Search results for: random match probability
2284 The Effect of Initial Sample Size and Increment in Simulation Samples on a Sequential Selection Approach
Authors: Mohammad H. Almomani
Abstract:
In this paper, we argue the effect of the initial sample size, and the increment in simulation samples on the performance of a sequential approach that used in selecting the top m designs when the number of alternative designs is very large. The sequential approach consists of two stages. In the first stage the ordinal optimization is used to select a subset that overlaps with the set of actual best k% designs with high probability. Then in the second stage the optimal computing budget is used to select the top m designs from the selected subset. We apply the selection approach on a generic example under some parameter settings, with a different choice of initial sample size and the increment in simulation samples, to explore the impacts on the performance of this approach. The results show that the choice of initial sample size and the increment in simulation samples does affect the performance of a selection approach.Keywords: Large Scale Problems, Optimal Computing Budget Allocation, ordinal optimization, simulation optimization
Procedia PDF Downloads 3542283 Optimal Bayesian Chart for Controlling Expected Number of Defects in Production Processes
Abstract:
In this paper, we develop an optimal Bayesian chart to control the expected number of defects per inspection unit in production processes with long production runs. We formulate this control problem in the optimal stopping framework. The objective is to determine the optimal stopping rule minimizing the long-run expected average cost per unit time considering partial information obtained from the process sampling at regular epochs. We prove the optimality of the control limit policy, i.e., the process is stopped and the search for assignable causes is initiated when the posterior probability that the process is out of control exceeds a control limit. An algorithm in the semi-Markov decision process framework is developed to calculate the optimal control limit and the corresponding average cost. Numerical examples are presented to illustrate the developed optimal control chart and to compare it with the traditional u-chart.Keywords: Bayesian u-chart, economic design, optimal stopping, semi-Markov decision process, statistical process control
Procedia PDF Downloads 5722282 Hotel Customers’ Attitudes towards Service Marketing Mix, Service Behavior, and Perceived Brand Value
Authors: Trikhun Rotkasem
Abstract:
This research paper aimed to investigate hotel customers’ attitudes towards the service marketing, service behavior and perceived brand value. The focus of the study was on the Suan Sunandha Rajabhat University’s hotel. It is a small hotel which aims to provide service to mainly university’s guests. A simple random sampling technique was conducted to obtain a sample group that included 200 respondents. The research question was established as follows: What are customers’ attitudes towards the service marketing mix of hotel customers? The findings revealed the respondents’ attitudes towards the service marketing mix indicated high level in the area of product, place or distribution channel, people, and physical evidence, whereas, the respondents’ attitude towards the service marketing mix indicated medium level in the area of price, promotion, and process.Keywords: marketing mix, perceived brand value, service behavior, hotel customers
Procedia PDF Downloads 4392281 Influence of Iron Ore Mineralogy on Cluster Formation inside the Shaft Furnace
Authors: M. Bahgat, H. A. Hanafy, S. Lakdawala
Abstract:
Clustering phenomenon of pellets was observed frequently in shaft processes operating at higher temperatures. Clustering is a result of the growth of fibrous iron precipitates (iron whiskers) that become hooked to each other and finally become crystallized during the initial stages of metallization. If the pellet clustering is pronounced, sometimes leads to blocking inside the furnace and forced shutdown takes place. This work clarifies further the relation between metallic iron whisker growth and iron ore mineralogy. Various pellet sizes (6 – 12.0 & +12.0 mm) from three different ores (A, B & C) were (completely and partially) reduced at 985 oC with H2/CO gas mixture using thermos-gravimetric technique. It was found that reducibility increases by decreasing the iron ore pellet’s size. Ore (A) has the highest reducibility than ore (B) and ore (C). Increasing the iron ore pellet’s size leads to increase the probability of metallic iron whisker formation. Ore (A) has the highest tendency for metallic iron whisker formation than ore (B) and ore (C). The reduction reactions for all iron ores A, B and C are mainly controlled by diffusion reaction mechanism.Keywords: shaft furnace, cluster, metallic iron whisker, mineralogy, ferrous metallurgy
Procedia PDF Downloads 4682280 Seismic Performance of a Framed Structure Retrofitted with Damped Cable Systems
Authors: Asad Naeem, Minsung Kim, Jinkoo Kim
Abstract:
In this work, the effectiveness of damped cable systems (DCS) on the mitigation of earthquake-induced response of a framed structure is investigated. The seismic performance of DCS is investigated using fragility analysis and life cycle cost evaluation of an existing building retrofitted with DCS, and the results are compared with those of the structure retrofitted with viscous dampers. The comparison of the analysis results reveals that, due to the self-centering capability of the DCS, residual displacement becomes nearly zero in the structure retrofitted with the DCS. According to the fragility analysis, the structure retrofitted with the DCS has smaller probability of reaching a limit states compared to the structure with viscous dampers. It is also observed that both the initial and life cycle costs of the DCS method required for the seismic retrofit is smaller than those of the structure retrofitted with viscous dampers. Acknowledgment: This research was supported by a grant (17CTAP-C132889-01) from Technology Advancement Research Program (TARP) funded by Ministry of Land, Infrastructure, and Transport of Korean government.Keywords: damped cable system, seismic retrofit, self centering, fragility analysis
