Search results for: the speed of vehicle
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4091

Search results for: the speed of vehicle

2771 Controlling Drone Flight Missions through Natural Language Processors Using Artificial Intelligence

Authors: Sylvester Akpah, Selasi Vondee

Abstract:

Unmanned Aerial Vehicles (UAV) as they are also known, drones have attracted increasing attention in recent years due to their ubiquitous nature and boundless applications in the areas of communication, surveying, aerial photography, weather forecasting, medical delivery, surveillance amongst others. Operated remotely in real-time or pre-programmed, drones can fly autonomously or on pre-defined routes. The application of these aerial vehicles has successfully penetrated the world due to technological evolution, thus a lot more businesses are utilizing their capabilities. Unfortunately, while drones are replete with the benefits stated supra, they are riddled with some problems, mainly attributed to the complexities in learning how to master drone flights, collision avoidance and enterprise security. Additional challenges, such as the analysis of flight data recorded by sensors attached to the drone may take time and require expert help to analyse and understand. This paper presents an autonomous drone control system using a chatbot. The system allows for easy control of drones using conversations with the aid of Natural Language Processing, thus to reduce the workload needed to set up, deploy, control, and monitor drone flight missions. The results obtained at the end of the study revealed that the drone connected to the chatbot was able to initiate flight missions with just text and voice commands, enable conversation and give real-time feedback from data and requests made to the chatbot. The results further revealed that the system was able to process natural language and produced human-like conversational abilities using Artificial Intelligence (Natural Language Understanding). It is recommended that radio signal adapters be used instead of wireless connections thus to increase the range of communication with the aerial vehicle.

Keywords: artificial ntelligence, chatbot, natural language processing, unmanned aerial vehicle

Procedia PDF Downloads 142
2770 The Coalescence Process of Droplet Pairs in Different Junctions

Authors: Xiang Wang, Yan Pang, Zhaomiao Liu

Abstract:

Droplet-based microfluidics have been studied extensively with the development of the Micro-Electro-Mechanical System (MEMS) which bears the advantages of high throughput, high efficiency, low cost and low polydispersity. Droplets, worked as versatile carriers, could provide isolated chambers as the internal dispersed phase is protected from the outside continuous phase. Droplets are used to add reagents to start or end bio-chemical reactions, to generate concentration gradients, to realize hydrate crystallization or protein analyses, while droplets coalescence acts as an important control technology. In this paper, deionized water is used as the dispersed phase, and several kinds of oil are used as the continuous phase to investigate the influence of the viscosity ratio of the two phases on the coalescence process. The microchannels are fabricated by coating a polydimethylsiloxane (PDMS) layer onto another PDMS flat plate after corona treatment. All newly made microchannels are rinsed with the continuous oil phase for hours before experiments to ensure the swelling fully developed. High-speed microscope system is used to document the serial videos with a maximum speed of 2000 frames per second. The critical capillary numbers (Ca*) of droplet pairs in various junctions are studied and compared. Ca* varies with different junctions or different liquids within the range of 0.002 to 0.01. However, droplets without extra control would have the problem of synchronism which reduces the coalescence efficiency.

Keywords: coalescence, concentration, critical capillary number, droplet pair, split

Procedia PDF Downloads 251
2769 Reversal of Testicular Damage and Subfertility by Resveratrol

Authors: Samy S. Eleawa, Mahmoud A. Alkhateeb, Fahaid H. Alhashem, Ismaeel bin-Jaliah, Hussein F. Sakr, Hesham M. Elrefaey, Abbas O. Elkarib, Mohammad A. Haidara, Abdullah S. Shatoor, Mohammad A. Khalil

Abstract:

This effect of Resveratrol (RES) against CdCl2- induced toxicity in the rat testes was investigated. Seven experimental groups of adult male rats were formulated as follows: A) Controls + NS, B) Control+ vehicle (saline solution of hydroxypropyl cyclodextrin), C) RES treated, D) CdCl2 +NS, E) CdCl2+ vehicle, F) RES followed by CdCl2 and M) CdCl2 followed by RES. At the end of the protocol, serum levels of FSH, LH, and testosterone were measured in all groups. Testicular levels of TBARS and Super Oxide Dismutase (SOD) activity were also measured. Epidydidimal semen analysis was performed and testicular expression of Bcl-2, p53 and Bax were assessed by RT-PCR. Also, histopathological changes of testes were examined microscopically and described. Pre and Post administration of RES in cadmium chloride-intoxicated rats improved semen parameters including count, motility, daily sperm production and morphology, increased serum concentrations of gonadotropins and testosterone, decreased testicular lipid peroxidation and increased SOD activity. Not only RES attenuated cadmium chloride induced testicular histopathology but was also able to protect against the onset of cadmium chloride testicular toxicity. Cadmium chloride downregulated the anti-apoptotic gene Bcl2 and upregulated the expression of both pro-apoptotic genes p53 and Bax. Resveratrol protected from and partially reversed cadmium chloride testicular via upregulation of Bcl2 and down regulation of p53 and Bax gene expression. Antioxidant activity of RES protects against cadmium chloride testicular toxicity and partially reverses its effect via upregulation of BCl2 and downregulation of p53 and Bax expression. These findings have far reaching implications on subfertility and impotency frequently seen in hypertensive as well as metabolic syndrome patients.

Keywords: resveratrol, cadmium, infertility, sperm, testis, metabolic syndrome

Procedia PDF Downloads 535
2768 Three-Dimensional Fluid-Structure-Thermal Coupling Dynamics Simulation Model of a Gas-Filled Fluid-Resistance Damper and Experimental Verification

Authors: Wenxue Xu

Abstract:

Fluid resistance damper is an important damping element to attenuate vehicle vibration. It converts vibration energy into thermal energy dissipation through oil throttling. It is a typical fluid-solid-heat coupling problem. A complete three-dimensional flow-structure-thermal coupling dynamics simulation model of a gas-filled fluid-resistance damper was established. The flow-condition-based interpolation (FCBI) method and direct coupling calculation method, the unit's FCBI-C fluid numerical analysis method and iterative coupling calculation method are used to achieve the damper dynamic response of the piston rod under sinusoidal excitation; the air chamber inflation pressure, spring compression characteristics, constant flow passage cross-sectional area and oil parameters, etc. The system parameters, excitation frequency, and amplitude and other excitation parameters are analyzed and compared in detail for the effects of differential pressure characteristics, velocity characteristics, flow characteristics and dynamic response of valve opening, floating piston response and piston rod output force characteristics. Experiments were carried out on some simulation analysis conditions. The results show that the node-based FCBI (flow-condition-based interpolation) fluid numerical analysis method and direct coupling calculation method can better guarantee the conservation of flow field calculation, and the calculation step is larger, but the memory is also larger; if the chamber inflation pressure is too low, the damper will become cavitation. The inflation pressure will cause the speed characteristic hysteresis to increase, and the sealing requirements are too strict. The spring compression characteristics have a great influence on the damping characteristics of the damper, and reasonable damping characteristic needs to properly design the spring compression characteristics; the larger the cross-sectional area of the constant flow channel, the smaller the maximum output force, but the more stable when the valve plate is opening.

