Search results for: nonlinear optimization with constraints
4093 Design and Fabrication of Stiffness Reduced Metallic Locking Compression Plates through Topology Optimization and Additive Manufacturing
Authors: Abdulsalam A. Al-Tamimi, Chris Peach, Paulo Rui Fernandes, Paulo J. Bartolo
Abstract:
Bone fixation implants currently used to treat traumatic fractured bones and to promote fracture healing are built with biocompatible metallic materials such as stainless steel, cobalt chromium and titanium and its alloys (e.g., CoCrMo and Ti6Al4V). The noticeable stiffness mismatch between current metallic implants and host bone associates with negative outcomes such as stress shielding which causes bone loss and implant loosening leading to deficient fracture treatment. This paper, part of a major research program to design the next generation of bone fixation implants, describes the combined use of three-dimensional (3D) topology optimization (TO) and additive manufacturing powder bed technology (Electron Beam Melting) to redesign and fabricate the plates based on the current standard one (i.e., locking compression plate). Topology optimization is applied with an objective function to maximize the stiffness and constraint by volume reductions (i.e., 25-75%) in order to obtain optimized implant designs with reduced stress shielding phenomenon, under different boundary conditions (i.e., tension, bending, torsion and combined loads). The stiffness of the original and optimised plates are assessed through a finite-element study. The TO results showed actual reduction in the stiffness for most of the plates due to the critical values of volume reduction. Additionally, the optimized plates fabricated using powder bed techniques proved that the integration between the TO and additive manufacturing presents the capability of producing stiff reduced plates with acceptable tolerances.Keywords: additive manufacturing, locking compression plate, finite element, topology optimization
Procedia PDF Downloads 1994092 Medium Design and Optimization for High Β-Galactosidase Producing Microbial Strains from Dairy Waste through Fermentation
Authors: Ashish Shukla, K. P. Mishra, Pushplata Tripathi
Abstract:
This paper investigates the production and optimization of β-galactosidase enzyme using synthetic medium by isolated wild strains (S1, S2) mutated strains (M1, M2) through SSF and SmF. Among the different cell disintegration methods used, the highest specific activity was obtained when the cells were permeabilized using isoamyl alcohol. Wet lab experiments were performed to investigate the effects of carbon and nitrogen substrates present in Vogel’s medium on β-galactosidase enzyme activity using S1, S2, and M1, M2 strains through SSF. SmF experiments were performed for effects of carbon and nitrogen sources in YLK2Mg medium on β-galactosidase enzyme activity using S1, S2 and M1, M2 strains. Effect of pH on β-galactosidase enzyme production was also done using S1, S2, and M1, M2 strains. Results were found to be very appreciable in all the cases.Keywords: β-galactosidase, cell disintegration, permeabilized, SSF, SmF
Procedia PDF Downloads 2734091 Optimization of a Method of Total RNA Extraction from Mentha piperita
Authors: Soheila Afkar
Abstract:
Mentha piperita is a medicinal plant that contains a large amount of secondary metabolite that has adverse effect on RNA extraction. Since high quality of RNA is the first step to real time-PCR, in this study optimization of total RNA isolation from leaf tissues of Mentha piperita was evaluated. From this point of view, we researched two different total RNA extraction methods on leaves of Mentha piperita to find the best one that contributes the high quality. The methods tested are RNX-plus, modified RNX-plus (1-5 numbers). RNA quality was analyzed by agarose gel 1.5%. The RNA integrity was also assessed by visualization of ribosomal RNA bands on 1.5% agarose gels. In the modified RNX-plus method (number 2), the integrity of 28S and 18S rRNA was highly satisfactory when analyzed in agarose denaturing gel, so this method is suitable for RNA isolation from Mentha piperita.Keywords: Mentha piperita, polyphenol, polysaccharide, RNA extraction
Procedia PDF Downloads 1904090 Comparison of Reserve Strength Ratio and Capacity Curve Parameters of Offshore Platforms with Distinct Bracing Arrangements
Authors: Aran Dezhban, Hooshang Dolatshahi Pirooz
Abstract:
The phenomenon of corrosion, especially in the Persian Gulf region, is the main cause of the deterioration of offshore platforms, due to the high corrosion of its water. This phenomenon occurs mostly in the area of water spraying, threatening the members of the first floor of the jacket, legs, and piles in this area. In the current study, the effect of bracing arrangement on the Capacity Curve and Reserve Strength Ratio of Fixed-Type Offshore Platforms is investigated. In order to continue the operation of the platform, two modes of robust and damaged structures are considered, while checking the adequacy of the platform capacity based on the allowable values of API RP-2SIM regulations. The platform in question is located in the Persian Gulf, which is modeled on the OpenSEES software. In this research, the Nonlinear Pushover Analysis has been used. After validation, the Capacity Curve of the studied platforms is obtained and then their Reserve Strength Ratio is calculated. Results are compared with the criteria in the API-2SIM regulations.Keywords: fixed-type jacket structure, structural integrity management, nonlinear pushover analysis, robust and damaged structure, reserve strength ration, capacity curve
Procedia PDF Downloads 1154089 Female Entrepreneurship in Egypt: Barriers and Challenges in the Aftermath of the Arab Spring
Authors: Kate Ebere Maduforo
Abstract:
