Search results for: energy performance certificate EPBD
5969 Buckling Resistance of GFRP Sandwich Infill Panels with Different Cores under Increased Temperatures
Authors: WooYoung Jung, V. Sim
Abstract:
This paper presents numerical analysis in terms of buckling resistance strength of polymer matrix composite (PMC) infill panels system under the influence of temperature on the foam core. Failure mode under in-plane compression is investigated by means of numerical analysis with ABAQUS platform. Parameters considered in this study are contact length and both the type of foam for core and the variation of its Young's Modulus under the thermal influence. Variation of temperature is considered in static cases and only applied to core. Indeed, it is shown that the effect of temperature on the panel system mechanical properties is significance. Moreover, the variations of temperature result in the decrements of the system strength. This is due to the polymeric nature of this material. Additionally, the contact length also displays the effect on performance of infill panel. Their significance factors are based on type of polymer for core. Hence, by comparing difference type of core material, the variation can be reducing.Keywords: buckling, contact length, foam core, temperature dependent
Procedia PDF Downloads 3025968 Examining Professional Challenges for School Social Work in Swedish Elementary Schools: A Focus Group Study
Authors: Maria Kjellgren, Sara Lilliehorn, Urban Markström
Abstract:
Critical components that influence the role and performance of school social workers in Swedish elementary schools will be described and analysed, such as formal regulations, professional self-understanding, and the SSWs’ role in the interplay between professional domains involved in elementary school. The data collection was conducted through four semi-structured focus group interviews with a total of 22 SSWs in four different regions in Sweden. The result reveals three main challenges for the School Social Worker (SSW): (1) To navigate in a pedagogic and medical arena within a multidisciplinary team, (2) To manage ambiguity without any formal regulations and unclear settings and leadership and finally, (3) To negotiate tasks at different levels, with a health promotional and preventive focus, where the SSW ends up, mainly in remedial work with individual children. The results also disclosed that SSWs hold a vague professional self-understanding position with a little formal mandate to perform their work.Keywords: school social worker, multidisciplinary team, counselling, professional self-understanding, formal regulations
Procedia PDF Downloads 745967 Microwave-Assisted Synthesis of RuO2-TiO2 Electrodes with Improved Chlorine and Oxygen Evolutions
Authors: Tran Le Luu, Jeyong Yoon
Abstract:
RuO2-TiO2 electrode now becomes popular in the chlor-alkali industry because of high electrocatalytic and stability with chlorine and oxygen evolutions. Using alternative green method for preparation RuO2-TiO2 electrode is necessary to reduce the cost, time. In addition, it is needed to increase the electrocatalyst performance, stability, and environmental compatibility. In this study, the Ti/RuO2-TiO2 electrodes were synthesized using sol-gel method under microwave irradiation and investigated for the anodic chlorine and oxygen evolutions. This method produced small size and uniform distribution of RuO2-TiO2 nanoparticles with mean diameter of 8-10 nm on the big crack size surface which contributes for the increasing of the outer active surface area. The chlorine, oxygen evolution efficiency and stability comparisons show considerably higher for microwave-assisted coated electrodes than for those obtained by the conventional heating method. The microwave-assisted sol-gel route has been identified as a novel and powerful method for quick synthesis of RuO2–TiO2 electrodes with excellent chlorine and oxygen evolution performances.Keywords: RuO2, electro-catalyst, sol-gel, microwave, chlorine, oxygen evolution
Procedia PDF Downloads 2585966 MXene Quantum Dots Decorated Double-Shelled Ceo₂ Hollow Spheres for Efficient Electrocatalytic Nitrogen Oxidation
Authors: Quan Li, Dongcai Shen, Zhengting Xiao, Xin Liu Mingrui Wu, Licheng Liu, Qin Li, Xianguo Li, Wentai Wang
Abstract:
Direct electrocatalytic nitrogen oxidation (NOR) provides a promising alternative strategy for synthesizing high-value-added nitric acid from widespread N₂, which overcomes the disadvantages of the Haber-Bosch-Ostwald process. However, the NOR process suffers from the limitation of high N≡N bonding energy (941 kJ mol− ¹), sluggish kinetics, low efficiency and yield. It is a prerequisite to develop more efficient electrocatalysts for NOR. Herein, we synthesized double-shelled CeO₂ hollow spheres (D-CeO₂) and further modified with Ti₃C₂ MXene quantum dots (MQDs) for electrocatalytic N₂ oxidation, which exhibited a NO₃− yield of 71.25 μg h− ¹ mgcat− ¹ and FE of 31.80% at 1.7 V. The unique quantum size effect and abundant edge active sites lead to a more effective capture of nitrogen. Moreover, the double-shelled hollow structure is favorable for N₂ fixation and gathers intermediate products in the interlayer of the core-shell. The in-situ infrared Fourier transform spectroscopy confirmed the formation of *NO and NO₃− species during the NOR reaction, and the kinetics and possible pathways of NOR were calculated by density functional theory (DFT). In addition, a Zn-N₂ reaction device was assembled with D-CeO₂/MQDs as anode and Zn plate as cathode, obtaining an extremely high NO₃− yield of 104.57 μg h− ¹ mgcat− ¹ at 1 mA cm− ².Keywords: electrocatalytic N₂ oxidation, nitrate production, CeO₂, MXene quantum dots, double-shelled hollow spheres
Procedia PDF Downloads 765965 Perfectly Matched Layer Boundary Stabilized Using Multiaxial Stretching Functions