Keywords: damper, fluid-structure-thermal coupling, heat generation, heat transfer

Procedia PDF Downloads 144
2767 Accelerated Molecular Simulation: A Convolution Approach

Authors: Jannes Quer, Amir Niknejad, Marcus Weber

Abstract:

Computational Drug Design is often based on Molecular Dynamics simulations of molecular systems. Molecular Dynamics can be used to simulate, e.g., the binding and unbinding event of a small drug-like molecule with regard to the active site of an enzyme or a receptor. However, the time-scale of the overall binding event is many orders of magnitude longer than the time-scale of simulation. Thus, there is a need to speed-up molecular simulations. In order to speed up simulations, the molecular dynamics trajectories have to be ”steared” out of local minimizers of the potential energy surface – the so-called metastabilities – of the molecular system. Increasing the kinetic energy (temperature) is one possibility to accelerate simulated processes. However, with temperature the entropy of the molecular system increases, too. But this kind ”stearing” is not directed enough to stear the molecule out of the minimum toward the saddle point. In this article, we give a new mathematical idea, how a potential energy surface can be changed in such a way, that entropy is kept under control while the trajectories are still steared out of the metastabilities. In order to compute the unsteared transition behaviour based on a steared simulation, we propose to use extrapolation methods. In the end we mathematically show, that our method accelerates the simulations along the direction, in which the curvature of the potential energy surface changes the most, i.e., from local minimizers towards saddle points.

Keywords: extrapolation, Eyring-Kramers, metastability, multilevel sampling

Procedia PDF Downloads 328
2766 Study of Microstructure and Mechanical Properties Obtained by FSW of Similar and Dissimilar Non-Ferrous Alloys Used in Aerospace and Automobile Industry

Authors: Ajay Sidana, Kulbir Singh Sandhu, Balwinder Singh Sidhu

Abstract:

Joining of dissimilar non-ferrous alloys like aluminium and magnesium alloys becomes important in various automobile and aerospace applications due to their low density and good corrosion resistance. Friction Stir Welding (FSW), a solid state joining process, successfully welds difficult to weld similar and dissimilar aluminum and magnesium alloys. Two tool rotation speeds were selected by keeping the transverse speed constant to weld similar and dissimilar alloys. Similar(Al to Al) and Dissimilar(Al to Mg) weld joints were obtained by FSW. SEM scans revealed that higher tool rotation fragments the coarse grains of base material into fine grains in the weld zone. Also, there are less welding defects in weld joints obtained with higher tool rotation speed. The material of dissimilar alloys was mixed with each other forming recrystallised new intermetallics. There was decrease in hardness of similar weld joint however there is significant increase in hardness of weld zone in case of dissimilar weld joints due to stirring action of tool and formation of inter metallics. Tensile tests revealed that there was decrease in percentage elongation in both similar and dissimilar weld joints.

Keywords: aluminum alloys, magnesium alloys, friction stir welding, microstructure, mechanical properties

Procedia PDF Downloads 455
2765 Topology Optimization Design of Transmission Structure in Flapping-Wing Micro Aerial Vehicle via 3D Printing

Authors: Zuyong Chen, Jianghao Wu, Yanlai Zhang

Abstract:

Flapping-wing micro aerial vehicle (FMAV) is a new type of aircraft by mimicking the flying behavior to that of small birds or insects. Comparing to the traditional fixed wing or rotor-type aircraft, FMAV only needs to control the motion of flapping wings, by changing the size and direction of lift to control the flight attitude. Therefore, its transmission system should be designed very compact. Lightweight design can effectively extend its endurance time, while engineering experience alone is difficult to simultaneously meet the requirements of FMAV for structural strength and quality. Current researches still lack the guidance of considering nonlinear factors of 3D printing material when carrying out topology optimization, especially for the tiny FMAV transmission system. The coupling of non-linear material properties and non-linear contact behaviors of FMAV transmission system is a great challenge to the reliability of the topology optimization result. In this paper, topology optimization design based on FEA solver package Altair Optistruct for the transmission system of FMAV manufactured by 3D Printing was carried out. Firstly, the isotropic constitutive behavior of the Ultraviolet (UV) Cureable Resin used to fabricate the structure of FMAV was evaluated and confirmed through tensile test. Secondly, a numerical computation model describing the mechanical behavior of FMAV transmission structure was established and verified by experiments. Then topology optimization modeling method considering non-linear factors were presented, and optimization results were verified by dynamic simulation and experiments. Finally, detail discussions of different load status and constraints were carried out to explore the leading factors affecting the optimization results. The contributions drawn from this article helpful for guiding the lightweight design of FMAV are summarizing as follow; first, a dynamic simulation modeling method used to obtain the load status is presented. Second, verification method of optimized results considering non-linear factors is introduced. Third, based on or can achieve a better weight reduction effect and improve the computational efficiency rather than taking multi-states into account. Fourth, basing on makes for improving the ability to resist bending deformation. Fifth, constraint of displacement helps to improve the structural stiffness of optimized result. Results and engineering guidance in this paper may shed lights on the structural optimization and light-weight design for future advanced FMAV.

Keywords: flapping-wing micro aerial vehicle, 3d printing, topology optimization, finite element analysis, experiment

Procedia PDF Downloads 169
2764 A Case Study for User Rating Prediction on Automobile Recommendation System Using Mapreduce

Authors: Jiao Sun, Li Pan, Shijun Liu

Abstract:

Recommender systems have been widely used in contemporary industry, and plenty of work has been done in this field to help users to identify items of interest. Collaborative Filtering (CF, for short) algorithm is an important technology in recommender systems. However, less work has been done in automobile recommendation system with the sharp increase of the amount of automobiles. What’s more, the computational speed is a major weakness for collaborative filtering technology. Therefore, using MapReduce framework to optimize the CF algorithm is a vital solution to this performance problem. In this paper, we present a recommendation of the users’ comment on industrial automobiles with various properties based on real world industrial datasets of user-automobile comment data collection, and provide recommendation for automobile providers and help them predict users’ comment on automobiles with new-coming property. Firstly, we solve the sparseness of matrix using previous construction of score matrix. Secondly, we solve the data normalization problem by removing dimensional effects from the raw data of automobiles, where different dimensions of automobile properties bring great error to the calculation of CF. Finally, we use the MapReduce framework to optimize the CF algorithm, and the computational speed has been improved times. UV decomposition used in this paper is an often used matrix factorization technology in CF algorithm, without calculating the interpolation weight of neighbors, which will be more convenient in industry.

