may represent a viable alternative to snowball sampling.Keywords: drug abuse, matched case-control study, non-probability sampling, probability sampling
Procedia PDF Downloads 493