Procedia PDF Downloads 4512279 Wind Resource Classification and Feasibility of Distributed Generation for Rural Community Utilization in North Central Nigeria
Authors: O. D. Ohijeagbon, Oluseyi O. Ajayi, M. Ogbonnaya, Ahmeh Attabo
Abstract:
This study analyzed the electricity generation potential from wind at seven sites spread across seven states of the North-Central region of Nigeria. Twenty-one years (1987 to 2007) wind speed data at a height of 10m were assessed from the Nigeria Meteorological Department, Oshodi. The data were subjected to different statistical tests and also compared with the two-parameter Weibull probability density function. The outcome shows that the monthly average wind speeds ranged between 2.2 m/s in November for Bida and 10.1 m/s in December for Jos. The yearly average ranged between 2.1m/s in 1987 for Bida and 11.8 m/s in 2002 for Jos. Also, the power density for each site was determined to range between 29.66 W/m2 for Bida and 864.96 W/m2 for Jos, Two parameters (k and c) of the Weibull distribution were found to range between 2.3 in Lokoja and 6.5 in Jos for k, while c ranged between 2.9 in Bida and 9.9m/s in Jos. These outcomes points to the fact that wind speeds at Jos, Minna, Ilorin, Makurdi and Abuja are compatible with the cut-in speeds of modern wind turbines and hence, may be economically feasible for wind-to-electricity at and above the height of 10 m. The study further assessed the potential and economic viability of standalone wind generation systems for off-grid rural communities located in each of the studied sites. A specific electric load profile was developed to suite hypothetic communities, each consisting of 200 homes, a school and a community health center. Assessment of the design that will optimally meet the daily load demand with a loss of load probability (LOLP) of 0.01 was performed, considering 2 stand-alone applications of wind and diesel. The diesel standalone system (DSS) was taken as the basis of comparison since the experimental locations have no connection to a distribution network. The HOMER® software optimizing tool was utilized to determine the optimal combination of system components that will yield the lowest life cycle cost. Sequel to the analysis for rural community utilization, a Distributed Generation (DG) analysis that considered the possibility of generating wind power in the MW range in order to take advantage of Nigeria’s tariff regime for embedded generation was carried out for each site. The DG design incorporated each community of 200 homes, freely catered for and offset from the excess electrical energy generated above the minimum requirement for sales to a nearby distribution grid. Wind DG systems were found suitable and viable in producing environmentally friendly energy in terms of life cycle cost and levelised value of producing energy at Jos ($0.14/kWh), Minna ($0.12/kWh), Ilorin ($0.09/kWh), Makurdi ($0.09/kWh), and Abuja ($0.04/kWh) at a particluar turbine hub height. These outputs reveal the value retrievable from the project after breakeven point as a function of energy consumed Based on the results, the study demonstrated that including renewable energy in the rural development plan will enhance fast upgrade of the rural communities.Keywords: wind speed, wind power, distributed generation, cost per kilowatt-hour, clean energy, North-Central Nigeria
Procedia PDF Downloads 5122278 Energy Performance Gaps in Residences: An Analysis of the Variables That Cause Energy Gaps and Their Impact
Authors: Amrutha Kishor
Abstract:
Today, with the rising global warming and depletion of resources every industry is moving toward sustainability and energy efficiency. As part of this movement, it is nowadays obligatory for architects to play their part by creating energy predictions for their designs. But in a lot of cases, these predictions do not reflect the real quantities of energy in newly built buildings when operating. These can be described as ‘Energy Performance Gaps’. This study aims to determine the underlying reasons for these gaps. Seven houses designed by Allan Joyce Architects, UK from 1998 until 2019 were considered for this study. The data from the residents’ energy bills were cross-referenced with the predictions made with the software SefairaPro and from energy reports. Results indicated that the predictions did not match the actual energy usage. An account of how energy was used in these seven houses was made by means of personal interviews. The main factors considered in the study were occupancy patterns, heating systems and usage, lighting profile and usage, and appliances’ profile and usage. The study found that the main reasons for the creation of energy gaps were the discrepancies in occupant usage and patterns of energy consumption that are predicted as opposed to the actual ones. This study is particularly useful for energy-conscious architectural firms to fine-tune the approach to designing houses and analysing their energy performance. As the findings reveal that energy usage in homes varies based on the way residents use the space, it helps deduce the most efficient technological combinations. This information can be used to set guidelines for future policies and regulations related to energy consumption in homes. This study can also be used by the developers of simulation software to understand how architects use their product and drive improvements in its future versions.Keywords: architectural simulation, energy efficient design, energy performance gaps, environmental design