Keywords: collaborative filtering, recommendation, data normalization, mapreduce

Procedia PDF Downloads 217
2763 Large-scale Foraging Behaviour of Free-ranging Goats: Influence of Herd Size, Landscape Quality and Season

Authors: Manqhai Kraai, Adrian M. Shrader, Peter F. Scogings

Abstract:

For animals living in herds, competition between group members increases as herd size increases. The intensity of this competition is likely greater across poor quality landscapes and during the dry season. In contrast to wild herbivores, herd size in domestic livestock is determined by their owners. This then raises the question, how do domestic livestock, like goats, reduce competition for food within these defined herds? To explore this question, large-scale foraging behaviour of both small (12 to 28 individuals) and large (42 to 83 individuals) herds of free-ranging goats were recorded in Tugela Ferry, KwaZulu-Natal, South Africa. The study was conducted on three different landscapes that varied in both food quality and availability, during the wet and dry seasons of 2013-2014. The goats were housed in kraals overnight and let out in the mornings to forage unattended. Thus, foraging decisions were made by the goats and not by herders. The large-scale foraging behaviours focussed on included, (i) total distance travelled by goats while foraging, (ii) distance travelled before starting to feed, (iii) travel speed, and (iv) feeding duration. This was done using Garmin Foretrex 401 GPS devices harnessed to two goats per herd. Irrespective of season, there was no difference in the total distance travelled by the different sized herds across the different quality landscapes. However, both small and large herds started feeding farther from the kraal in the dry compared to the wet season. Despite this, there was no significant seasonal difference in total amount of time the herds spent feeding across the different landscapes. Finally, both small and large herds increased their travel speed across all the landscapes in the dry season, but large herds travelled faster than small herds. This increase was likely to maximise the time that large herds could spend feeding in good areas. Ultimately, these results indicate that both small and large herds were affected by declines in food quality and quantity during the dry season. However, as large herds made greater behavioural adjustments compared to smaller herds (i.e., feeding farther away from the kraal and travelling faster), it appeared that they were more affected by the seasonal increases in intra-herd competition.

Keywords: distance, feeding duration, food availability, food quality, travel speed

Procedia PDF Downloads 125
2762 Analysis of Fuel Efficiency in Heavy Construction Compaction Machine and Factors Affecting Fuel Efficiency

Authors: Amey Kulkarni, Paavan Shetty, Amol Patil, B. Rajiv

Abstract:

Fuel Efficiency plays a very important role in overall performance of an automobile. In this paper study of fuel efficiency of heavy construction, compaction machine is done. The fuel Consumption trials are performed in order to obtain the consumption of fuel in performing certain set of actions by the compactor. Usually, Heavy Construction machines are put to work in locations where refilling the fuel tank is not an easy task and also the fuel is consumed at a greater rate than a passenger automobile. So it becomes important to have a fuel efficient machine for long working hours. The fuel efficiency is the most important point in determining the future scope of the product. A heavy construction compaction machine operates in five major roles. These five roles are traveling, Static working, High-frequency Low amplitude compaction, Low-frequency High amplitude compaction, low idle. Fuel consumption readings for 1950 rpm, 2000 rpm & 2350 rpm of the engine are taken by using differential fuel flow meter and are analyzed. And the optimum RPM setting which fulfills the fuel efficiency, as well as engine performance criteria, is considered. Also, other factors such as rear end gears, Intake and exhaust restriction for an engine, vehicle operating techniques, air drag, Tribological aspects, Tires are considered for increasing the fuel efficiency of the compactor. The fuel efficiency of compactor can be precisely calculated by using Differential Fuel Flow Meter. By testing the compactor at different combinations of Engine RPM and also considering other factors such as rear end gears, Intake and exhaust restriction of an engine, vehicle operating techniques, air drag, Tribological aspects, The optimum solution was obtained which lead to significant improvement in fuel efficiency of the compactor.

Keywords: differential fuel flow meter, engine RPM, fuel efficiency, heavy construction compaction machine

Procedia PDF Downloads 291
2761 Assessment Power and Oscillation Damping Using the POD Controller and Proposed FOD Controller

Authors: Tohid Rahimi, Yahya Naderi, Babak Yousefi, Seyed Hossein Hoseini

Abstract:

Today’s modern interconnected power system is highly complex in nature. In this, one of the most important requirements during the operation of the electric power system is the reliability and security. Power and frequency oscillation damping mechanism improve the reliability. Because of power system stabilizer (PSS) low speed response against of major fault such as three phase short circuit, FACTs devise that can control the network condition in very fast time, are becoming popular. However, FACTs capability can be seen in a major fault present when nonlinear models of FACTs devise and power system equipment are applied. To realize this aim, the model of multi-machine power system with FACTs controller is developed in MATLAB/SIMULINK using Sim Power System (SPS) blockiest. Among the FACTs device, Static synchronous series compensator (SSSC) due to high speed changes its reactance characteristic inductive to capacitive, is effective power flow controller. Tuning process of controller parameter can be performed using different method. However, Genetic Algorithm (GA) ability tends to use it in controller parameter tuning process. In this paper, firstly POD controller is used to power oscillation damping. But in this station, frequency oscillation dos not has proper damping situation. Therefore, FOD controller that is tuned using GA is using that cause to damp out frequency oscillation properly and power oscillation damping has suitable situation.