Authors: Adriano Trono, Federico Pinto, Diego Turello, Marcelo A. Ceballos
Abstract:
Numerical modeling of dynamic soil-structure interaction problems requires an adequate representation of the unbounded characteristics of the ground, material non-linearity of soils, and geometrical non-linearities such as large displacements due to rocking of the structure. In order to account for these effects simultaneously, it is often required that the equations of motion are solved in the time domain. However, boundary conditions in conventional finite element codes generally present shortcomings in fully absorbing the energy of outgoing waves. In this sense, the Perfectly Matched Layers (PML) technique allows a satisfactory absorption of inclined body waves, as well as surface waves. However, the PML domain is inherently unstable, meaning that it its instability does not depend upon the discretization considered. One way to stabilize the PML domain is to use multiaxial stretching functions. This development is questionable because some Jacobian terms of the coordinate transformation are not accounted for. For this reason, the resulting absorbing layer element is often referred to as "uncorrected M-PML” in the literature. In this work, the strong formulation of the "corrected M-PML” absorbing layer is proposed using multiaxial stretching functions that incorporate all terms of the coordinate transformation. The results of the stable model are compared with reference solutions obtained from extended domain models.Keywords: mixed finite elements, multiaxial stretching functions, perfectly matched layer, soil-structure interaction
Procedia PDF Downloads 765964 Software Quality Assurance in 5G Technology-Redefining Wireless Communication: A Comprehensive Survey
Authors: Sumbal Riaz, Sardar-un-Nisa, Mehreen Sirshar
Abstract:
5G - The 5th generation of mobile phone and data communication standards is the next edge of innovation for whole mobile industry. 5G is Real Wireless World System and it will provide a totally wireless communication system all over the world without limitations. 5G uses many 4g technologies and it will hit the market in 2020. This research is the comprehensive survey on the quality parameters of 5G technology.5G provide High performance, Interoperability, easy roaming, fully converged services, friendly interface and scalability at low cost. To meet the traffic demands in future fifth generation wireless communications systems will include i) higher densification of heterogeneous networks with massive deployment of small base stations supporting various Radio Access Technologies (RATs), ii) use of massive Multiple Input Multiple Output (MIMO) arrays, iii) use of millimetre Wave spectrum where larger wider frequency bands are available, iv) direct device to device (D2D) communication, v) simultaneous transmission and reception, vi) cognitive radio technology.Keywords: 5G, 5th generation, innovation, standard, wireless communication
Procedia PDF Downloads 4505963 Novel CFRP Adhesive Joints and Structures for Offshore Application
Authors: M. R. Abusrea, Shiyi Jiang, Dingding Chen, Kazuo Arakawa
Abstract:
Novel wind-lens turbine designs can augment power output. Vacuum-Assisted Resin Transfer Molding (VARTM) is used to form large and complex structures from a Carbon Fiber Reinforced Polymer (CFRP) composite. Typically, wind-lens turbine structures are fabricated in segments, and then bonded to form the final structure. This paper introduces five new adhesive joints, divided into two groups: One is constructed between dry carbon and CFRP fabrics, and the other is constructed with two dry carbon fibers. All joints and CFRP fabrics were made in our laboratory using VARTM manufacturing techniques. Specimens were prepared for tensile testing to measure joint performance. The results showed that the second group of joints achieved a higher tensile strength than the first group. On the other hand, the tensile fracture behavior of the two groups showed the same pattern of crack originating near the joint ends followed by crack propagation until fracture.Keywords: adhesive joints, CFRP, VARTM, resin transfer molding
Procedia PDF Downloads 4395962 Metabolic and Adaptive Laboratory Evolutionary Engineering (ALE) of Saccharomyces cerevisiae for Second Generation Biofuel Production
Authors: Farnaz Yusuf, Naseem A. Gaur
Abstract:
The increase in environmental concerns, rapid depletion of fossil fuel reserves and intense interest in achieving energy security has led to a global research effort towards developing renewable sources of fuels. Second generation biofuels have attracted more attention recently as the use of lignocellulosic biomass can reduce fossil fuel dependence and is environment-friendly. Xylose is the main pentose and second most abundant sugar after glucose in lignocelluloses. Saccharomyces cerevisiae does not readily uptake and use pentose sugars. For an economically feasible biofuel production, both hexose and pentose sugars must be fermented to ethanol. Therefore, it is important to develop S. cerevisiae host platforms with more efficient xylose utilization. This work aims to construct a xylose fermenting yeast strains with engineered oxido-reductative pathway for xylose metabolism. Engineered strain was further improved by adaptive evolutionary engineering approach. The engineered strain is able to grow on xylose as sole carbon source with the maximum ethanol yield of 0.39g/g xylose and productivity of 0.139g/l/h at 96 hours. The further improvement in strain development involves over expression of pentose phosphate pathway and protein engineering of xylose reductase/xylitol dehydrogenase to change their cofactor specificity in order to reduce xylitol accumulation.Keywords: biofuel, lignocellulosic biomass, saccharomyces cerevisiae, xylose