Procedia PDF Downloads 1172277 Machine Learning for Disease Prediction Using Symptoms and X-Ray Images
Authors: Ravija Gunawardana, Banuka Athuraliya
Abstract:
Machine learning has emerged as a powerful tool for disease diagnosis and prediction. The use of machine learning algorithms has the potential to improve the accuracy of disease prediction, thereby enabling medical professionals to provide more effective and personalized treatments. This study focuses on developing a machine-learning model for disease prediction using symptoms and X-ray images. The importance of this study lies in its potential to assist medical professionals in accurately diagnosing diseases, thereby improving patient outcomes. Respiratory diseases are a significant cause of morbidity and mortality worldwide, and chest X-rays are commonly used in the diagnosis of these diseases. However, accurately interpreting X-ray images requires significant expertise and can be time-consuming, making it difficult to diagnose respiratory diseases in a timely manner. By incorporating machine learning algorithms, we can significantly enhance disease prediction accuracy, ultimately leading to better patient care. The study utilized the Mask R-CNN algorithm, which is a state-of-the-art method for object detection and segmentation in images, to process chest X-ray images. The model was trained and tested on a large dataset of patient information, which included both symptom data and X-ray images. The performance of the model was evaluated using a range of metrics, including accuracy, precision, recall, and F1-score. The results showed that the model achieved an accuracy rate of over 90%, indicating that it was able to accurately detect and segment regions of interest in the X-ray images. In addition to X-ray images, the study also incorporated symptoms as input data for disease prediction. The study used three different classifiers, namely Random Forest, K-Nearest Neighbor and Support Vector Machine, to predict diseases based on symptoms. These classifiers were trained and tested using the same dataset of patient information as the X-ray model. The results showed promising accuracy rates for predicting diseases using symptoms, with the ensemble learning techniques significantly improving the accuracy of disease prediction. The study's findings indicate that the use of machine learning algorithms can significantly enhance disease prediction accuracy, ultimately leading to better patient care. The model developed in this study has the potential to assist medical professionals in diagnosing respiratory diseases more accurately and efficiently. However, it is important to note that the accuracy of the model can be affected by several factors, including the quality of the X-ray images, the size of the dataset used for training, and the complexity of the disease being diagnosed. In conclusion, the study demonstrated the potential of machine learning algorithms for disease prediction using symptoms and X-ray images. The use of these algorithms can improve the accuracy of disease diagnosis, ultimately leading to better patient care. Further research is needed to validate the model's accuracy and effectiveness in a clinical setting and to expand its application to other diseases.Keywords: K-nearest neighbor, mask R-CNN, random forest, support vector machine
Procedia PDF Downloads 1532276 A Hybrid Fuzzy Clustering Approach for Fertile and Unfertile Analysis
Authors: Shima Soltanzadeh, Mohammad Hosain Fazel Zarandi, Mojtaba Barzegar Astanjin
Abstract:
Diagnosis of male infertility by the laboratory tests is expensive and, sometimes it is intolerable for patients. Filling out the questionnaire and then using classification method can be the first step in decision-making process, so only in the cases with a high probability of infertility we can use the laboratory tests. In this paper, we evaluated the performance of four classification methods including naive Bayesian, neural network, logistic regression and fuzzy c-means clustering as a classification, in the diagnosis of male infertility due to environmental factors. Since the data are unbalanced, the ROC curves are most suitable method for the comparison. In this paper, we also have selected the more important features using a filtering method and examined the impact of this feature reduction on the performance of each methods; generally, most of the methods had better performance after applying the filter. We have showed that using fuzzy c-means clustering as a classification has a good performance according to the ROC curves and its performance is comparable to other classification methods like logistic regression.Keywords: classification, fuzzy c-means, logistic regression, Naive Bayesian, neural network, ROC curve
Procedia PDF Downloads 3352275 A Topological Approach for Motion Track Discrimination
Authors: Tegan H. Emerson, Colin C. Olson, George Stantchev, Jason A. Edelberg, Michael Wilson
Abstract:
Detecting small targets at range is difficult because there is not enough spatial information present in an image sub-region containing the target to use correlation-based methods to differentiate it from dynamic confusers present in the scene. Moreover, this lack of spatial information also disqualifies the use of most state-of-the-art deep learning image-based classifiers. Here, we use characteristics of target tracks extracted from video sequences as data from which to derive distinguishing topological features that help robustly differentiate targets of interest from confusers. In particular, we calculate persistent homology from time-delayed embeddings of dynamic statistics calculated from motion tracks extracted from a wide field-of-view video stream. In short, we use topological methods to extract features related to target motion dynamics that are useful for classification and disambiguation and show that small targets can be detected at range with high probability.Keywords: motion tracks, persistence images, time-delay embedding, topological data analysis