Keywords: power oscillation damping (POD), frequency oscillation damping (FOD), Static synchronous series compensator (SSSC), Genetic Algorithm (GA)

Procedia PDF Downloads 476
2760 Improvement of Electric Aircraft Endurance through an Optimal Propeller Design Using Combined BEM, Vortex and CFD Methods

Authors: Jose Daniel Hoyos Giraldo, Jesus Hernan Jimenez Giraldo, Juan Pablo Alvarado Perilla

Abstract:

Range and endurance are the main limitations of electric aircraft due to the nature of its source of power. The improvement of efficiency on this kind of systems is extremely meaningful to encourage the aircraft operation with less environmental impact. The propeller efficiency highly affects the overall efficiency of the propulsion system; hence its optimization can have an outstanding effect on the aircraft performance. An optimization method is applied to an aircraft propeller in order to maximize its range and endurance by estimating the best combination of geometrical parameters such as diameter and airfoil, chord and pitch distribution for a specific aircraft design at a certain cruise speed, then the rotational speed at which the propeller operates at minimum current consumption is estimated. The optimization is based on the Blade Element Momentum (BEM) method, additionally corrected to account for tip and hub losses, Mach number and rotational effects; furthermore an airfoil lift and drag coefficients approximation is implemented from Computational Fluid Dynamics (CFD) simulations supported by preliminary studies of grid independence and suitability of different turbulence models, to feed the BEM method, with the aim of achieve more reliable results. Additionally, Vortex Theory is employed to find the optimum pitch and chord distribution to achieve a minimum induced loss propeller design. Moreover, the optimization takes into account the well-known brushless motor model, thrust constraints for take-off runway limitations, maximum allowable propeller diameter due to aircraft height and maximum motor power. The BEM-CFD method is validated by comparing its predictions for a known APC propeller with both available experimental tests and APC reported performance curves which are based on Vortex Theory fed with the NASA Transonic Airfoil code, showing a adequate fitting with experimental data even more than reported APC data. Optimal propeller predictions are validated by wind tunnel tests, CFD propeller simulations and a study of how the propeller will perform if it replaces the one of on known aircraft. Some tendency charts relating a wide range of parameters such as diameter, voltage, pitch, rotational speed, current, propeller and electric efficiencies are obtained and discussed. The implementation of CFD tools shows an improvement in the accuracy of BEM predictions. Results also showed how a propeller has higher efficiency peaks when it operates at high rotational speed due to the higher Reynolds at which airfoils present lower drag. On the other hand, the behavior of the current consumption related to the propulsive efficiency shows counterintuitive results, the best range and endurance is not necessary achieved in an efficiency peak.

Keywords: BEM, blade design, CFD, electric aircraft, endurance, optimization, range

Procedia PDF Downloads 108
2759 Solar and Wind Energy Potential Study of Sindh Province, Pakistan for Power Generation

Authors: M. Akhlaque Ahmed, Sidra A. Shaikh, Maliha A. Siddiqui, Adeel Tahir

Abstract:

Global and diffuse solar radiation on horizontal surface of southern sindh namely Karachi, Hyderabad, Nawabshah were carried out using sunshine hour data of the area to asses the feasibility of solar Energy utilization at Sindh province for power generation. From the observation, result is derived which shows a drastic variation in the diffuse and direct component of solar radiation for summer and winter for Southern Sindh that is both contributes 50% for Karachi and Hyderabad. In Nawabshah area, the contribution of diffuse solar radiation is low in monsoon months, July and August. The Kᴛ value of Nawabshah indicates a clear sky almost throughout the year. The percentage of diffuse radiation does not exceed more than 20%. In Nawabshah, the appearance of cloud is rare even in monsoon months. The estimated values indicate that Nawabshah has high solar potential whereas Karachi and Hyderabad has low solar potential. During the monsoon months, the southern part of Sind can utilize the hybrid system with wind power. Near Karachi and Hyderabad, the wind speed ranges between 6.2 to 6.9 m/sec. There exist a wind corridor near Karachi, Hyderabad, Gharo, Keti Bander and Shah Bander. The short fall of solar can be compensated by wind because in monsoon months July and August the wind speed are higher in the southern region of Sindh.

Keywords: hybrid power system, power generation, solar and wind energy potential, southern Sindh

Procedia PDF Downloads 236
2758 An Intelligent Controller Augmented with Variable Zero Lag Compensation for Antilock Braking System

Authors: Benjamin Chijioke Agwah, Paulinus Chinaenye Eze

Abstract:

Antilock braking system (ABS) is one of the important contributions by the automobile industry, designed to ensure road safety in such way that vehicles are kept steerable and stable when during emergency braking. This paper presents a wheel slip-based intelligent controller with variable zero lag compensation for ABS. It is required to achieve a very fast perfect wheel slip tracking during hard braking condition and eliminate chattering with improved transient and steady state performance, while shortening the stopping distance using effective braking torque less than maximum allowable torque to bring a braking vehicle to a stop. The dynamic of a vehicle braking with a braking velocity of 30 ms⁻¹ on a straight line was determined and modelled in MATLAB/Simulink environment to represent a conventional ABS system without a controller. Simulation results indicated that system without a controller was not able to track desired wheel slip and the stopping distance was 135.2 m. Hence, an intelligent control based on fuzzy logic controller (FLC) was designed with a variable zero lag compensator (VZLC) added to enhance the performance of FLC control variable by eliminating steady state error, provide improve bandwidth to eliminate the effect of high frequency noise such as chattering during braking. The simulation results showed that FLC- VZLC provided fast tracking of desired wheel slip, eliminate chattering, and reduced stopping distance by 70.5% (39.92 m), 63.3% (49.59 m), 57.6% (57.35 m) and 50% (69.13 m) on dry, wet, cobblestone and snow road surface conditions respectively. Generally, the proposed system used effective braking torque that is less than the maximum allowable braking torque to achieve efficient wheel slip tracking and overall robust control performance on different road surfaces.

Keywords: ABS, fuzzy logic controller, variable zero lag compensator, wheel slip tracking

Procedia PDF Downloads 147
2757 The Universal Theory: Role of Imaginary Pressure on Different Relative Motions

Authors: Sahib Dino Naseerani

Abstract:

The presented scientific text discusses the concept of imaginary pressure and its role in different relative motions. It explores how imaginary pressure, which is the combined effect of external atmospheric pressure and real pressure, affects various substances and their physical properties. The study aims to understand the impact of imaginary pressure and its potential applications in different contexts, such as spaceflight. The main objective of this study is to investigate the role of imaginary pressure on different relative motions. Specifically, the researchers aim to examine how imaginary pressure affects the contraction and mass variation of a body when it is in motion at the speed of light. The study seeks to provide insights into the behavior and consequences of imaginary pressure in various scenarios. The data was collected using three research papers. This research contributes to a better understanding of the theoretical implications of imaginary pressure. It elucidates how imaginary pressure is responsible for the contraction and mass variation of a body in motion, particularly at the speed of light. The findings shed light on the behavior of substances under the influence of imaginary pressure, providing valuable insights for future scientific studies. The study addresses the question of how imaginary pressure influences various relative motions and their associated physical properties. It aims to understand the role of imaginary pressure in the contraction and mass variation of a body, particularly at high speeds. By examining different substances in liquid and solid forms, the research explores the consequences of imaginary pressure on their volume, length, and mass.

