Search results for: coordinate measuring machines (CMM)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2625

Search results for: coordinate measuring machines (CMM)

1305 Assessment of Air Pollution Impacts On Population Health in Béjaia City

Authors: Benaissa Fatima, Alkama Rezak, Annesi-Maesano Isabella

Abstract:

To assess the health impact of the air pollution on the population of Béjaia, we carried out a descriptive epidemiologic inquiry near the medical establishments of three areas. From the registers of hospital admissions, we collected data on the hospital mortality and admissions relating to the various cardiorespiratory pathologies generated by this type of pollution. In parallel, data on the automobile fleet of Bejaia and other measurements were exploited to show that the concentrations of the pollutants are strongly correlated with the concentration the urban traffic. This study revealed that the whole of the population is touched, but the sensitivity to pollution can show variations according to the age, the sex and the place of residence. So the under population of the town of Bejaia marked the most raised death and morbidity rates, followed that of Kherrata. Weak rates are recorded for under rural population of Feraoun. This approach enables us to conclude that the population of Béjaia could not escape the urban pollution generated by her old automobile fleet. To install a monitoring and measuring site of the air pollution in this city could provide a beneficial tool to protect its inhabitants by them informing on quality from the air that they breathe and measurements to follow to minimize the impacts on their health and by alerting the authorities during the critical situations.

Keywords: air, urban pollution, health, impacts

Procedia PDF Downloads 360
1304 Recycling of Aggregates from Construction Demolition Wastes in Concrete: Study of Physical and Mechanical Properties

Authors: M. Saidi, F. Ait Medjber, B. Safi, M. Samar

Abstract:

This work is focused on the study of valuation of recycled concrete aggregates, by measuring certain properties of concrete in the fresh and hardened state. In this study, rheological tests and physic-mechanical characterization on concretes and mortars were conducted with recycled concrete whose geometric properties were identified aggregates. Mortars were elaborated with recycled fine aggregate (0/5mm) and concretes were manufactured using recycled coarse aggregates (5/12.5 mm and 12.5/20 mm). First, a study of the mortars was conducted to determine the effectiveness of adjuvant polycarboxylate superplasticizer on the workability of these and their action deflocculating of the fine recycled sand. The rheological behavior of mortars based on fine aggregate recycled was characterized. The results confirm that the mortars composed of different fractions of recycled sand (0/5) have a better mechanical properties (compressive and flexural strength) compared to normal mortar. Also, the mechanical strengths of concretes made with recycled aggregates (5/12.5 mm and 12.5/20 mm), are comparable to those of conventional concrete with conventional aggregates, provided that the implementation can be improved by the addition of a superplasticizer.

Keywords: demolition wastes, recycled coarse aggregate, concrete, workability, mechanical strength, porosity/water absorption

Procedia PDF Downloads 339
1303 A Comparative Study of Generalized Autoregressive Conditional Heteroskedasticity (GARCH) and Extreme Value Theory (EVT) Model in Modeling Value-at-Risk (VaR)

Authors: Longqing Li

Abstract:

The paper addresses the inefficiency of the classical model in measuring the Value-at-Risk (VaR) using a normal distribution or a Student’s t distribution. Specifically, the paper focuses on the one day ahead Value-at-Risk (VaR) of major stock market’s daily returns in US, UK, China and Hong Kong in the most recent ten years under 95% confidence level. To improve the predictable power and search for the best performing model, the paper proposes using two leading alternatives, Extreme Value Theory (EVT) and a family of GARCH models, and compares the relative performance. The main contribution could be summarized in two aspects. First, the paper extends the GARCH family model by incorporating EGARCH and TGARCH to shed light on the difference between each in estimating one day ahead Value-at-Risk (VaR). Second, to account for the non-normality in the distribution of financial markets, the paper applies Generalized Error Distribution (GED), instead of the normal distribution, to govern the innovation term. A dynamic back-testing procedure is employed to assess the performance of each model, a family of GARCH and the conditional EVT. The conclusion is that Exponential GARCH yields the best estimate in out-of-sample one day ahead Value-at-Risk (VaR) forecasting. Moreover, the discrepancy of performance between the GARCH and the conditional EVT is indistinguishable.

Keywords: Value-at-Risk, Extreme Value Theory, conditional EVT, backtesting

Procedia PDF Downloads 321
1302 Stability Analysis and Controller Design of Further Development of Miniaturized Mössbauer Spectrometer II for Space Applications with Focus on the Extended Lyapunov Method – Part I –

Authors: Mohammad Beyki, Justus Pawlak, Robert Patzke, Franz Renz

Abstract:

In the context of planetary exploration, the MIMOS II (miniaturized Mössbauer spectrometer) serves as a proven and reliable measuring instrument. The transmission behaviour of the electronics in the Mössbauer spectroscopy is newly developed and optimized. For this purpose, the overall electronics is split into three parts. This elaboration deals exclusively with the first part of the signal chain for the evaluation of photons in experiments with gamma radiation. Parallel to the analysis of the electronics, a new method for the stability consideration of linear and non-linear systems is presented: The extended method of Lyapunov’s stability criteria. The design helps to weigh advantages and disadvantages against other simulated circuits in order to optimize the MIMOS II for the terestric and extraterestric measurment. Finally, after stability analysis, the controller design according to Ackermann is performed, achieving the best possible optimization of the output variable through a skillful pole assignment.