Procedia PDF Downloads 1122274 Information Extraction for Short-Answer Question for the University of the Cordilleras
Authors: Thelma Palaoag, Melanie Basa, Jezreel Mark Panilo
Abstract:
Checking short-answer questions and essays, whether it may be paper or electronic in form, is a tiring and tedious task for teachers. Evaluating a student’s output require wide array of domains. Scoring the work is often a critical task. Several attempts in the past few years to create an automated writing assessment software but only have received negative results from teachers and students alike due to unreliability in scoring, does not provide feedback and others. The study aims to create an application that will be able to check short-answer questions which incorporate information extraction. Information extraction is a subfield of Natural Language Processing (NLP) where a chunk of text (technically known as unstructured text) is being broken down to gather necessary bits of data and/or keywords (structured text) to be further analyzed or rather be utilized by query tools. The proposed system shall be able to extract keywords or phrases from the individual’s answers to match it into a corpora of words (as defined by the instructor), which shall be the basis of evaluation of the individual’s answer. The proposed system shall also enable the teacher to provide feedback and re-evaluate the output of the student for some writing elements in which the computer cannot fully evaluate such as creativity and logic. Teachers can formulate, design, and check short answer questions efficiently by defining keywords or phrases as parameters by assigning weights for checking answers. With the proposed system, teacher’s time in checking and evaluating students output shall be lessened, thus, making the teacher more productive and easier.Keywords: information extraction, short-answer question, natural language processing, application
Procedia PDF Downloads 4272273 Patient-Specific Design Optimization of Cardiovascular Grafts
Authors: Pegah Ebrahimi, Farshad Oveissi, Iman Manavi-Tehrani, Sina Naficy, David F. Fletcher, Fariba Dehghani, David S. Winlaw
Abstract:
Despite advances in modern surgery, congenital heart disease remains a medical challenge and a major cause of infant mortality. Cardiovascular prostheses are routinely used in surgical procedures to address congenital malformations, for example establishing a pathway from the right ventricle to the pulmonary arteries in pulmonary valvar atresia. Current off-the-shelf options including human and adult products have limited biocompatibility and durability, and their fixed size necessitates multiple subsequent operations to upsize the conduit to match with patients’ growth over their lifetime. Non-physiological blood flow is another major problem, reducing the longevity of these prostheses. These limitations call for better designs that take into account the hemodynamical and anatomical characteristics of different patients. We have integrated tissue engineering techniques with modern medical imaging and image processing tools along with mathematical modeling to optimize the design of cardiovascular grafts in a patient-specific manner. Computational Fluid Dynamics (CFD) analysis is done according to models constructed from each individual patient’s data. This allows for improved geometrical design and achieving better hemodynamic performance. Tissue engineering strives to provide a material that grows with the patient and mimic the durability and elasticity of the native tissue. Simulations also give insight on the performance of the tissues produced in our lab and reduce the need for costly and time-consuming methods of evaluation of the grafts. We are also developing a methodology for the fabrication of the optimized designs.Keywords: computational fluid dynamics, cardiovascular grafts, design optimization, tissue engineering
Procedia PDF Downloads 2402272 Improved Imaging and Tracking Algorithm for Maneuvering Extended UAVs Using High-Resolution ISAR Radar System
Authors: Mohamed Barbary, Mohamed H. Abd El-Azeem
Abstract:
Maneuvering extended object tracking (M-EOT) using high-resolution inverse synthetic aperture radar (ISAR) observations has been gaining momentum recently. This work presents a new robust implementation of the multiple models (MM) multi-Bernoulli (MB) filter for M-EOT, where the M-EOT’s ISAR observations are characterized using a skewed (SK) non-symmetrically normal distribution. To cope with the possible abrupt change of kinematic state, extension, and observation distribution over an extended object when a target maneuvers, a multiple model technique is represented based on MB-track-before-detect (TBD) filter supported by SK-sub-random matrix model (RMM) or sub-ellipses framework. Simulation results demonstrate this remarkable impact.Keywords: maneuvering extended objects, ISAR, skewed normal distribution, sub-RMM, MM-MB-TBD filter
Procedia PDF Downloads 742271 Pawn or Potentates: Corporate Governance Structure in Indian Central Public Sector Enterprises
Authors: Ritika Jain, Rajnish Kumar
Abstract:
The Department of Public Enterprises had made submissions of Self Evaluation Reports, for the purpose of corporate governance, mandatory for all central government owned enterprises. Despite this, an alarming 40% of the enterprises did not do so. This study examines the impact of external policy tools and internal firm-specific factors on corporate governance of central public sector enterprises (CPSEs). We use a dataset of all manufacturing and non-financial services owned by the central government of India for the year 2010-11. Using probit, ordered logit and Heckman’s sample selection models, the study finds that the probability and quality of corporate governance is positively influenced by the CPSE getting into a Memorandum of Understanding (MoU) with the central government of India, and hence, enjoying more autonomy in terms of day to day operations. Besides these, internal factors, including bigger size and lower debt size contribute significantly to better corporate governance.Keywords: corporate governance, central public sector enterprises (CPSEs), sample selection, Memorandum of Understanding (MoU), ordered logit, disinvestment