Procedia PDF Downloads 2195961 A Phase Field Approach to Model Crack Interface Interaction in Ceramic Matrix Composites
Authors: Dhaladhuli Pranavi, Amirtham Rajagopal
Abstract:
There are various failure modes in ceramic matrix composites; notable ones are fiber breakage, matrix cracking and fiber matrix debonding. Crack nucleation and propagation in microstructure of such composites requires an understanding of interaction of crack with the multiple inclusion heterogeneous system and interfaces. In order to assess structural integrity, the material parameters especially of the interface that governs the crack growth should be determined. In the present work, a nonlocal phase field approach is proposed to model the crack interface interaction in such composites. Nonlocal approaches help in understanding the complex mechanisms of delamination growth and mitigation and operates at a material length scale. The performance of the proposed formulation is illustrated through representative numerical examples. The model proposed is implemented in the framework of the finite element method. Several parametric studies on interface crack interaction are conducted. The proposed model is easy and simple to implement and works very well in modeling fracture in composite systems.Keywords: composite, interface, nonlocal, phase field
Procedia PDF Downloads 1465960 Durability of Reinforced Concrete Structure on Very High Aggressive Environment: A Case Study
Authors: Karla Peitl Miller, Leomar Bravin Porto, Kaitto Correa Fraga, Nataniele Eler Mendes
Abstract:
This paper presents the evaluation and study of a real reinforced concrete structure of a fertilizer storage building, constructed on a Vale’s Port at Brazil, which has been recently under refurbishment. Data that will be shared and commented aim to show how wrong choices in project concepts allied to a very high aggressive environment lead to a fast track degradation, incurring on a hazardous condition associated with huge and expensive treatment for repair and guarantee of minimum performance conditions and service life. It will be also shown and discussed all the covered steps since pathological manifestations first signs were observed until the complete revitalization and reparation planning would be drawn. The conclusions of the work easily explicit the importance of professional technical qualification, the importance of minimum requirements for design and structural reforms, and mainly, the importance of good inspection and diagnostic engineering continuous work.Keywords: durability, reinforced concrete repair, structural inspection, diagnostic engineering
Procedia PDF Downloads 1415959 Electrocatalytic Enhancement Mechanism of Dual-Atom and Single-Atom MXenes-Based Catalyst in Oxygen and Hydrogen Evolution Reactions
Authors: Xin Zhao. Xuerong Zheng. Andrey L. Rogach
Abstract:
Using single metal atoms has been considered an efficient way to develop new HER and OER catalysts. MXenes, a class of two-dimensional materials, have attracted tremendous interest as promising substrates for single-atom metal catalysts. However, there is still a lack of systematic investigations on the interaction mechanisms between various MXenes substrates and single atoms. Besides, due to the poor interaction between metal atoms and substrates resulting in low loading and stability, dual-atom MXenes-based catalysts have not been successfully synthesized. We summarized the electrocatalytic enhancement mechanism of three MXenes-based single-atom catalysts through experimental and theoretical results demonstrating the stronger hybridization between Co 3d and surface-terminated O 2p orbitals, optimizing the electronic structure of Co single atoms in the composite. This, in turn, lowers the OER and HER energy barriers and accelerates the catalytic kinetics in the case of the Co@V2CTx composite. The poor interaction between single atoms and substrates can be improved by a surface modification to synthesize dual-atom catalysts. The synergistic electronic structure enhances the stability and electrocatalytic activity of the catalyst. Our study provides guidelines for designing single-atom and dual-atom MXene-based electrocatalysts and sheds light on the origins of the catalytic activity of single-atoms on MXene substrates.Keywords: dual-atom catalyst, single-atom catalyst, MXene substrates, water splitting
Procedia PDF Downloads 735958 Developing a Comprehensive Green Building Rating System Tailored for Nigeria: Analyzing International Sustainable Rating Systems to Create Environmentally Responsible Standards for the Nigerian Construction Industry and Built Environment
Authors: Azeez Balogun
Abstract:
Inexperienced building score practices are continually evolving and vary across areas. Yet, a few middle ideas stay steady, such as website selection, design, energy efficiency, water and material conservation, indoor environmental great, operational optimization, and waste discount. The essence of green building lies inside the optimization of 1 or more of those standards. This paper conducts a comparative analysis of 7 extensively recognized sustainable score structures—BREEAM, CASBEE, green GLOBES, inexperienced superstar, HK-BEAM, IGBC green homes, and LEED—based totally on the perceptions and opinions of stakeholders in Nigeria certified in green constructing rating systems. The purpose is to pick out and adopt an appropriate green building rating device for Nigeria. Numerous components of those systems had been tested to determine the high-quality health of the Nigerian built environment. The findings imply that LEED, the important machine within the USA and Canada, is the most suitable for Nigeria due to its sturdy basis, extensive funding, and confirmed blessings. LEED obtained the highest rating of eighty out of one hundred points on this assessment.Keywords: structure, built surroundings, inexperienced building score gadget, Nigeria Inexperienced Constructing Council, sustainability