Keywords: imaginary pressure, contraction, variation, relative motion

Procedia PDF Downloads 112
2756 Improved Distance Estimation in Dynamic Environments through Multi-Sensor Fusion with Extended Kalman Filter

Authors: Iffat Ara Ebu, Fahmida Islam, Mohammad Abdus Shahid Rafi, Mahfuzur Rahman, Umar Iqbal, John Ball

Abstract:

The application of multi-sensor fusion for enhanced distance estimation accuracy in dynamic environments is crucial for advanced driver assistance systems (ADAS) and autonomous vehicles. Limitations of single sensors such as cameras or radar in adverse conditions motivate the use of combined camera and radar data to improve reliability, adaptability, and object recognition. A multi-sensor fusion approach using an extended Kalman filter (EKF) is proposed to combine sensor measurements with a dynamic system model, achieving robust and accurate distance estimation. The research utilizes the Mississippi State University Autonomous Vehicular Simulator (MAVS) to create a controlled environment for data collection. Data analysis is performed using MATLAB. Qualitative (visualization of fused data vs ground truth) and quantitative metrics (RMSE, MAE) are employed for performance assessment. Initial results with simulated data demonstrate accurate distance estimation compared to individual sensors. The optimal sensor measurement noise variance and plant noise variance parameters within the EKF are identified, and the algorithm is validated with real-world data from a Chevrolet Blazer. In summary, this research demonstrates that multi-sensor fusion with an EKF significantly improves distance estimation accuracy in dynamic environments. This is supported by comprehensive evaluation metrics, with validation transitioning from simulated to real-world data, paving the way for safer and more reliable autonomous vehicle control.

Keywords: sensor fusion, EKF, MATLAB, MAVS, autonomous vehicle, ADAS

Procedia PDF Downloads 43
2755 The Optimization of an Industrial Recycling Line: Improving the Durability of Recycled Polyethyene Blends

Authors: Alae Lamtai, Said Elkoun, Hniya Kharmoudi, Mathieu Robert, Carl Diez

Abstract:

This study applies Taguchi's design of experiment methodology and grey relational analysis (GRA) for multi objective optimization of an industrial recycling line. This last is composed mainly of a mono and twin-screw extruder and a filtration system. Experiments were performed according to L₁₆ standard orthogonal array based on five process parameters, namely: mono screw design, screw speed of the mono and twin-screw extruder, melt pump pressure, and filter mesh size. The objective of this optimization is to improve the durability of the Polyethylene (PE) blend by decreasing the loss of Stress Crack resistance (SCR) using Notched Crack Ligament Stress (NCLS) test and Unnotched Crack Ligament Stress (UCLS) in parallel with increasing the gain of Izod impact strength of the Polyethylene (PE) blend before and after recycling. Based on Grey Relational Analysis (GRA), the optimal setting of process parameters was identified, and the results indicated that the mono-screw design and screw speed of both mono and twin-screw extruder impact significantly the mechanical properties of recycled Polyethylene (PE) blend.

Keywords: Taguchi, recycling line, polyethylene, stress crack resistance, Izod impact strength, grey relational analysis

Procedia PDF Downloads 83
2754 Frictional Behavior of Glass Epoxy and Aluminium Particulate Glass Epoxy Composites Sliding against Smooth Stainless Steel Counterface

Authors: Pujan Sarkar

Abstract:

Frictional behavior of glass epoxy and Al particulate glass-epoxy composites sliding against mild steel are investigated experimentally at normal atmospheric condition. Glass epoxy (0 wt% Al) and 5, 10 and 15 wt% Al particulate filled glass-epoxy composites are fabricated in conventional hand lay-up technique followed by light compression moulding process. A pin on disc type friction apparatus is used under dry sliding conditions. Experiments are carried out at a normal load of 5-50 N, and sliding speeds of 0.5-5.0 m/s for a fixed duration. Variations of friction coefficient with sliding time at different loads and speeds for all the samples are considered. Results show that the friction coefficient is influenced by sliding time, normal loads, sliding speeds, and wt% of Al content. In general, with respect to time, friction coefficient increases initially with a lot of fluctuations for a certain duration. After that, it becomes stable for the rest of the experimental time. With the increase of normal load, friction coefficient decreases at all speed levels and for all the samples whereas, friction coefficient increases with the increase of sliding speed at all normal loads for glass epoxy and 5 wt% Al content glass-epoxy composites. But for 10 and 15 wt%, Al content composites at all loads, reverse trend of friction coefficient has been recorded. Under different tribological conditions, the suitability of composites in respect of wt% of Al content is noted, and 5 wt% Al content glass-epoxy composite reports as the lowest frictional material at all loads compared to other samples.

Keywords: Al powder, composite, epoxy, friction, glass fiber

Procedia PDF Downloads 126
2753 Review on Implementation of Artificial Intelligence and Machine Learning for Controlling Traffic and Avoiding Accidents

Authors: Neha Singh, Shristi Singh

Abstract:

Accidents involving motor vehicles are more likely to cause serious injuries and fatalities. It also has a host of other perpetual issues, such as the regular loss of life and goods in accidents. To solve these issues, appropriate measures must be implemented, such as establishing an autonomous incident detection system that makes use of machine learning and artificial intelligence. In order to reduce traffic accidents, this article examines the overview of artificial intelligence and machine learning in autonomous event detection systems. The paper explores the major issues, prospective solutions, and use of artificial intelligence and machine learning in road transportation systems for minimising traffic accidents. There is a lot of discussion on additional, fresh, and developing approaches that less frequent accidents in the transportation industry. The study structured the following subtopics specifically: traffic management using machine learning and artificial intelligence and an incident detector with these two technologies. The internet of vehicles and vehicle ad hoc networks, as well as the use of wireless communication technologies like 5G wireless networks and the use of machine learning and artificial intelligence for the planning of road transportation systems, are elaborated. In addition, safety is the primary concern of road transportation. Route optimization, cargo volume forecasting, predictive fleet maintenance, real-time vehicle tracking, and traffic management, according to the review's key conclusions, are essential for ensuring the safety of road transportation networks. In addition to highlighting research trends, unanswered problems, and key research conclusions, the study also discusses the difficulties in applying artificial intelligence to road transport systems. Planning and managing the road transportation system might use the work as a resource.