Procedia PDF Downloads 2572270 Auto Calibration and Optimization of Large-Scale Water Resources Systems
Authors: Arash Parehkar, S. Jamshid Mousavi, Shoubo Bayazidi, Vahid Karami, Laleh Shahidi, Arash Azaranfar, Ali Moridi, M. Shabakhti, Tayebeh Ariyan, Mitra Tofigh, Kaveh Masoumi, Alireza Motahari
Abstract:
Water resource systems modelling have constantly been a challenge through history for human being. As the innovative methodological development is evolving alongside computer sciences on one hand, researches are likely to confront more complex and larger water resources systems due to new challenges regarding increased water demands, climate change and human interventions, socio-economic concerns, and environment protection and sustainability. In this research, an automatic calibration scheme has been applied on the Gilan’s large-scale water resource model using mathematical programming. The water resource model’s calibration is developed in order to attune unknown water return flows from demand sites in the complex Sefidroud irrigation network and other related areas. The calibration procedure is validated by comparing several gauged river outflows from the system in the past with model results. The calibration results are pleasantly reasonable presenting a rational insight of the system. Subsequently, the unknown optimized parameters were used in a basin-scale linear optimization model with the ability to evaluate the system’s performance against a reduced inflow scenario in future. Results showed an acceptable match between predicted and observed outflows from the system at selected hydrometric stations. Moreover, an efficient operating policy was determined for Sefidroud dam leading to a minimum water shortage in the reduced inflow scenario.Keywords: auto-calibration, Gilan, large-scale water resources, simulation
Procedia PDF Downloads 3342269 Memetic Algorithm for Solving the One-To-One Shortest Path Problem
Authors: Omar Dib, Alexandre Caminada, Marie-Ange Manier
Abstract:
The purpose of this study is to introduce a novel approach to solve the one-to-one shortest path problem. A directed connected graph is assumed in which all edges’ weights are positive. Our method is based on a memetic algorithm in which we combine a genetic algorithm (GA) and a variable neighborhood search method (VNS). We compare our approximate method with two exact algorithms Dijkstra and Integer Programming (IP). We made experimentations using random generated, complete and real graph instances. In most case studies, numerical results show that our method outperforms exact methods with 5% average gap to the optimality. Our algorithm’s average speed is 20-times faster than Dijkstra and more than 1000-times compared to IP. The details of the experimental results are also discussed and presented in the paper.Keywords: shortest path problem, Dijkstra’s algorithm, integer programming, memetic algorithm
Procedia PDF Downloads 4642268 Impact of Job Burnout on Job Satisfaction and Job Performance of Front Line Employees in Bank: Moderating Role of Hope and Self-Efficacy
Authors: Huma Khan, Faiza Akhtar
Abstract:
The present study investigates the effects of burnout toward job performance and job satisfaction with the moderating role of hope and self-efficacy. Findings from 310 frontline employees of Pakistani commercial banks (Lahore, Karachi & Islamabad) disclosed burnout has negative significant effects on job performance and job satisfaction. Simple random sampling technique was used to collect data and inferential statistics were applied to analyzed the data. However, results disclosed no moderation effect of hope on burnout, job performance or with job satisfaction. Moreover, Data significantly supported the moderation effect of self-efficacy. Study further shed light on the development of psychological capital. Importance of the implication of the current finding is discussed.Keywords: burnout, hope, job performance, job satisfaction, psychological capital, self-efficacy
Procedia PDF Downloads 1392267 Asymptotic Confidence Intervals for the Difference of Coefficients of Variation in Gamma Distributions
Authors: Patarawan Sangnawakij, Sa-Aat Niwitpong
Abstract:
In this paper, we proposed two new confidence intervals for the difference of coefficients of variation, CIw and CIs, in two independent gamma distributions. These proposed confidence intervals using the close form method of variance estimation which was presented by Donner and Zou (2010) based on concept of Wald and Score confidence interval, respectively. Monte Carlo simulation study is used to evaluate the performance, coverage probability and expected length, of these confidence intervals. The results indicate that values of coverage probabilities of the new confidence interval based on Wald and Score are satisfied the nominal coverage and close to nominal level 0.95 in various situations, particularly, the former proposed confidence interval is better when sample sizes are small. Moreover, the expected lengths of the proposed confidence intervals are nearly difference when sample sizes are moderate to large. Therefore, in this study, the confidence interval for the difference of coefficients of variation which based on Wald is preferable than the other one confidence interval.Keywords: confidence interval, score’s interval, wald’s interval, coefficient of variation, gamma distribution, simulation study
Procedia PDF Downloads 4262266 Socio-Demographic, Cause, and Benefit of Internal and International Migration: A Case Study of Mazar-i-Sharif, Balkh Province, Afghanistan