Procedia PDF Downloads 355957 Pathological Gambling and Impulsivity: Comparison of the Eight Laboratory Measures of Inhibition Capacities
Authors: Semion Kertzman, Pinhas Dannon
Abstract:
Impulsive behaviour and the underlying brain processes are hypothesized to be central in the development and maintenance of pathological gambling. Inhibition ability can be differentially impaired in pathological gamblers (PGs). Aims: This study aimed to compare the ability of eight widely used inhibition measures to discriminate between PGs and healthy controls (HCs). Methods: PGs (N=51) and demographically matched HCs (N=51) performed cognitive inhibition (the Stroop), motor inhibition (the Go/NoGo) and reflective inhibition (the Matching Familiar Figures (MFFT)) tasks. Results: An augmented total interference response time in the Stroop task (η² =0.054), a large number of commission errors (η² =0.053) in the Go/NoGo task, and the total number of errors in the MFFT (η² =0.05) can discriminate PGs from HCs. Other measures are unable to differentiate between PGs and HCs. No significant correlations were observed between inhibition measures. Conclusion: Inhibition measures varied in the ability to discriminate PGs from HCs. Most inhibition measures were not relevant to gambling behaviour. PGs do not express rash, impulsive behaviour, such as quickly choosing an answer without thinking. In contrast, in PGs, inhibition impairment was related to slow-inaccurate performance.Keywords: pathological gambling, impulsivity, neurocognition, addiction
Procedia PDF Downloads 3045956 An Exploratory Study for the Discrimination of Two Types of Pain Based on Chebyshev’s Coefficients of EEG Signal
Authors: C. M. Segning, H. Ezzaidi, S. Nogomo, M. Otis
Abstract:
Our proposal aims for developing an objective pain discrimination system, i.e., to discriminate between two neuronal conditions affecting the same neurophysiological signal. In this study, we present an approach to identify, in the first instance, two types of pain based on the analysis of the EEG signal decomposition coefficients. Each EEG segment of one second duration is analyzed using the Chebyshev and linear prediction transform to extract a set of non-linear features, namely the Chebyshev and linear prediction coefficients. These features are used as the input vector of the Gaussian mixture model (GMM) for classification to differentiate two types of pain. To evaluate the performance of the proposed approach, we used an EEG dataset recorded in the left temporal (T7) and left fronto-central (FC5) regions. The experimental results demonstrate the effectiveness of Chebyshev coefficients for accurate differentiation of chronic fibromyalgia-like pain and experimental pain in the resting gamma band, with an accuracy of 93.9%. These results suggest a potential for discrimination of clinical pain according to its mechanism.Keywords: chronic fibromyalgia pain, Chebyshev coefficients, healthy with induced pain, electroencephalogram, Gaussian mixture model
Procedia PDF Downloads 85955 An Agent-Based Modelling Simulation Approach to Calculate Processing Delay of GEO Satellite Payload
Authors: V. Vicente E. Mujica, Gustavo Gonzalez
Abstract:
The global coverage of broadband multimedia and internet-based services in terrestrial-satellite networks demand particular interests for satellite providers in order to enhance services with low latencies and high signal quality to diverse users. In particular, the delay of on-board processing is an inherent source of latency in a satellite communication that sometimes is discarded for the end-to-end delay of the satellite link. The frame work for this paper includes modelling of an on-orbit satellite payload using an agent model that can reproduce the properties of processing delays. In essence, a comparison of different spatial interpolation methods is carried out to evaluate physical data obtained by an GEO satellite in order to define a discretization function for determining that delay. Furthermore, the performance of the proposed agent and the development of a delay discretization function are together validated by simulating an hybrid satellite and terrestrial network. Simulation results show high accuracy according to the characteristics of initial data points of processing delay for Ku bands.Keywords: terrestrial-satellite networks, latency, on-orbit satellite payload, simulation
Procedia PDF Downloads 2775954 A Multiple Beam LTE Base Station Antenna with Simultaneous Vertical and Horizontal Sectorization
Authors: Mohamed Sanad, Noha Hassan
Abstract:
A low wind-load light-weight broad-band multi-beam base station antenna has been developed. It can generate any required number of beams with the required beamwidths. It can have horizontal and vertical sectorization at the same time. Vertical sectorization doubles the overall number of beams. It will be very valuable in LTE-A and 5G. It can be used to serve vertically split inner and outer cells, which improves system performance. The intersection between the beams of the proposed multi-beam antenna can be controlled by optimizing the design parameters of the antenna. The gain at the points of intersection between the beams, the null filling and the overlap between the beams can all be modified. The proposed multi-beam base station antenna can cover an unlimited number of wireless applications, regardless of their frequency bands. It can simultaneously cover all, current and future, wireless technology generations such as 2G, 3G, 4G (LTE), --- etc. For example, in LTE, it covers the bands 450-470 MHz, 690-960 MHz, 1.4-2.7 GHz and 3.3-3.8 GHz. It has at least 2 ports for each band in each beam for ±45° polarizations. It can include up to 72 ports or even more, which could facilitate any further needed capacity expansions.Keywords: base station antenna, multi-beam antenna, smart antenna, vertical sectorization