Keywords: artificial intelligence, machine learning, incident detector, road transport systems, traffic management, automatic incident detection, deep learning

Procedia PDF Downloads 113
2752 Harnessing Train-Induced Airflows in Underground Metro Stations for Renewable Energy Generation: A Feasibility Study Using Bayesian Modeling and RETScreen

Authors: Lisha Tan, Yunbo Nie, Mohammad Rahnama

Abstract:

This study investigates the feasibility of harnessing train-induced airflows in underground metro stations as a source of renewable energy. Field measurements were conducted at multiple SkyTrain stations to assess wind speed distributions caused by passing trains. The data revealed significant airflow velocities with multimodal characteristics driven by varying train operations. These airflow velocities represent substantial kinetic energy that can be converted into usable power. Calculations showed that wind power densities within the underground tunnels ranged from 0.97 W/m² to 3.46 W/m², based on average cubed wind speeds, indicating considerable energy content available for harvesting. A Bayesian method was utilized to model these wind speed distributions, effectively capturing the complex airflow patterns. Further analysis using RETScreen evaluated the cost-benefit and environmental impact of implementing energy harvesting systems. Preliminary results suggest that the proposed system could result in substantial energy savings, reduce CO₂ emissions, and provide a favorable payback period, highlighting the economic and environmental viability of integrating wind turbines into metro stations.

Keywords: train-induced airflows, renewable energy generation, wind power density, RETScreen

Procedia PDF Downloads 16
2751 Chatter Prediction of Curved Thin-walled Parts Considering Variation of Dynamic Characteristics Based on Acoustic Signals Acquisition

Authors: Damous Mohamed, Zeroudi Nasredine

Abstract:

High-speed milling of thin-walled parts with complex curvilinear profiles often encounters machining instability, commonly referred to as chatter. This phenomenon arises due to the dynamic interaction between the cutting tool and the part, exacerbated by the part's low rigidity and varying dynamic characteristics along the tool path. This research presents a dynamic model specifically developed to predict machining stability for such curved thin-walled components. The model employs the semi-discretization method, segmenting the tool trajectory into small, straight elements to locally approximate the behavior of an inclined plane. Dynamic characteristics for each segment are extracted through experimental modal analysis and incorporated into the simulation model to generate global stability lobe diagrams. Validation of the model is conducted through cutting tests where acoustic intensity is measured to detect instabilities. The experimental data align closely with the predicted stability limits, confirming the model's accuracy and effectiveness. This work provides a comprehensive approach to enhancing machining stability predictions, thereby improving the efficiency and quality of high-speed milling operations for thin-walled parts.

Keywords: chatter, curved thin-walled part, semi-discretization method, stability lobe diagrams

Procedia PDF Downloads 26
2750 Optimal Trajectories for Highly Automated Driving

Authors: Christian Rathgeber, Franz Winkler, Xiaoyu Kang, Steffen Müller

Abstract:

In this contribution two approaches for calculating optimal trajectories for highly automated vehicles are presented and compared. The first one is based on a non-linear vehicle model, used for evaluation. The second one is based on a simplified model and can be implemented on a current ECU. In usual driving situations both approaches show very similar results.

Keywords: trajectory planning, direct method, indirect method, highly automated driving

Procedia PDF Downloads 531
2749 Revolutionizing Autonomous Trucking Logistics with Customer Relationship Management Cloud

Authors: Sharda Kumari, Saiman Shetty

Abstract:

Autonomous trucking is just one of the numerous significant shifts impacting fleet management services. The Society of Automotive Engineers (SAE) has defined six levels of vehicle automation that have been adopted internationally, including by the United States Department of Transportation. On public highways in the United States, organizations are testing driverless vehicles with at least Level 4 automation which indicates that a human is present in the vehicle and can disable automation, which is usually done while the trucks are not engaged in highway driving. However, completely driverless vehicles are presently being tested in the state of California. While autonomous trucking can increase safety, decrease trucking costs, provide solutions to trucker shortages, and improve efficiencies, logistics, too, requires advancements to keep up with trucking innovations. Given that artificial intelligence, machine learning, and automated procedures enable people to do their duties in other sectors with fewer resources, CRM (Customer Relationship Management) can be applied to the autonomous trucking business to provide the same level of efficiency. In a society witnessing significant digital disruptions, fleet management is likewise being transformed by technology. Utilizing strategic alliances to enhance core services is an effective technique for capitalizing on innovations and delivering enhanced services. Utilizing analytics on CRM systems improves cost control of fuel strategy, fleet maintenance, driver behavior, route planning, road safety compliance, and capacity utilization. Integration of autonomous trucks with automated fleet management, yard/terminal management, and customer service is possible, thus having significant power to redraw the lines between the public and private spheres in autonomous trucking logistics.

Keywords: autonomous vehicles, customer relationship management, customer experience, autonomous trucking, digital transformation

Procedia PDF Downloads 108
2748 Combined Treatment of Aged Rats with Donepezil and the Gingko Extract EGb 761® Enhances Learning and Memory Superiorly to Monotherapy

Authors: Linda Blümel, Bettina Bert, Jan Brosda, Heidrun Fink, Melanie Hamann

Abstract:

Age-related cognitive decline can eventually lead to dementia, the most common mental illness in elderly people and an immense challenge for patients, their families and caregivers. Cholinesterase inhibitors constitute the most commonly used antidementia prescription medication. The standardized Ginkgo biloba leaf extract EGb 761® is approved for treating age-associated cognitive impairment and has been shown to improve the quality of life in patients suffering from mild dementia. A clinical trial with 96 Alzheimer´s disease patients indicated that the combined treatment with donepezil and EGb 761® had fewer side effects than donepezil alone. In an animal model of cognitive aging, we compared the effect of combined treatment with EGb 761® or donepezil monotherapy and vehicle. We compared the effect of chronic treatment (15 days of pretreatment) with donepezil (1.5 mg/kg p. o.), EGb 761® (100 mg/kg p. o.), or the combination of the two drugs, or vehicle in 18 – 20 month old male OFA rats. Learning and memory performance were assessed by Morris water maze testing, motor behavior in an open field paradigm. In addition to chronic treatment, the substances were administered orally 30 minutes before testing. Compared to the first day and to the control group, only the combination group showed a significant reduction in latency to reach the hidden platform on the second day of testing. Moreover, from the second day of testing onwards, the donepezil, the EGb 761® and the combination group required less time to reach the hidden platform compared to the first day. The control group did not reach the same latency reduction until day three. There were no effects on motor behavior. These results suggest a superiority of the combined treatment of donepezil with EGb 761® compared to monotherapy.