Authors: Baqir Khawari
Abstract:
Migration has a long history in Afghanistan even before, but it has been exacerbated in the last decade. Using actual household data of 1060 in Mazar-i-Sharif, the capital of Balkh province, obtained from a strictly random process, the study examined to evaluate the main causes and benefits of the migration. It is found that the main reasons for internal migration are unemployment and income inequality, in addition to war and poverty as international parameters for migration. Furthermore, the study demonstrated that households receive benefits from their migrants through remittances to increase their income and smooth consumption. Thus, the study suggests that to manage migration in Afghanistan, the government and international organizations should work together for peace and reduction of poverty in Afghanistan otherwise, the crisis of migration will continue in the future as well.Keywords: migration, remittances, socio-demographic, household, Afghanistan
Procedia PDF Downloads 722265 Labor Productivity in the Construction Industry: Factors Influencing the Spanish Construction Labor Productivity
Authors: G. Robles, A. Stifi, José L. Ponz-Tienda, S. Gentes
Abstract:
This research paper aims to identify, analyze and rank factors affecting labor productivity in Spain with respect to their relative importance. Using a selected set of 35 factors, a structured questionnaire survey was utilized as the method to collect data from companies. Target population is comprised by a random representative sample of practitioners related with the Spanish construction industry. Findings reveal the top five ranked factors are as follows: (1) shortage or late supply of materials; (2) clarity of the drawings and project documents; (3) clear and daily task assignment; (4) tools or equipment shortages; (5) level of skill and experience of laborers. Additionally, this research also pretends to provide simple and comprehensive recommendations so that they could be implemented by construction managers for an effective management of construction labor forces.Keywords: construction management, factors, improvement, labor productivity, lean construction
Procedia PDF Downloads 2902264 Butterfly Diversity along Urban-Rural Gradient in Kolkata, India
Authors: Sushmita Chaudhuri, Parthiba Basu
Abstract:
Urbanization leads to habitat degradation and is responsible for the fast disappearance of native butterfly species. Random sampling of rural, suburban and urban sites in an around Kolkata metropolis revealed the presence of 28 species of butterfly belonging to 5 different families in winter (February-March). Butterfly diversity, species richness and abundance decreased with increase in urbanization. Psyche (Leptosia nina of family Pieridae) was the most predominant butterfly species found everywhere in Kolkata during the winter period. The most dominant family was Nymphalidae (11species), followed by Pieridae (6 species), Lycaenidae (5 species), Papilionidae (4 species) and Hesperiidae (2 species). The rural and suburban sites had butterfly species that were unique to those sites. Vegetation cover and flowering shrub density were significantly related to butterfly diversity.Keywords: butterfly, Kolkata metropolis, Shannon-Weiner diversity index, species diversity
Procedia PDF Downloads 2882263 Optimization of HfO₂ Deposition of Cu Electrode-Based RRAM Device
Authors: Min-Hao Wang, Shih-Chih Chen
Abstract:
Recently, the merits such as simple structure, low power consumption, and compatibility with complementary metal oxide semiconductor (CMOS) process give an advantage of resistive random access memory (RRAM) as a promising candidate for the next generation memory, hafnium dioxide (HfO2) has been widely studied as an oxide layer material, but the use of copper (Cu) as both top and bottom electrodes has rarely been studied. In this study, radio frequency sputtering was used to deposit the intermediate layer HfO₂, and electron beam evaporation was used. For the upper and lower electrodes (cu), using different AR: O ratios, we found that the control of the metal filament will make the filament widely distributed, causing the current to rise to the limit current during Reset. However, if the flow ratio is controlled well, the ON/OFF ratio can reach 104, and the set voltage is controlled below 3v.Keywords: RRAM, metal filament, HfO₂, Cu electrode
Procedia PDF Downloads 502262 Wally Feelings Test: Validity and Reliability Study
Authors: Gökhan Kayili, Ramazan Ari
Abstract:
In this research, it is aimed to be adapted Wally Feelings Test to Turkish children and performed the reliability and validity analysis of the test. The sampling of the research was composed of three to five year-old 699 Turkish preschoolers who are attending official and private nursery school. The schools selected with simple random sampling method by considering different socio economic conditions and different central district in Konya. In order to determine reliability of Wally Feelings Test, internal consistency coefficients (KR-20), split-half reliability and test- retest reliability analysis have been performed. During validation process construct validity, content/scope validity and concurrent/criterion validity were used. When validity and reliability of the test examined, it is seen that Wally Feelings Test is a valid and reliable instrument to evaluate three to five year old Turkish children’s understanding feeling skills.Keywords: reliability, validity, wally feelings test, social sciences
Procedia PDF Downloads 5372261 Diagnosis of Diabetes Using Computer Methods: Soft Computing Methods for Diabetes Detection Using Iris
Authors: Piyush Samant, Ravinder Agarwal
Abstract:
Complementary and Alternative Medicine (CAM) techniques are quite popular and effective for chronic diseases. Iridology is more than 150 years old CAM technique which analyzes the patterns, tissue weakness, color, shape, structure, etc. for disease diagnosis. The objective of this paper is to validate the use of iridology for the diagnosis of the diabetes. The suggested model was applied in a systemic disease with ocular effects. 200 subject data of 100 each diabetic and non-diabetic were evaluated. Complete procedure was kept very simple and free from the involvement of any iridologist. From the normalized iris, the region of interest was cropped. All 63 features were extracted using statistical, texture analysis, and two-dimensional discrete wavelet transformation. A comparison of accuracies of six different classifiers has been presented. The result shows 89.66% accuracy by the random forest classifier.Keywords: complementary and alternative medicine, classification, iridology, iris, feature extraction, disease prediction
Procedia PDF Downloads 4062260 Bayesian Structural Identification with Systematic Uncertainty Using Multiple Responses
Authors: André Jesus, Yanjie Zhu, Irwanda Laory
Abstract:
Structural health monitoring is one of the most promising technologies concerning aversion of structural risk and economic savings. Analysts often have to deal with a considerable variety of uncertainties that arise during a monitoring process. Namely the widespread application of numerical models (model-based) is accompanied by a widespread concern about quantifying the uncertainties prevailing in their use. Some of these uncertainties are related with the deterministic nature of the model (code uncertainty) others with the variability of its inputs (parameter uncertainty) and the discrepancy between a model/experiment (systematic uncertainty). The actual process always exhibits a random behaviour (observation error) even when conditions are set identically (residual variation). Bayesian inference assumes that parameters of a model are random variables with an associated PDF, which can be inferred from experimental data. However in many Bayesian methods the determination of systematic uncertainty can be problematic. In this work systematic uncertainty is associated with a discrepancy function. The numerical model and discrepancy function are approximated by Gaussian processes (surrogate model). Finally, to avoid the computational burden of a fully Bayesian approach the parameters that characterise the Gaussian processes were estimated in a four stage process (modular Bayesian approach). The proposed methodology has been successfully applied on fields such as geoscience, biomedics, particle physics but never on the SHM context. This approach considerably reduces the computational burden; although the extent of the considered uncertainties is lower (second order effects are neglected). To successfully identify the considered uncertainties this formulation was extended to consider multiple responses. The efficiency of the algorithm has been tested on a small scale aluminium bridge structure, subjected to a thermal expansion due to infrared heaters. Comparison of its performance with responses measured at different points of the structure and associated degrees of identifiability is also carried out. A numerical FEM model of the structure was developed and the stiffness from its supports is considered as a parameter to calibrate. Results show that the modular Bayesian approach performed best when responses of the same type had the lowest spatial correlation. Based on previous literature, using different types of responses (strain, acceleration, and displacement) should also improve the identifiability problem. Uncertainties due to parametric variability, observation error, residual variability, code variability and systematic uncertainty were all recovered. For this example the algorithm performance was stable and considerably quicker than Bayesian methods that account for the full extent of uncertainties. Future research with real-life examples is required to fully access the advantages and limitations of the proposed methodology.Keywords: bayesian, calibration, numerical model, system identification, systematic uncertainty, Gaussian process
Procedia PDF Downloads 3242259 Jungle Justice on Emotional Health Challenges of Residents in Lagos Metropolis
Authors: Aaron Akinloye
Abstract:
this research focuses on the impact of jungle justice on the emotional health challenges experienced by residents in the Lagos metropolitan city in Nigeria. Jungle justice refers to the practice of individuals taking the law into their own hands and administering punishment without proper legal procedures. The aim of this study is to investigate the influence of jungle justice on the emotional challenges faced by residents in Lagos. The specific objectives of the study are to examine the effects of jungle justice on trauma, pressure, fear, and depression among residents. The study adopts a descriptive survey research design and uses a questionnaire as the research instrument. The population of the study consisted of residents in the three senatorial districts that make up Lagos State. A simple random sampling technique was used to select two Local Government Areas (Yaba and Shomolu) from each of the three senatorial districts of Lagos State. Also, a simple random sampling technique was used to select fifty (50) residents from each of the chosen Local Government Areas to make three hundred (300) residents that formed the sample of the study. Accidental sampling technique is employed to select a sample of 300 residents. Data on the variables of interest is collected using a self-developed questionnaire. The research instrument undergoes validation through face, content, and construct validation processes. The reliability coefficient of the instrument is found to be 0.84. The study reveals that jungle justice significantly influences trauma, pressure, fear, and depression among residents in Lagos metropolitan city. The statistical analysis shows significant relationships between jungle justice and these emotional health challenges (df (298) t= 2.33, p< 