Procedia PDF Downloads 2655953 Comparative Catalytic Activity of Some Ferrites for Phenol Degradation in Aqueous Solutions
Authors: Bayan Alqassem, Israa A. Othman, Mohammed Abu Haija, Fawzi Banat
Abstract:
The treatment of wastewater from highly toxic pollutants is one of the most challenging issues for humanity. In this study, the advanced oxidation process (AOP) was employed to study the catalytic degradation of phenol using different ferrite catalysts which are CoFe₂O₄, CrFe₂O₄, CuFe₂O₄, MgFe₂O₄, MnFe₂O₄, NiFe₂O₄ and ZnFe₂O₄. The ferrite catalysts were prepared via sol-gel and co-precipitation methods. Different ferrite composites were also prepared either by varying the metal ratios or incorporating chemically reduced graphene oxide in the ferrite cluster. The effect of phosphoric acid treatment on the copper ferrite activity. All of the prepared catalysts were characterized using infrared spectroscopy (IR), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The ferrites catalytic activities were tested towards phenol degradation using high performance liquid chromatography (HPLC). The experimental results showed that ferrites prepared through sol-gel route were more active than those of the co-precipitation method towards phenol degradation. In both cases, CuFe₂O₄ exhibited the highest degradation of phenol compared to the other ferrites. The photocatalytic properties of the ferrites were also investigated.Keywords: ferrite catalyst, ferrite composites, phenol degradation, photocatalysis
Procedia PDF Downloads 2245952 Cross-Dialect Sentence Transformation: A Comparative Analysis of Language Models for Adapting Sentences to British English
Authors: Shashwat Mookherjee, Shruti Dutta
Abstract:
This study explores linguistic distinctions among American, Indian, and Irish English dialects and assesses various Language Models (LLMs) in their ability to generate British English translations from these dialects. Using cosine similarity analysis, the study measures the linguistic proximity between original British English translations and those produced by LLMs for each dialect. The findings reveal that Indian and Irish English translations maintain notably high similarity scores, suggesting strong linguistic alignment with British English. In contrast, American English exhibits slightly lower similarity, reflecting its distinct linguistic traits. Additionally, the choice of LLM significantly impacts translation quality, with Llama-2-70b consistently demonstrating superior performance. The study underscores the importance of selecting the right model for dialect translation, emphasizing the role of linguistic expertise and contextual understanding in achieving accurate translations.Keywords: cross-dialect translation, language models, linguistic similarity, multilingual NLP
Procedia PDF Downloads 835951 Application of Genetic Algorithm with Multiobjective Function to Improve the Efficiency of Photovoltaic Thermal System
Authors: Sonveer Singh, Sanjay Agrawal, D. V. Avasthi, Jayant Shekhar
Abstract:
The aim of this paper is to improve the efficiency of photovoltaic thermal (PVT) system with the help of Genetic Algorithms with multi-objective function. There are some parameters that affect the efficiency of PVT system like depth and length of the channel, velocity of flowing fluid through the channel, thickness of the tedlar and glass, temperature of inlet fluid i.e. all above parameters are considered for optimization. An attempt has been made to the model and optimizes the parameters of glazed hybrid single channel PVT module when two objective functions have been considered separately. The two objective function for optimization of PVT module is overall electrical and thermal efficiency. All equations for PVT module have been derived. Using genetic algorithms (GAs), above two objective functions of the system has been optimized separately and analysis has been carried out for two cases. Two cases are: Case-I; Improvement in electrical and thermal efficiency when overall electrical efficiency is optimized, Case-II; Improvement in electrical and thermal efficiency when overall thermal efficiency is optimized. All the parameters that are used in genetic algorithms are the parameters that could be changed, and the non-changeable parameters, like solar radiation, ambient temperature cannot be used in the algorithm. It has been observed that electrical efficiency (14.08%) and thermal efficiency (19.48%) are obtained when overall thermal efficiency was an objective function for optimization. It is observed that GA is a very efficient technique to estimate the design parameters of hybrid single channel PVT module.Keywords: genetic algorithm, energy, exergy, PVT module, optimization
Procedia PDF Downloads 6085950 Utilization of Whey for the Production of β-Galactosidase Using Yeast and Fungal Culture
Authors: Rupinder Kaur, Parmjit S. Panesar, Ram S. Singh
Abstract:
Whey is the lactose rich by-product of the dairy industry, having good amount of nutrient reservoir. Most abundant nutrients are lactose, soluble proteins, lipids and mineral salts. Disposing of whey by most of milk plants which do not have proper pre-treatment system is the major issue. As a result of which, there can be significant loss of potential food and energy source. Thus, whey has been explored as the substrate for the synthesis of different value added products such as enzymes. β-galactosidase is one of the important enzymes and has become the major focus of research due to its ability to catalyze both hydrolytic as well as transgalactosylation reaction simultaneously. The enzyme is widely used in dairy industry as it catalyzes the transformation of lactose to glucose and galactose, making it suitable for the lactose intolerant people. The enzyme is intracellular in both bacteria and yeast, whereas for molds, it has an extracellular location. The present work was carried to utilize the whey for the production of β-galactosidase enzyme using both yeast and fungal cultures. The yeast isolate Kluyveromyces marxianus WIG2 and various fungal strains have been used in the present study. Different disruption techniques have also been investigated for the extraction of the enzyme produced intracellularly from yeast cells. Among the different methods tested for the disruption of yeast cells, SDS-chloroform showed the maximum β-galactosidase activity. In case of the tested fungal cultures, Aureobasidium pullulans NCIM 1050, was observed to be the maximum extracellular enzyme producer.Keywords: β-galactosidase, fungus, yeast, whey
Procedia PDF Downloads 3305949 Interactive Virtual Patient Simulation Enhances Pharmacology Education and Clinical Practice
Authors: Lyndsee Baumann-Birkbeck, Sohil A. Khan, Shailendra Anoopkumar-Dukie, Gary D. Grant
Abstract:
Technology-enhanced education tools are being rapidly integrated into health programs globally. These tools provide an interactive platform for students and can be used to deliver topics in various modes including games and simulations. Simulations are of particular interest to healthcare education, where they are employed to enhance clinical knowledge and help to bridge the gap between theory and practice. Simulations will often assess competencies for practical tasks, yet limited research examines the effects of simulation on student perceptions of their learning. The aim of this study was to determine the effects of an interactive virtual patient simulation for pharmacology education and clinical practice on student knowledge, skills and confidence. Ethics approval for the study was obtained from Griffith University Research Ethics Committee (PHM/11/14/HREC). The simulation was intended to replicate the pharmacy environment and patient interaction. The content was designed to enhance knowledge of proton-pump inhibitor pharmacology, role in therapeutics and safe supply to patients. The tool was deployed into a third-year clinical pharmacology and therapeutics course. A number of core practice areas were examined including the competency domains of questioning, counselling, referral and product provision. Baseline measures of student self-reported knowledge, skills and confidence were taken prior to the simulation using a specifically designed questionnaire. A more extensive questionnaire was deployed following the virtual patient simulation, which also included measures of student engagement with the activity. A quiz assessing student factual and conceptual knowledge of proton-pump inhibitor pharmacology and related counselling information was also included in both questionnaires. Sixty-one students (response rate >95%) from two cohorts (2014 and 2015) participated in the study. Chi-square analyses were performed and data analysed using Fishers exact test. Results demonstrate that student knowledge, skills and confidence within the competency domains of questioning, counselling, referral and product provision, show improvement following the implementation of the virtual patient simulation. Statistically significant (p<0.05) improvement occurred in ten of the possible twelve self-reported measurement areas. Greatest magnitude of improvement occurred in the area of counselling (student confidence p<0.0001). Student confidence in all domains (questioning, counselling, referral and product provision) showed a marked increase. Student performance in the quiz also improved, demonstrating a 10% improvement overall for pharmacology knowledge and clinical practice following the simulation. Overall, 85% of students reported the simulation to be engaging and 93% of students felt the virtual patient simulation enhanced learning. The data suggests that the interactive virtual patient simulation developed for clinical pharmacology and therapeutics education enhanced students knowledge, skill and confidence, with respect to the competency domains of questioning, counselling, referral and product provision. These self-reported measures appear to translate to learning outcomes, as demonstrated by the improved student performance in the quiz assessment item. Future research of education using virtual simulation should seek to incorporate modern quantitative measures of student learning and engagement, such as eye tracking.Keywords: clinical simulation, education, pharmacology, simulation, virtual learning
Procedia PDF Downloads 3445948 Investigating the Effect of Mobile Technologies Dimensions upon Creativity of Kermanshah Polymer Petrochemical Company’s Employees
Authors: Ghafor Ahmadi, Nader Bohloli Zynab
Abstract:
Rapid scientific changes are the driving force of upheaval. As new technologies arrive, human’s life changes and information becomes one of the productive sources besides other factors. Optimum application of each technology depends on precise recognition of that technology. Options of mobile phones are constantly developing and evolving. Meanwhile, one of the influential variables for improving the performance and eternity of organizations is creativity. One of the new technologies tied with development and innovation is mobile phone. In this research, the contribution of different dimensions of mobile technologies such as perceived use, perceived enjoyment, continuance intention, confirmation and satisfaction to creativity of employees were investigated. Statistical population included 510 employees of Kermanshah Petrochemical Company. Sample size was defined 217 based on Morgan and Krejcie table. This study is descriptive and data gathering instrument was a questionnaire. Applying SPSS software, linear regression was analyzed. It was found out that all dimensions of mobile technologies except satisfaction affect on creativity of employees.Keywords: mobile technologies, continuance intention, perceived enjoyment, perceived use, confirmation, satisfaction, creativity