Keywords: age-related cognitive decline, dementia, ginkgo biloba leaf extract EGb 761®, learning and memory, old rats

Procedia PDF Downloads 368
2747 Willingness to Adopt "Green Steel" Products: A Case Study from the Automotive Sector

Authors: Hasan Muslemani, Jeffrey Wilson, Xi Liang, Francisco Ascui, Katharina Kaesehage

Abstract:

This paper aims to examine consumer behaviour towards, and the willingness to adopt, green steel use in the automotive sector, in order to identify potential barriers and opportunities for its widespread adoption. Semi-structured interviews were held with experts from global, regional and country-specific industry associations and automakers. The analysis shows there is a new shift towards lifecycle thinking in the sector, although these efforts have been voluntary and driven by customer and employee pressures rather than regulation. The paper further appraises possible demand for green steel within different vehicle types (based on size and powertrain), and shows that manufacturers of electric heavy-duty vehicles are most likely to adopt green steel in the first instance, given the amount of incorporated steel in the vehicles and the fact that lifecycle emissions lie predominantly in their manufacturing phase. A case for green advanced higher-strength steels (AHSS) can also be made in light-duty passenger vehicles, which may mitigate competition from light-weight alternative materials in terms of cost and greenness (depending on source and utilisation zones). This work builds on a wide sustainability-related literature in the automotive sector and highlights areas in need of urgent action if the sector as a whole were to meet its Paris Agreement climate targets, in particular a need to revisit current CO2 performance regulations to include Scope 1 and Scope 2 emissions, engage in educational green marketing campaigns, and explore innovative market-based mechanisms to bridge the gap between relatively-low carbon abatement costs of steelmaking and high abatement costs of vehicle manufacturing.

Keywords: Green steel, Consumer behaviour, Automotive industry, Environmental sustainability

Procedia PDF Downloads 164
2746 Event-Related Potentials and Behavioral Reactions during Native and Foreign Languages Comprehension in Bilingual Inhabitants of Siberia

Authors: Tatiana N. Astakhova, Alexander E. Saprygin, Tatyana A. Golovko, Alexander N. Savostyanov, Mikhail S. Vlasov, Natalia V. Borisova, Alexandera G. Karpova, Urana N. Kavai-ool, Elena D. Mokur-ool, Nikolay A. Kolchanov, Lubomir I. Aftanas

Abstract:

The study is dedicated to the research of brain activity in bilingual inhabitants of Siberia. We compared behavioral reactions and event-related potentials in Turkic-speaking inhabitants of Siberia (Tuvinians and Yakuts) and Russians. 63 healthy aboriginals of the Tyva Republic, 29 inhabitants of the Sakha (Yakutia) Republic, and 55 Russians from Novosibirsk participated in the study. All the healthy and right-handed participants, matched on age and sex, were students of different universities. EEG’s were recorded during the solving of linguistic tasks. In these tasks, participants had to find a syntax error in the written sentences. There were four groups of sentences: Russian, English, Tuvinian, and Yakut. All participants completed the tasks in Russian and English. Additionally, Tuvinians and Yakuts completed the tasks in Tuvinian or Yakut respectively. For Russians, EEG's were recorded using 128-channels according to the extended International 10-10 system, and the signals were amplified using “Neuroscan (USA)” amplifiers. For Tuvinians and Yakuts, EEG's were recorded using 64-channels and amplifiers Brain Products, Germany. In all groups, 0.3-100 Hz analog filtering and sampling rate 1000 Hz were used. As parameters of behavioral reactions, response speed and the accuracy of recognition were used. Event-related potentials (ERP) responses P300 and P600 were used as indicators of brain activity. The behavioral reactions showed that in Russians, the response speed for Russian was faster than for English. Also, the accuracy of solving tasks was higher for Russian than for English. The peak P300 in Russians were higher for English, the peak P600 in the left temporal cortex were higher for the Russian language. Both Tuvinians and Yakuts have no difference in accuracy of solving tasks in Russian and in their respective national languages. However, the response speed was faster for tasks in Russian than for tasks in their national language. Tuvinians and Yakuts showed bad accuracy in English, but the response speed was higher for English than for Russian and the national languages. This can be explained by the fact that they did not think carefully and gave a random answer for English. In Tuvinians, The P300 and P600 amplitudes and cortical topology were the same for Russian and Tuvinian and different for English. In Yakuts, the P300 and P600 amplitudes and topology of ERP for Russian were the same as what Russians had for Russian. In Yakuts, brain reactions during Yakut and English comprehension had no difference, and were reflected to foreign language comprehension - while the Russian language comprehension was reflected to native language comprehension. We found out that the Tuvinians recognized both Russian and Tuvinian as native languages, and English as a foreign language. The Yakuts recognized both English and Yakut as a foreign language, and only Russian as a native language. According to the inquirer, both Tuvinians and Yakuts use the national language as a spoken language, whereas they don’t use it for writing. It can well be a reason that Yakuts perceive the Yakut writing language as a foreign language while writing Russian as their native.

Keywords: EEG, ERP, native and foreign languages comprehension, Siberian inhabitants

Procedia PDF Downloads 561
2745 A Flexible Real-Time Eco-Drive Strategy for Electric Minibus

Authors: Felice De Luca, Vincenzo Galdi, Piera Stella, Vito Calderaro, Adriano Campagna, Antonio Piccolo

Abstract:

Sustainable mobility has become one of the major issues of recent years. The challenge in reducing polluting emissions as much as possible has led to the production and diffusion of vehicles with internal combustion engines that are less polluting and to the adoption of green energy vectors, such as vehicles powered by natural gas or LPG and, more recently, with hybrid and electric ones. While on the one hand, the spread of electric vehicles for private use is becoming a reality, albeit rather slowly, not the same is happening for vehicles used for public transport, especially those that operate in the congested areas of the cities. Even if the first electric buses are increasingly being offered on the market, it remains central to the problem of autonomy for battery fed vehicles with high daily routes and little time available for recharging. In fact, at present, solid-state batteries are still too large in size, heavy, and unable to guarantee the required autonomy. Therefore, in order to maximize the energy management on the vehicle, the optimization of driving profiles offer a faster and cheaper contribution to improve vehicle autonomy. In this paper, following the authors’ precedent works on electric vehicles in public transport and energy management strategies in the electric mobility area, an eco-driving strategy for electric bus is presented and validated. Particularly, the characteristics of the prototype bus are described, and a general-purpose eco-drive methodology is briefly presented. The model is firstly simulated in MATLAB™ and then implemented on a mobile device installed on-board of a prototype bus developed by the authors in a previous research project. The solution implemented furnishes the bus-driver suggestions on the guide style to adopt. The result of the test in a real case will be shown to highlight the effectiveness of the solution proposed in terms of energy saving.