0.05; df (298) t= 2.16, p< 0.05; df (298) t= 2.20, p< 0.05; df (298) t= 2.14, p< 0.05). This study contributes to the literature by highlighting the negative effects of jungle justice on the emotional well-being of residents. It emphasizes the importance of addressing this issue and implementing measures to prevent such vigilante actions. Data is collected through the administration of the self-developed questionnaire to the selected residents. The collected data is then analyzed using inferential statistics, specifically mean analysis, to examine the relationships between jungle justice and the emotional health challenges experienced by the residents. The main question addressed in this study is how jungle justice affects the emotional health challenges faced by residents in Lagos metropolitan city. Conclusion: The study concludes that jungle justice has a significant influence on trauma, pressure, fear, and depression among residents. To address this issue, recommendations are made, including the implementation of comprehensive awareness campaigns, improvement of law enforcement agencies, development of support systems for victims, and revision of the legal framework to effectively address jungle justice. Overall, this research contributes to the understanding of the consequences of jungle justice and provides recommendations for intervention to protect the emotional well-being of residents in Lagos metropolitan city.Keywords: jungle justice, emotional health, depression, anger
Procedia PDF Downloads 752258 Survey of Personality Characteristics in Adolescents under the Care of Tehran Juvenile Detention Center
Authors: Jamal Shokrzadehmadiyeh, Kambiz Kamkari, Shohreh Shokrzadeh
Abstract:
According to the research topic, the purpose of the current paper is to research personality characteristics in adolescents under the care of the Tehran Juvenile Detention Centre, and a survey research method has been used. In this regard, through systematic random sampling, 120 people from the research population were selected as a sample, who were referred to Tehran Juvenile Detention Centre after the decision was reached by the court. Data collection was carried out by separate examination using NEO-PI-III personality inventory, and statistical analysis was done using a one-sample t-test. Finally, the results of the research revealed that the level of neuroticism is higher than the average level, the level of conscientiousness is lower than the average level, and the level of extraversion, agreeableness, and openness are at the average level.Keywords: personality characteristics, adolescents, Juvenile Detention Center, Tehran city
Procedia PDF Downloads 1032257 Analysis of Selected Hematological Variables during Three Different Menstrual Phases between Sedentary and Sports Women
Authors: G. Vasanthi
Abstract:
The purpose of the study was to analyse the red blood cells and white blood cells during three different menstrual phases between sedentary and sports women. To achieve this purpose, fifteen female sedentary post graduate students (M.A., M.Sc.) and fifteen students of Master of Physical Education and Sports (M.P.Ed.) women who regularly involved in vigouous sports training and participated in sports competition on different games were selected by adopting random sampling method. All the students were hostelers and their age group was between 20 to 22 years. The blood sample were collected during the mid-period of the three different phases to calculate the red blood cells and white blood cells. The data collected were treated statistically by using analysis of variance. The results reveal that the RBC and WBC is found to be significant between sedentary and sports women during the three different menstrual phases.Keywords: RBC, WBC, menstrual, proliferative, secretary, sedentary women, sports women
Procedia PDF Downloads 5022256 Optimal Production and Maintenance Policy for a Partially Observable Production System with Stochastic Demand
Authors: Leila Jafari, Viliam Makis
Abstract:
In this paper, the joint optimization of the economic manufacturing quantity (EMQ), safety stock level, and condition-based maintenance (CBM) is presented for a partially observable, deteriorating system subject to random failure. The demand is stochastic and it is described by a Poisson process. The stochastic model is developed and the optimization problem is formulated in the semi-Markov decision process framework. A modification of the policy iteration algorithm is developed to find the optimal policy. A numerical example is presented to compare the optimal policy with the policy considering zero safety stock.Keywords: condition-based maintenance, economic manufacturing quantity, safety stock, stochastic demand
Procedia PDF Downloads 4612255 Employer Branding and Its Influence in Employee Retention in the Non Governmental Organizations in Jordan
Authors: Wasfi Alrawabdeh
Abstract:
Abstract The prime purpose of this study was to investigate whether employers use branding in their organizations, and how employer branding influence the attraction and retention of employees in the Non Governmental Organizations (NGOs) in Jordan. The descriptive survey design was adopted for the study. 500 random NGOs employees', including junior and senior staff were conveniently sampled for the study. Data was analyzed using both descriptive and inferential statistics. The results of the study suggest that organizations use employer-branding processes in their business to attract employees and customers. It was also found that brand names of organizations might significantly influence the decision of employees to join and stay in the organizations. It was therefore suggested that employers need to create conducive work environment with conditions to enable employees feel comfortable and remain in the organization.Keywords: Employer branding, Employee attraction , and retention , Trust , Satisfaction.
Procedia PDF Downloads 159