Procedia PDF Downloads 2665947 Effect of Arch-Wire Qualities and Bracket Design on the Force Systems during Sliding Mechanics
Authors: Davender Kumar
Abstract:
Aim: It is important for the orthodontist to be familiar with the sliding resistance (SR) generated by the ligation method used during the space closure phase with sliding mechanics. To determine new, experimental non-conventional (slide) ligature demonstrates less friction in vitro when compared other ligatures on the market. Methods: Experimental in vitro were carried out to test the performance of the low-friction system with regard to assess the forces released by different bracket–ligature systems with bonded in iron plate mounted on an Instron machine. Results: The outcomes of experimental testing showed that the combination of the low-friction ligatures with the super elastic nickel-titanium and SS wires produced a significantly smaller amount of binding at the bracket/arch wire/ligature unit when compared to conventional elastomeric ligatures. Conclusion: The biomechanical consequences of the use of low-friction ligatures were shorter duration of orthodontic treatment during the levelling and aligning phase, concurrent dentoalveolar expansion of the dental arch, and the possibility of using biologically adequate orthodontic forces.Keywords: archwire, bracket, friction, ligation
Procedia PDF Downloads 3265946 Bioproduction of Phytohormones by Liquid Fermentation Using a Mexican Strain of Botryodiplodia theobromae
Authors: Laredo Alcalá Elan Iñaky, Hernandez Castillo Daniel, Martinez Hernandez José Luis, Arredondo Valdes Roberto, Gonzalez Gallegos Esmeralda, Anguiano Cabello Julia Cecilia
Abstract:
Plant hormones are a group of molecules that control different processes ranging from the growth and development of the plant until their response to biotic and abiotic stresses. In this study, the capacity of production of various phytohormones was evaluated from a strain of Botryodiplodia theobromae by liquid fermentation system using the modified Mierch medium added with a hydrolyzate compound of mead all in a reactor without agitation at 28 °C for 15 days. Quantification of the metabolites was performed using high performance liquid chromatography techniques. The results showed that a microbial broth with at least five different types of plant hormones was obtained: gibberellic acid, zeatin, kinetin, indoleacetic acid and jasmonic acid, the last one was higher than the others metabolites produced. The production of such hormones using a single type of microorganism could be in the future a great alternative to reduce production costs and similarly reduce the use of synthetic chemicals.Keywords: biosystem, plant hormones, Botryodiplodia theobromae, fermentation
Procedia PDF Downloads 4085945 Minimum Half Power Beam Width and Side Lobe Level Reduction of Linear Antenna Array Using Particle Swarm Optimization
Authors: Saeed Ur Rahman, Naveed Ullah, Muhammad Irshad Khan, Quensheng Cao, Niaz Muhammad Khan
Abstract:
In this paper the optimization performance of non-uniform linear antenna array is presented. The Particle Swarm Optimization (PSO) algorithm is presented to minimize Side Lobe Level (SLL) and Half Power Beamwidth (HPBW). The purpose of using the PSO algorithm is to get the optimum values for inter-element spacing and excitation amplitude of linear antenna array that provides a radiation pattern with minimum SLL and HPBW. Various design examples are considered and the obtain results using PSO are confirmed by comparing with results achieved using other nature inspired metaheuristic algorithms such as real coded genetic algorithm (RGA) and biogeography (BBO) algorithm. The comparative results show that optimization of linear antenna array using the PSO provides considerable enhancement in the SLL and HPBW.Keywords: linear antenna array, minimum side lobe level, narrow half power beamwidth, particle swarm optimization
Procedia PDF Downloads 5565944 Fast and Accurate Model to Detect Ictal Waveforms in Electroencephalogram Signals
Authors: Piyush Swami, Bijaya Ketan Panigrahi, Sneh Anand, Manvir Bhatia, Tapan Gandhi
Abstract:
Visual inspection of electroencephalogram (EEG) signals to detect epileptic signals is very challenging and time-consuming task even for any expert neurophysiologist. This problem is most challenging in under-developed and developing countries due to shortage of skilled neurophysiologists. In the past, notable research efforts have gone in trying to automate the seizure detection process. However, due to high false alarm detections and complexity of the models developed so far, have vastly delimited their practical implementation. In this paper, we present a novel scheme for epileptic seizure detection using empirical mode decomposition technique. The intrinsic mode functions obtained were then used to calculate the standard deviations. This was followed by probability density based classifier to discriminate between non-ictal and ictal patterns in EEG signals. The model presented here demonstrated very high classification rates ( > 97%) without compromising the statistical performance. The computation timings for each testing phase were also very low ( < 0.029 s) which makes this model ideal for practical applications.Keywords: electroencephalogram (EEG), epilepsy, ictal patterns, empirical mode decomposition
Procedia PDF Downloads 4115943 In-Situ Defect Detection of Additive Manufactured Parts
Authors: Aswin T. M., Dhinnesh S., Guru Prasath K. S., Hasina M., Rajamani R.