Examining the constraints faced by female entrepreneurs is an important subject which most literature on female entrepreneurship is centered on. However, the majority of the existing literature has focused on studying female entrepreneurs in developed societies. Recently, a sense of urgency that has emerged in trying to understand the challenges and motivations of female entrepreneurs in developing countries. The arousal of such interest has been attributed to women entrepreneurs in developing countries being identified as catalysts of economic development at a national level and champions of poverty eradication at the domestic level. This paper, therefore, examines the peculiar constraints faced by women-owned businesses in the mist of political chaos and instability. In this case, the issues experienced by female entrepreneurs in Egypt during the aftermath of the Arab Spring is the focus. Using the logit and probit regression models, data from the World Bank Middle East North Africa Enterprise Survey (MENA ES) are analyzed. The results identified that female entrepreneurs still lack business funding through financial institutions, but get significant funding assistance from family, friends, and money lenders. In addition, women-owned businesses promote and hire mostly women. Female entrepreneurs showed a preference for an impartial judicial system as a contributor to business growth.Keywords: female entrepreneurship, development, Middle East, developing countries
Procedia PDF Downloads 1244088 Characteization and Optimization of S-Parameters of Microwave Circuits
Authors: N. Ourabia, M. Boubaker Ourabia
Abstract:
An approach for modeling and numerical simulation of passive planar structures using the edge line concept is developed. With this method, we develop an efficient modeling technique for microstrip discontinuities. The technique obtains closed form expressions for the equivalent circuits which are used to model these discontinuities. Then, it would be easy to handle and to characterize complicated structures like T and Y junctions, truncated junctions, arbitrarily shaped junctions, cascading junctions and more generally planar multiport junctions. Another advantage of this method is that the edge line concept for arbitrary shape junctions operates with real parameters circuits. The validity of the method was further confirmed by comparing our results for various discontinuities (bend, filters) with those from HFSS as well as from other published sources.Keywords: optimization, CAD analysis, microwave circuits, S-parameters
Procedia PDF Downloads 4544087 An Improved Approach to Solve Two-Level Hierarchical Time Minimization Transportation Problem
Authors: Kalpana Dahiya
Abstract:
This paper discusses a two-level hierarchical time minimization transportation problem, which is an important class of transportation problems arising in industries. This problem has been studied by various researchers, and a number of polynomial time iterative algorithms are available to find its solution. All the existing algorithms, though efficient, have some shortcomings. The current study proposes an alternate solution algorithm for the problem that is more efficient in terms of computational time than the existing algorithms. The results justifying the underlying theory of the proposed algorithm are given. Further, a detailed comparison of the computational behaviour of all the algorithms for randomly generated instances of this problem of different sizes validates the efficiency of the proposed algorithm.Keywords: global optimization, hierarchical optimization, transportation problem, concave minimization
Procedia PDF Downloads 1624086 Conversion of HVAC Lines into HVDC in Transmission Expansion Planning
Authors: Juan P. Novoa, Mario A. Rios
Abstract:
This paper presents a transmission planning methodology that considers the conversion of HVAC transmission lines to HVDC as an alternative of expansion of power systems, as a consequence of restrictions for the construction of new lines. The transmission expansion planning problem formulates an optimization problem that minimizes the total cost that includes the investment cost to convert lines from HVAC to HVDC and possible required reinforcements of the power system prior to the conversion. The costs analysis assesses the impact of the conversion on the reliability because transmission lines are out of service during the conversion work. The presented methodology is applied to a test system considering a planning a horizon of 10 years.Keywords: transmission expansion planning, HVDC, cost optimization, energy non-supplied
Procedia PDF Downloads 3884085 Heuristics for Optimizing Power Consumption in the Smart Grid
Authors: Zaid Jamal Saeed Almahmoud
Abstract:
Our increasing reliance on electricity, with inefficient consumption trends, has resulted in several economical and environmental threats. These threats include wasting billions of dollars, draining limited resources, and elevating the impact of climate change. As a solution, the smart grid is emerging as the future power grid, with smart techniques to optimize power consumption and electricity generation. Minimizing the peak power consumption under a fixed delay requirement is a significant problem in the smart grid. In addition, matching demand to supply is a key requirement for the success of the future electricity. In this work, we consider the problem of minimizing the peak demand under appliances constraints by scheduling power jobs with uniform release dates and deadlines. As the problem is known to be NP-Hard, we propose two versions of a heuristic algorithm for solving this problem. Our theoretical analysis and experimental results show that our proposed heuristics outperform existing methods by providing a better approximation to the optimal solution. In addition, we consider dynamic pricing methods to minimize the peak load and match demand to supply in the smart grid. Our contribution is the proposal of generic, as well as customized pricing heuristics to minimize the peak demand and match demand with supply. In addition, we propose optimal pricing algorithms that can be used when the maximum deadline period of the power jobs is relatively small. Finally, we provide theoretical analysis and conduct several experiments to evaluate the performance of the proposed algorithms.Keywords: heuristics, optimization, smart grid, peak demand, power supply