Keywords: eco-drive, electric bus, energy management, prototype

Procedia PDF Downloads 142
2744 Gas-Liquid Flow Regimes in Vertical Venturi Downstream of Horizontal Blind-Tee

Authors: Muhammad Alif Bin Razali, Cheng-Gang Xie, Wai Lam Loh

Abstract:

A venturi device is commonly used as an integral part of a multiphase flowmeter (MPFM) in real-time oil-gas production monitoring. For an accurate determination of individual phase fraction and flowrate, a gas-liquid flow ideally needs to be well mixed in the venturi measurement section. Partial flow mixing is achieved by installing a venturi vertically downstream of the blind-tee pipework that ‘homogenizes’ the incoming horizontal gas-liquid flow. In order to study in-depth the flow-mixing effect of the blind-tee, gas-liquid flows are captured at blind-tee and venturi sections by using a high-speed video camera and a purpose-built transparent test rig, over a wide range of superficial liquid velocities (0.3 to 2.4m/s) and gas volume fractions (10 to 95%). Electrical capacitance sensors are built to measure the instantaneous holdup (of oil-gas flows) at the venturi inlet and throat. Flow regimes and flow (a)symmetry are investigated based on analyzing the statistical features of capacitance sensors’ holdup time-series data and of the high-speed video time-stacked images. The perceived homogenization effect of the blind-tee on the incoming intermittent horizontal flow regimes is found to be relatively small across the tested flow conditions. A horizontal (blind-tee) to vertical (venturi) flow-pattern transition map is proposed based on gas and liquid mass fluxes (weighted by the Baker parameters).

Keywords: blind-tee, flow visualization, gas-liquid two-phase flow, MPFM

Procedia PDF Downloads 127
2743 Embedded Semantic Segmentation Network Optimized for Matrix Multiplication Accelerator

Authors: Jaeyoung Lee

Abstract:

Autonomous driving systems require high reliability to provide people with a safe and comfortable driving experience. However, despite the development of a number of vehicle sensors, it is difficult to always provide high perceived performance in driving environments that vary from time to season. The image segmentation method using deep learning, which has recently evolved rapidly, provides high recognition performance in various road environments stably. However, since the system controls a vehicle in real time, a highly complex deep learning network cannot be used due to time and memory constraints. Moreover, efficient networks are optimized for GPU environments, which degrade performance in embedded processor environments equipped simple hardware accelerators. In this paper, a semantic segmentation network, matrix multiplication accelerator network (MMANet), optimized for matrix multiplication accelerator (MMA) on Texas instrument digital signal processors (TI DSP) is proposed to improve the recognition performance of autonomous driving system. The proposed method is designed to maximize the number of layers that can be performed in a limited time to provide reliable driving environment information in real time. First, the number of channels in the activation map is fixed to fit the structure of MMA. By increasing the number of parallel branches, the lack of information caused by fixing the number of channels is resolved. Second, an efficient convolution is selected depending on the size of the activation. Since MMA is a fixed, it may be more efficient for normal convolution than depthwise separable convolution depending on memory access overhead. Thus, a convolution type is decided according to output stride to increase network depth. In addition, memory access time is minimized by processing operations only in L3 cache. Lastly, reliable contexts are extracted using the extended atrous spatial pyramid pooling (ASPP). The suggested method gets stable features from an extended path by increasing the kernel size and accessing consecutive data. In addition, it consists of two ASPPs to obtain high quality contexts using the restored shape without global average pooling paths since the layer uses MMA as a simple adder. To verify the proposed method, an experiment is conducted using perfsim, a timing simulator, and the Cityscapes validation sets. The proposed network can process an image with 640 x 480 resolution for 6.67 ms, so six cameras can be used to identify the surroundings of the vehicle as 20 frame per second (FPS). In addition, it achieves 73.1% mean intersection over union (mIoU) which is the highest recognition rate among embedded networks on the Cityscapes validation set.

Keywords: edge network, embedded network, MMA, matrix multiplication accelerator, semantic segmentation network

Procedia PDF Downloads 129
2742 Sociological Enquiry into Occupational Risks and Its Consequences among Informal Automobile Artisans in Osun State, Nigeria

Authors: Funmilayo Juliana Afolabi, Joke Haafkens, Paul De Beer

Abstract:

Globally, there is a growing concern on reducing workplace accidents in the informal sector. However, there is a dearth of study on the perception of the informal workers on occupational risks they are exposed to. The way a worker perceives the workplace risk will influence his/her risk tolerance and risk behavior. The aim of this paper, therefore, is to have an in-depth understanding of the way the artisans perceive the risks at their workplace and how it influences their risk tolerance and risk behavior. This will help in designing meaningful intervention for the artisans and it will assist the policy makers in formulating a policy that will help them. Methods: Forty-three artisans were purposely selected for the study; data were generated through observation of the workplace and work practices of the artisans and in-depth interview from automobile artisans (Panel beater, Mechanic, Vulcanizer, and Painters) in Osun State, Nigeria. The transcriptions were coded and analyzed using MAXQDA software. Results: The perceived occupational risks among the study groups are a danger of being run over by oncoming vehicles while working by the roadside, a risk of vehicle falling on workers while working under the vehicle, cuts, and burns, fire explosion, falls from height and injuries from bursting of tires. The identified risk factors are carelessness of the workers, pressure from customers, inadequate tools, preternatural forces, God’s will and lack of apprentices that will assist them in the workplace. Furthermore, the study revealed that artisans engage in risky behavior like siphoning fuel with mouth because of perception that fuel is good for expelling worms and will make them free from any stomach upset. Conclusions: The study concluded that risky behaviors are influenced by culture, beliefs, and perception of the artisans. The study, therefore, suggested proper health and safety education for the artisans.

Keywords: automobile artisans, informal, occupational risks, Nigeria, sociological enquiry

Procedia PDF Downloads 190