Abstract:
Fused Deposition Modelling (FDM), a widely used Additive Manufacturing (AM) process, often faces challenges in the quality of the part, such as the formation of defects. The most common defects in FDM are stringing, dimensional inaccuracy, layer shifting, warping, and poor bridging. This work presents the summary of research work carried out in the field of AM, optimization of 3D printing process parameters, and techniques used for identifying defects. Also, an attempt is made to integrate machine vision with a deep learning model to continuously monitor the printing process. The system captures and analyzes layer-by-layer data of the printed part, detecting defects such as stringing, warping, and dimensional inaccuracy. FDM is extensively utilized across various sectors, including aerospace, automotive, healthcare, and consumer goods. In industries such as aerospace, where high precision and reliability are paramount, even minor defects can lead to component failures that compromise safety and performance. This highlights the critical need for real-time identification of defects produced during the printing process.Keywords: FDM, defect detection, machine vision, CNN
Procedia PDF Downloads 135942 Analysis of Possible Equipment in the Reduction Unit of a Low Tonnage Liquefied Natural Gas Production Plant
Authors: Pavel E. Mikriukov
Abstract:
The demand for natural gas (NG) is increasing every year around the world, so it is necessary to produce and transport NG in large quantities. To solve this problem, liquefied natural gas (LNG) plants are used, using different equipment and different technologies to achieve the required LNG quality. To determine the best efficiency of the LNG liquefaction plant, it is necessary to analyze the equipment used in this process and identify other technological solutions for LNG production using more productive and energy-efficient equipment. Based on this, mathematical models of the technological process of the LNG plant were created, which are based on a two-circuit system of heat exchange equipment and a nitrogen isolated cycle for NG cooling. The final liquefaction of natural gas is performed on the construction of the basic principle of the Joule-Thompson effect. The pressure and temperature drop are considered on different types of equipment such as throttle valve, which was used in the basic scheme; turbo expander and supersonic separator, which act as new equipment, to be compared with the efficiency of the basic scheme of the unit. New configurations of LNG plants are suggested, which can be used in almost all LNG facilities. As a result of the analysis, it turned out that the turbo expander and the supersonic separator have comparatively equal potential in comparison with the baseline scheme execution on the throttle valve. A more rational method of selecting the technology and the equipment used for natural gas liquefaction can improve the efficiency of low-tonnage plants and reduce the cost of gas for own needs.Keywords: gas liquefaction, gas, Joule-Thompson effect, LNG, low-tonnage LNG, supersonic separator, Throttle valve, turbo expander
Procedia PDF Downloads 1165941 The Contribution Study of Multi-component Thermal Fluid Enhancement in Offshore Medium and Deep Heavy Oilfields
Authors: Tao Lin, Hongzhi Song, Zhongtao Yuan, Shanshan Lin, Chunyue Tong
Abstract:
Offshore heavy oil in the production of thick oil fields, old wells of low production and low efficiency are mainly caused by plugging, heavy oil, insufficient stratigraphic energy, etc., the use of heat - gas - chemical and other composite production enhancement role, can be better to achieve the purpose of unblocking and increase the efficiency of the production. Through indoor physical simulation experiments, comprehensive grey correlation analysis, combined with theoretical methods to analyze the composite production enhancement effect of heat-gas-chemical and other factors was in the order of heat>gas>chemical agent; and quantitative analysis of the data shows that the contribution of heat is the highest in the range of 68.5%-82.8%, the gas role in the range of 9.3%-11.3%, and the contribution of the chemical agent in the range of 6.0%-22.2%. Combined with indoor physical simulation experiments and reservoir engineering calculations, it shows that the production capacity is restored and increased by about 50%, and numerical simulation calculations show that the cumulative increase in production by using thermal-gas-chemical decongestion process measures can be up to 40%. Through the optimization of this kind of compound production enhancement technology, it can meet the requirements of original production string operation, and this technology has the advantages of short, flat and fast operation and has good application prospects.Keywords: MCTF, old heavy oil wells, low production and low efficiency, immobile tubular column, composite production increase
Procedia PDF Downloads 135940 Physicochemical Characterization of Low Sulfonated Polyether Ether Ketone/ Layered Double Hydroxide/Sepiolite Hybrid to Improve the Performance of Sulfonated Poly Ether Ether Ketone Composite Membranes for Proton Exchange Membrane Fuel Cells
Authors: Zakaria Ahmed, Khaled Charradi, Sherif M. A. S. Keshk, Radhouane Chtourou
Abstract:
Sulfonated poly ether ether ketone (SPEEK) with a low sulfonation degree was blended using nanofiller Layered Double Hydroxide (LDH, Mg2AlCl) /sepiolite nanostructured material as additive to use as an electrolyte membrane for fuel cell application. Characterization assessments, i.e., mechanical stability, thermal gravimetric analysis, ion exchange capability, swelling properties, water uptake capacities, electrochemical impedance spectroscopy analysis, and Fourier transform infrared spectroscopy (FTIR) of the composite membranes were conducted. The presence of LDH/sepiolite nanoarchitecture material within SPEEK was found to have the highest water retention and proton conductivity value at high temperature rather than LDH/SPEEK and pristine SPEEK membranes.Keywords: SPEEK, sepiolite clay, LDH clay, proton exchange membrane
Procedia PDF Downloads 126