Procedia PDF Downloads 884084 Control of an Asymmetrical Design of a Pneumatically Actuated Ambidextrous Robot Hand
Authors: Emre Akyürek, Anthony Huynh, Tatiana Kalganova
Abstract:
The Ambidextrous Robot Hand is a robotic device with the purpose to mimic either the gestures of a right or a left hand. The symmetrical behavior of its fingers allows them to bend in one way or another keeping a compliant and anthropomorphic shape. However, in addition to gestures they can reproduce on both sides, an asymmetrical mechanical design with a three tendons routing has been engineered to reduce the number of actuators. As a consequence, control algorithms must be adapted to drive efficiently the ambidextrous fingers from one position to another and to include grasping features. These movements are controlled by pneumatic muscles, which are nonlinear actuators. As their elasticity constantly varies when they are under actuation, the length of pneumatic muscles and the force they provide may differ for a same value of pressurized air. The control algorithms introduced in this paper take both the fingers asymmetrical design and the pneumatic muscles nonlinearity into account to permit an accurate control of the Ambidextrous Robot Hand. The finger motion is achieved by combining a classic PID controller with a phase plane switching control that turns the gain constants into dynamic values. The grasping ability is made possible because of a sliding mode control that makes the fingers adapt to the shape of an object before strengthening their positions.Keywords: ambidextrous hand, intelligent algorithms, nonlinear actuators, pneumatic muscles, robotics, sliding control
Procedia PDF Downloads 2964083 Application of GA Optimization in Analysis of Variable Stiffness Composites
Authors: Nasim Fallahi, Erasmo Carrera, Alfonso Pagani
Abstract:
Variable angle tow describes the fibres which are curvilinearly steered in a composite lamina. Significantly, stiffness tailoring freedom of VAT composite laminate can be enlarged and enabled. Composite structures with curvilinear fibres have been shown to improve the buckling load carrying capability in contrast with the straight laminate composites. However, the optimal design and analysis of VAT are faced with high computational efforts due to the increasing number of variables. In this article, an efficient optimum solution has been used in combination with 1D Carrera’s Unified Formulation (CUF) to investigate the optimum fibre orientation angles for buckling analysis. The particular emphasis is on the LE-based CUF models, which provide a Lagrange Expansions to address a layerwise description of the problem unknowns. The first critical buckling load has been considered under simply supported boundary conditions. Special attention is lead to the sensitivity of buckling load corresponding to the fibre orientation angle in comparison with the results which obtain through the Genetic Algorithm (GA) optimization frame and then Artificial Neural Network (ANN) is applied to investigate the accuracy of the optimized model. As a result, numerical CUF approach with an optimal solution demonstrates the robustness and computational efficiency of proposed optimum methodology.Keywords: beam structures, layerwise, optimization, variable stiffness
Procedia PDF Downloads 1424082 Scour Depth Prediction around Bridge Piers Using Neuro-Fuzzy and Neural Network Approaches
Authors: H. Bonakdari, I. Ebtehaj
Abstract:
The prediction of scour depth around bridge piers is frequently considered in river engineering. One of the key aspects in efficient and optimum bridge structure design is considered to be scour depth estimation around bridge piers. In this study, scour depth around bridge piers is estimated using two methods, namely the Adaptive Neuro-Fuzzy Inference System (ANFIS) and Artificial Neural Network (ANN). Therefore, the effective parameters in scour depth prediction are determined using the ANN and ANFIS methods via dimensional analysis, and subsequently, the parameters are predicted. In the current study, the methods’ performances are compared with the nonlinear regression (NLR) method. The results show that both methods presented in this study outperform existing methods. Moreover, using the ratio of pier length to flow depth, ratio of median diameter of particles to flow depth, ratio of pier width to flow depth, the Froude number and standard deviation of bed grain size parameters leads to optimal performance in scour depth estimation.Keywords: adaptive neuro-fuzzy inference system (ANFIS), artificial neural network (ANN), bridge pier, scour depth, nonlinear regression (NLR)
Procedia PDF Downloads 2184081 Optimal Placement of the Unified Power Controller to Improve the Power System Restoration
Authors: Mohammad Reza Esmaili
Abstract:
One of the most important parts of the restoration process of a power network is the synchronizing of its subsystems. In this situation, the biggest concern of the system operators will be the reduction of the standing phase angle (SPA) between the endpoints of the two islands. In this regard, the system operators perform various actions and maneuvers so that the synchronization operation of the subsystems is successfully carried out and the system finally reaches acceptable stability. The most common of these actions include load control, generation control and, in some cases, changing the network topology. Although these maneuvers are simple and common, due to the weak network and extreme load changes, the restoration will be associated with low speed. One of the best ways to control the SPA is to use FACTS devices. By applying a soft control signal, these tools can reduce the SPA between two subsystems with more speed and accuracy, and the synchronization process can be done in less time. Meanwhile, the unified power controller (UPFC), a series-parallel compensator device with the change of transmission line power and proper adjustment of the phase angle, will be the proposed option in order to realize the subject of this research. Therefore, with the optimal placement of UPFC in a power system, in addition to improving the normal conditions of the system, it is expected to be effective in reducing the SPA during power system restoration. Therefore, the presented paper provides an optimal structure to coordinate the three problems of improving the division of subsystems, reducing the SPA and optimal power flow with the aim of determining the optimal location of UPFC and optimal subsystems. The proposed objective functions in this paper include maximizing the quality of the subsystems, reducing the SPA at the endpoints of the subsystems, and reducing the losses of the power system. Since there will be a possibility of creating contradictions in the simultaneous optimization of the proposed objective functions, the structure of the proposed optimization problem is introduced as a non-linear multi-objective problem, and the Pareto optimization method is used to solve it. The innovative technique proposed to implement the optimization process of the mentioned problem is an optimization algorithm called the water cycle (WCA). To evaluate the proposed method, the IEEE 39 bus power system will be used.Keywords: UPFC, SPA, water cycle algorithm, multi-objective problem, pareto
Procedia PDF Downloads 664080 The Optimization Design of Sound Absorbing for Automotive Interior Material
Authors: Un-Hwan Park, Jun-Hyeok Heo, In-Sung Lee, Tae-Hyeon Oh, Dae-Gyu Park
Abstract:
Nonwoven fabric such as an automobile interior material becomes consists of several material layers required for the sound-absorbing function. Because several material layers, many experimental tuning is required to achieve the target of sound absorption. Therefore, a lot of time and money is spent in the development of the car interior materials. In this study, we present the method to predict the sound-absorbing performance of the various layers with physical properties of each material. and we will verify it with the measured value of a prototype. If the sound absorption can be estimated, it can be optimized without a number of tuning tests of the interiors. So, it can reduce the development cost and time during developmentKeywords: automotive interior material, sound absorbing, optimization design, nonwoven fabric
Procedia PDF Downloads 8374079 A Lightweight Pretrained Encrypted Traffic Classification Method with Squeeze-and-Excitation Block and Sharpness-Aware Optimization
Authors: Zhiyan Meng, Dan Liu, Jintao Meng
Abstract:
Dependable encrypted traffic classification is crucial for improving cybersecurity and handling the growing amount of data. Large language models have shown that learning from large datasets can be effective, making pre-trained methods for encrypted traffic classification popular. However, attention-based pre-trained methods face two main issues: their large neural parameters are not suitable for low-computation environments like mobile devices and real-time applications, and they often overfit by getting stuck in local minima. To address these issues, we developed a lightweight transformer model, which reduces the computational parameters through lightweight vocabulary construction and Squeeze-and-Excitation Block. We use sharpness-aware optimization to avoid local minima during pre-training and capture temporal features with relative positional embeddings. Our approach keeps the model's classification accuracy high for downstream tasks. We conducted experiments on four datasets -USTC-TFC2016, VPN 2016, Tor 2016, and CICIOT 2022. Even with fewer than 18 million parameters, our method achieves classification results similar to methods with ten times as many parameters.Keywords: sharpness-aware optimization, encrypted traffic classification, squeeze-and-excitation block, pretrained model
Procedia PDF Downloads 304078 A Novel PSO Based Decision Tree Classification
Authors: Ali Farzan
Abstract:
Classification of data objects or patterns is a major part in most of Decision making systems. One of the popular and commonly used classification methods is Decision Tree (DT). It is a hierarchical decision making system by which a binary tree is constructed and starting from root, at each node some of the classes is rejected until reaching the leaf nods. Each leaf node is a representative of one specific class. Finding the splitting criteria in each node for constructing or training the tree is a major problem. Particle Swarm Optimization (PSO) has been adopted as a metaheuristic searching method for finding the best splitting criteria. Result of evaluating the proposed method over benchmark datasets indicates the higher accuracy of the new PSO based decision tree.Keywords: decision tree, particle swarm optimization, splitting criteria, metaheuristic
Procedia PDF Downloads 4064077 Synergy Effect of Energy and Water Saving in China's Energy Sectors: A Multi-Objective Optimization Analysis
Authors: Yi Jin, Xu Tang, Cuiyang Feng
Abstract:
The ‘11th five-year’ and ‘12th five-year’ plans have clearly put forward to strictly control the total amount and intensity of energy and water consumption. The synergy effect of energy and water has rarely been considered in the process of energy and water saving in China, where its contribution cannot be maximized. Energy sectors consume large amounts of energy and water when producing massive energy, which makes them both energy and water intensive. Therefore, the synergy effect in these sectors is significant. This paper assesses and optimizes the synergy effect in three energy sectors under the background of promoting energy and water saving. Results show that: From the perspective of critical path, chemical industry, mining and processing of non-metal ores and smelting and pressing of metals are coupling points in the process of energy and water flowing to energy sectors, in which the implementation of energy and water saving policies can bring significant synergy effect. Multi-objective optimization shows that increasing efforts on input restructuring can effectively improve synergy effects; relatively large synergetic energy saving and little water saving are obtained after solely reducing the energy and water intensity of coupling sectors. By optimizing the input structure of sectors, especially the coupling sectors, the synergy effect of energy and water saving can be improved in energy sectors under the premise of keeping economy running stably.Keywords: critical path, energy sector, multi-objective optimization, synergy effect, water
Procedia PDF Downloads 3604076 Protein Tertiary Structure Prediction by a Multiobjective Optimization and Neural Network Approach
Authors: Alexandre Barbosa de Almeida, Telma Woerle de Lima Soares
Abstract:
Protein structure prediction is a challenging task in the bioinformatics field. The biological function of all proteins majorly relies on the shape of their three-dimensional conformational structure, but less than 1% of all known proteins in the world have their structure solved. This work proposes a deep learning model to address this problem, attempting to predict some aspects of the protein conformations. Throughout a process of multiobjective dominance, a recurrent neural network was trained to abstract the particular bias of each individual multiobjective algorithm, generating a heuristic that could be useful to predict some of the relevant aspects of the three-dimensional conformation process formation, known as protein folding.Keywords: Ab initio heuristic modeling, multiobjective optimization, protein structure prediction, recurrent neural network
Procedia PDF Downloads 2064075 Optimization of Smart Beta Allocation by Momentum Exposure
Authors: J. B. Frisch, D. Evandiloff, P. Martin, N. Ouizille, F. Pires
Abstract:
Smart Beta strategies intend to be an asset management revolution with reference to classical cap-weighted indices. Indeed, these strategies allow a better control on portfolios risk factors and an optimized asset allocation by taking into account specific risks or wishes to generate alpha by outperforming indices called 'Beta'. Among many strategies independently used, this paper focuses on four of them: Minimum Variance Portfolio, Equal Risk Contribution Portfolio, Maximum Diversification Portfolio, and Equal-Weighted Portfolio. Their efficiency has been proven under constraints like momentum or market phenomenon, suggesting a reconsideration of cap-weighting. To further increase strategy return efficiency, it is proposed here to compare their strengths and weaknesses inside time intervals corresponding to specific identifiable market phases, in order to define adapted strategies depending on pre-specified situations. Results are presented as performance curves from different combinations compared to a benchmark. If a combination outperforms the applicable benchmark in well-defined actual market conditions, it will be preferred. It is mainly shown that such investment 'rules', based on both historical data and evolution of Smart Beta strategies, and implemented according to available specific market data, are providing very interesting optimal results with higher return performance and lower risk. Such combinations have not been fully exploited yet and justify present approach aimed at identifying relevant elements characterizing them.Keywords: smart beta, minimum variance portfolio, equal risk contribution portfolio, maximum diversification portfolio, equal weighted portfolio, combinations
Procedia PDF Downloads 3404074 Increasing Performance of Autopilot Guided Small Unmanned Helicopter
Authors: Tugrul Oktay, Mehmet Konar, Mustafa Soylak, Firat Sal, Murat Onay, Orhan Kizilkaya
Abstract:
In this paper, autonomous performance of a small manufactured unmanned helicopter is tried to be increased. For this purpose, a small unmanned helicopter is manufactured in Erciyes University, Faculty of Aeronautics and Astronautics. It is called as ZANKA-Heli-I. For performance maximization, autopilot parameters are determined via minimizing a cost function consisting of flight performance parameters such as settling time, rise time, overshoot during trajectory tracking. For this purpose, a stochastic optimization method named as simultaneous perturbation stochastic approximation is benefited. Using this approach, considerable autonomous performance increase (around %23) is obtained.Keywords: small helicopters, hierarchical control, stochastic optimization, autonomous performance maximization, autopilots
Procedia PDF Downloads 5824073 A Sensor Placement Methodology for Chemical Plants
Authors: Omid Ataei Nia, Karim Salahshoor
Abstract:
In this paper, a new precise and reliable sensor network methodology is introduced for unit processes and operations using the Constriction Coefficient Particle Swarm Optimization (CPSO) method. CPSO is introduced as a new search engine for optimal sensor network design purposes. Furthermore, a Square Root Unscented Kalman Filter (SRUKF) algorithm is employed as a new data reconciliation technique to enhance the stability and accuracy of the filter. The proposed design procedure incorporates precision, cost, observability, reliability together with importance-of-variables (IVs) as a novel measure in Instrumentation Criteria (IC). To the best of our knowledge, no comprehensive approach has yet been proposed in the literature to take into account the importance of variables in the sensor network design procedure. In this paper, specific weight is assigned to each sensor, measuring a process variable in the sensor network to indicate the importance of that variable over the others to cater to the ultimate sensor network application requirements. A set of distinct scenarios has been conducted to evaluate the performance of the proposed methodology in a simulated Continuous Stirred Tank Reactor (CSTR) as a highly nonlinear process plant benchmark. The obtained results reveal the efficacy of the proposed method, leading to significant improvement in accuracy with respect to other alternative sensor network design approaches and securing the definite allocation of sensors to the most important process variables in sensor network design as a novel achievement.Keywords: constriction coefficient PSO, importance of variable, MRMSE, reliability, sensor network design, square root unscented Kalman filter
Procedia PDF Downloads 1604072 Identification of Switched Reluctance Motor Parameters Using Exponential Swept-Sine Signal
Authors: Abdelmalek Ouannou, Adil Brouri, Laila Kadi, Tarik
Abstract:
Switched reluctance motor (SRM) has a major interest in a large domain as in electric vehicle driving because of its wide range of speed operation, high performances, low cost, and robustness to run under degraded conditions. The purpose of the paper is to develop a new analytical approach for modeling SRM parameters. Then, an identification scheme is proposed to obtain the SRM parameters. Since the SRM is featured by a highly nonlinear behavior, modeling these devices is difficult. Then, it is convenient to develop an accurate model describing the SRM. Furthermore, it is always operated in the magnetically saturated mode to maximize the energy transfer. Accordingly, it is shown that the SRM can be accurately described by a generalized polynomial Hammerstein model, i.e., the parallel connection of several Hammerstein models having polynomial nonlinearity. Presently an analytical identification method is developed using a chirp excitation signal. Afterward, the parameters of the obtained model have been determined using Finite Element Method analysis. Finally, in order to show the effectiveness of the proposed method, a comparison between the true and estimate models has been performed. The obtained results show that the output responses are very close.Keywords: switched reluctance motor, swept-sine signal, generalized Hammerstein model, nonlinear system
Procedia PDF Downloads 2374071 Supply Chain Optimization for Silica Sand in a Glass Manufacturing Company
Authors: Ramon Erasmo Verdin Rodriguez
Abstract:
Many has been the ways that historically the managers and gurus has been trying to get closer to the perfect supply chain, but since this topic is so vast and very complex the bigger the companies are, the duty has not been certainly easy. On this research, you are going to see thru the entrails of the logistics that happens at a glass manufacturing company with the number one raw material of the process that is the silica sand. After a very quick passage thru the supply chain, this document is going to focus on the way that raw materials flow thru the system, so after that, an analysis and research can take place to improve the logistics. Thru Operations Research techniques, it will be analyzed the current scheme of distribution and inventories of raw materials at a glass company’s plants, so after a mathematical conceptualization process, the supply chain could be optimized with the purpose of reducing the uncertainty of supply and obtaining an economic benefit at the very end of this research.Keywords: inventory management, operations research, optimization, supply chain
Procedia PDF Downloads 3264070 Optimization of the Production Processes of Biodiesel from a Locally Sourced Gossypium herbaceum and Moringa oleifera
Authors: Ikechukwu Ejim
Abstract:
This research project addresses the optimization of biodiesel production from gossypium herbaceum (cottonseed) and moringa oleifera seeds. Soxhlet extractor method using n-hexane for gossypium herbaceum (cottonseed) and ethanol for moringa oleifera were used for solvent extraction. 1250 ml of oil was realized from both gossypium herbaceum (cottonseed) and moringa oleifera seeds before characterization. In transesterification process, a 4-factor-3-level experiment was conducted using an optimal design of Response Surface Methodology. The effects of methanol/oil molar ratio, catalyst concentration (%), temperature (°C) and time (mins), on the yield of methyl ester for both cottonseed and moringa oleifera oils were determined. The design consisted of 25 experimental runs (5 lack of fit points, five replicate points, 0 additional center points and I optimality) and provided sufficient information to fit a second-degree polynomial model. The experimental results suggested that optimum conditions were as follows; cottonseed yield (96.231%), catalyst concentration (0.972%), temperature (55oC), time (60mins) and methanol/oil molar ratios (8/1) respectively while moringa oleifera optimum values were yield (80.811%), catalyst concentration (1.0%), temperature (54.7oC), time (30mins ) and methanol/oil molar ratios (8/1) respectively. This optimized conditions were validated with the actual biodiesel yield in experimental trials and literature.Keywords: optimization, Gossypium herbaceum, Moringa oleifera, biodiesel
Procedia PDF Downloads 1464069 A Review of Transformer Modeling for Power Line Communication Applications
Authors: Balarabe Nkom, Adam P. R. Taylor, Craig Baguley
Abstract:
Power Line Communications (PLC) is being employed in existing power systems, despite the infrastructure not being designed with PLC considerations in mind. Given that power transformers can last for decades, the distribution transformer in particular exists as a relic of un-optimized technology. To determine issues that may need to be addressed in subsequent designs of such transformers, it is essential to have a highly accurate transformer model for simulations and subsequent optimization for the PLC environment, with a view to increase data speed, throughput, and efficiency, while improving overall system stability and reliability. This paper reviews various methods currently available for creating transformer models and provides insights into the requirements of each for obtaining high accuracy. The review indicates that a combination of traditional analytical methods using a hybrid approach gives good accuracy at reasonable costs.Keywords: distribution transformer, modelling, optimization, power line communications
Procedia PDF Downloads 5084068 Mental Health of Caregivers in Public Hospital Intensive Care Department: A Multicentric Cross-Sectional Study
Authors: Lamia Bouzgarrou, Amira Omrane, Naima Bouatay, Chaima Harrathi, Samia Machroughl, Ahmed Mhalla
Abstract:
Background and Aims: Professionals of health care sector are exposed to psychosocial constraints like stress, harassment, violence, which can lead to many mental health problems such as, depression, addictive behavior, and burn-out. Moreover, it’s well established that caregivers affected to intensive care units are more likely to experience such constraints and mental health problems. For these caregivers, the mental health state may affect care quality and patient’s safety. This study aims either to identify occupational psychosocial constraints and their mental health consequences among paramedical and medical caregivers affected to intensive units in Tunisian public hospital. Methods: An exhaustive three months cross-sectional study conducted among medical and paramedical staffs of intensive care units in three Tunisian university hospitals. After informed consent collection, we evaluated work-related stress, workplace harassment, depression, anxious troubles, addictive behavior, and self-esteems through an anonymous self-completed inquiry form. Five validated questionnaires and scales were included in this form: Karasek's Job Content Questionnaire, Negative Acts Questionnaire, Rosenberg, Beck depression inventory and Hamilton Anxiety scale. Results: We included 129 intensive unit caregivers; with a mean age of 36.1 ± 1.1 years and a sex ratio of 0.58. Among these caregivers, 30% were specialist or under-specialization doctors. The average seniority in the intensive care was 6.1 ± 1.2 (extremes=1 to 40 years). Atypical working schedules were noted among 36.7% of the subjects with an imposed choice in 52.4% of cases. During the last 12 months preceding the survey, 51.7% of care workers were absent from work because of a health problem with stops exceeding 15 days in 11.7%. Job strain was objective among 15% of caregivers and 38.33% of them were victims of moral harassment. A low or very low self-esteem was noted among 40% of respondents. Moreover, active smoking was reported by 20% subjects, alcohol consumption by 13.3% and psychotropic substance use by 1.7% of them. According to Beck inventory and Hamilton Anxiety scale, we concluded that 61.7% of intensive care providers were depressed, with 'severe' depression in 13.3% of cases and 49.9% of them present anxious disorders. Multivariate analysis objective that, job strain was correlated with young age (p=0.005) and shorter work seniority (p=0.001). Workplace and moral harassment was more prevalent among females (p=0.009), under-specialization doctor (p=0.021), those affected to atypical schedules (p=0.008). Concerning depression, it was more prevalent among staff in job strain situation (p = 0.004), among smokers caregivers (p = 0.048), and those with no leisure activity (p < 0.001). Anxious disorders were positively correlated to chronic diseases history (p = 0.001) and work-bullying exposure (p = 0.004). Conclusions: Our findings reflected a high frequency of caregivers who are under stress at work and those who are victims of moral harassment. These health professionals were at increased risk for developing psychiatric illness such depressive and anxious disorders and addictive behavior. Our results suggest the necessity of preventive strategies of occupational psychosocial constraints in order to preserve professional’s mental health and maximize patient safety and quality of care.Keywords: health care sector, intensive care units, mental health, psychosocial constraints
Procedia PDF Downloads 1554067 A Nonlinear Visco-Hyper Elastic Constitutive Model for Modelling Behavior of Polyurea at Large Deformations
Authors: Shank Kulkarni, Alireza Tabarraei
Abstract:
The fantastic properties of polyurea such as flexibility, durability, and chemical resistance have brought it a wide range of application in various industries. Effective prediction of the response of polyurea under different loading and environmental conditions necessitates the development of an accurate constitutive model. Similar to most polymers, the behavior of polyurea depends on both strain and strain rate. Therefore, the constitutive model should be able to capture both these effects on the response of polyurea. To achieve this objective, in this paper, a nonlinear hyper-viscoelastic constitutive model is developed by the superposition of a hyperelastic and a viscoelastic model. The proposed constitutive model can capture the behavior of polyurea under compressive loading conditions at various strain rates. Four parameter Ogden model and Mooney Rivlin model are used to modeling the hyperelastic behavior of polyurea. The viscoelastic behavior is modeled using both a three-parameter standard linear solid (SLS) model and a K-BKZ model. Comparison of the modeling results with experiments shows that Odgen and SLS model can more accurately predict the behavior of polyurea. The material parameters of the model are found by curve fitting of the proposed model to the uniaxial compression test data. The proposed model can closely reproduce the stress-strain behavior of polyurea for strain rates up to 6500 /s.Keywords: constitutive modelling, ogden model, polyurea, SLS model, uniaxial compression test
Procedia PDF Downloads 2444066 3D Numerical Studies on Jets Acoustic Characteristics of Chevron Nozzles for Aerospace Applications
Authors: R. Kanmaniraja, R. Freshipali, J. Abdullah, K. Niranjan, K. Balasubramani, V. R. Sanal Kumar
Abstract:
The present environmental issues have made aircraft jet noise reduction a crucial problem in aero-acoustics research. Acoustic studies reveal that addition of chevrons to the nozzle reduces the sound pressure level reasonably with acceptable reduction in performance. In this paper comprehensive numerical studies on acoustic characteristics of different types of chevron nozzles have been carried out with non-reacting flows for the shape optimization of chevrons in supersonic nozzles for aerospace applications. The numerical studies have been carried out using a validated steady 3D density based, k-ε turbulence model. In this paper chevron with sharp edge, flat edge, round edge and U-type edge are selected for the jet acoustic characterization of supersonic nozzles. We observed that compared to the base model a case with round-shaped chevron nozzle could reduce 4.13% acoustic level with 0.6% thrust loss. We concluded that the prudent selection of the chevron shape will enable an appreciable reduction of the aircraft jet noise without compromising its overall performance. It is evident from the present numerical simulations that k-ε model can predict reasonably well the acoustic level of chevron supersonic nozzles for its shape optimization.Keywords: supersonic nozzle, Chevron, acoustic level, shape optimization of Chevron nozzles, jet noise suppression
Procedia PDF Downloads 5164065 Fuzzy Time Series Forecasting Based on Fuzzy Logical Relationships, PSO Technique, and Automatic Clustering Algorithm
Authors: A. K. M. Kamrul Islam, Abdelhamid Bouchachia, Suang Cang, Hongnian Yu
Abstract:
Forecasting model has a great impact in terms of prediction and continues to do so into the future. Although many forecasting models have been studied in recent years, most researchers focus on different forecasting methods based on fuzzy time series to solve forecasting problems. The forecasted models accuracy fully depends on the two terms that are the length of the interval in the universe of discourse and the content of the forecast rules. Moreover, a hybrid forecasting method can be an effective and efficient way to improve forecasts rather than an individual forecasting model. There are different hybrids forecasting models which combined fuzzy time series with evolutionary algorithms, but the performances are not quite satisfactory. In this paper, we proposed a hybrid forecasting model which deals with the first order as well as high order fuzzy time series and particle swarm optimization to improve the forecasted accuracy. The proposed method used the historical enrollments of the University of Alabama as dataset in the forecasting process. Firstly, we considered an automatic clustering algorithm to calculate the appropriate interval for the historical enrollments. Then particle swarm optimization and fuzzy time series are combined that shows better forecasting accuracy than other existing forecasting models.Keywords: fuzzy time series (fts), particle swarm optimization, clustering algorithm, hybrid forecasting model
Procedia PDF Downloads 2504064 An Effective Decision-Making Strategy Based on Multi-Objective Optimization for Commercial Vehicles in Highway Scenarios
Authors: Weiming Hu, Xu Li, Xiaonan Li, Zhong Xu, Li Yuan, Xuan Dong
Abstract:
Maneuver decision-making plays a critical role in high-performance intelligent driving. This paper proposes a risk assessment-based decision-making network (RADMN) to address the problem of driving strategy for the commercial vehicle. RADMN integrates two networks, aiming at identifying the risk degree of collision and rollover and providing decisions to ensure the effectiveness and reliability of driving strategy. In the risk assessment module, risk degrees of the backward collision, forward collision and rollover are quantified for hazard recognition. In the decision module, a deep reinforcement learning based on multi-objective optimization (DRL-MOO) algorithm is designed, which comprehensively considers the risk degree and motion states of each traffic participant. To evaluate the performance of the proposed framework, Prescan/Simulink joint simulation was conducted in highway scenarios. Experimental results validate the effectiveness and reliability of the proposed RADMN. The output driving strategy can guarantee the safety and provide key technical support for the realization of autonomous driving of commercial vehicles.Keywords: decision-making strategy, risk assessment, multi-objective optimization, commercial vehicle
Procedia PDF Downloads 134