Keywords: Mössbauer spectroscopy, electronic signal amplifier, light processing technology, photocurrent, trans-impedance amplifier, extended Lyapunov method

Procedia PDF Downloads 99
1301 CT Images Based Dense Facial Soft Tissue Thickness Measurement by Open-source Tools in Chinese Population

Authors: Ye Xue, Zhenhua Deng

Abstract:

Objectives: Facial soft tissue thickness (FSTT) data could be obtained from CT scans by measuring the face-to-skull distances at sparsely distributed anatomical landmarks by manually located on face and skull. However, automated measurement using 3D facial and skull models by dense points using open-source software has become a viable option due to the development of computed assisted imaging technologies. By utilizing dense FSTT information, it becomes feasible to generate plausible automated facial approximations. Therefore, establishing a comprehensive and detailed, densely calculated FSTT database is crucial in enhancing the accuracy of facial approximation. Materials and methods: This study utilized head CT scans from 250 Chinese adults of Han ethnicity, with 170 participants originally born and residing in northern China and 80 participants in southern China. The age of the participants ranged from 14 to 82 years, and all samples were divided into five non-overlapping age groups. Additionally, samples were also divided into three categories based on BMI information. The 3D Slicer software was utilized to segment bone and soft tissue based on different Hounsfield Unit (HU) thresholds, and surface models of the face and skull were reconstructed for all samples from CT data. Following procedures were performed unsing MeshLab, including converting the face models into hollowed cropped surface models amd automatically measuring the Hausdorff Distance (referred to as FSTT) between the skull and face models. Hausdorff point clouds were colorized based on depth value and exported as PLY files. A histogram of the depth distributions could be view and subdivided into smaller increments. All PLY files were visualized of Hausdorff distance value of each vertex. Basic descriptive statistics (i.e., mean, maximum, minimum and standard deviation etc.) and distribution of FSTT were analysis considering the sex, age, BMI and birthplace. Statistical methods employed included Multiple Regression Analysis, ANOVA, principal component analysis (PCA). Results: The distribution of FSTT is mainly influenced by BMI and sex, as further supported by the results of the PCA analysis. Additionally, FSTT values exceeding 30mm were found to be more sensitive to sex. Birthplace-related differences were observed in regions such as the forehead, orbital, mandibular, and zygoma. Specifically, there are distribution variances in the depth range of 20-30mm, particularly in the mandibular region. Northern males exhibit thinner FSTT in the frontal region of the forehead compared to southern males, while females shows fewer distribution differences between the northern and southern, except for the zygoma region. The observed distribution variance in the orbital region could be attributed to differences in orbital size and shape. Discussion: This study provides a database of Chinese individuals distribution of FSTT and suggested opening source tool shows fine function for FSTT measurement. By incorporating birthplace as an influential factor in the distribution of FSTT, a greater level of detail can be achieved in facial approximation.

Keywords: forensic anthropology, forensic imaging, cranial facial reconstruction, facial soft tissue thickness, CT, open-source tool

Procedia PDF Downloads 58
1300 Theory of Mind and Its Brain Distribution in Patients with Temporal Lobe Epilepsy

Authors: Wei-Han Wang, Hsiang-Yu Yu, Mau-Sun Hua

Abstract:

Theory of Mind (ToM) refers to the ability to infer another’s mental state. With appropriate ToM, one can behave well in social interactions. A growing body of evidence has demonstrated that patients with temporal lobe epilepsy (TLE) may have damaged ToM due to impact on regions of the underlying neural network of ToM. However, the question of whether there is cerebral laterality for ToM functions remains open. This study aimed to examine whether there is cerebral lateralization for ToM abilities in TLE patients. Sixty-seven adult TLE patients and 30 matched healthy controls (HC) were recruited. Patients were classified into right (RTLE), left (LTLE), and bilateral (BTLE) TLE groups on the basis of a consensus panel review of their seizure semiology, EEG findings, and brain imaging results. All participants completed an intellectual test and four tasks measuring basic and advanced ToM. The results showed that, on all ToM tasks; (1)each patient group performed worse than HC; (2)there were no significant differences between LTLE and RTLE groups; (3)the BTLE group performed the worst. It appears that the neural network responsible for ToM is distributed evenly between the cerebral hemispheres.

Keywords: cerebral lateralization, social cognition, temporal lobe epilepsy, theory of mind

Procedia PDF Downloads 420
1299 Dose Measurement in Veterinary Radiology Using Thermoluminescent Dosimeter

Authors: E. Saeedian, M. Shakerian, A. Zarif Sanayei, Z. Rakeb, F. N. Alizadeh, S. Sarshough, S. Sina

Abstract:

Radiological protection for plants and animals is an area of regulatory importance. Acute doses of 0.1 Gy/d (10 rad/d) or below are highly unlikely to produce permanent, measurable negative effects on populations or communities of plants or animals. The advancement of radio diagnostics for domestic animals, particularly dogs and cats, has gained popularity in veterinary medicine. As pets are considered to be members of the family worldwide, they are entitled to the same care and protection. It is important to have a system of radiological protection for nonhuman organisms that complies with the focus on human health as outlined in ICRP publication 19. The present study attempts to assess surface-skin entrance doses in small pets undergoing abdominal radio diagnostic procedures utilizing a direct measurements technique with a thermoluminescent dosimeter. These measurements allow the determination of the entrance skin dose (ESD) by calculating the amount of radiation absorbed by the skin during exposure. A group of Thirty TLD-100 dosimeters produced by Harshaw Company, each with repeatability greater than 95% and calibration using ¹³⁷Cs gamma source, were utilized to measure doses to ten small pets, including cats and dogs in the radiological department in a veterinary clinic in Shiraz, Iran. Radiological procedures were performed using a portable imaging unit (Philips Super M100, Philips Medical System, Germany) to acquire images of the abdomen; ten exams of abdomen images of different pets were monitored, measuring the thicknesses of the two projections (lateral and ventrodorsal) and the distance of the X-ray source from the surface of each pet during the exams. A group of two dosimeters was used for each pet which has been stacked on their skin on the abdomen region. The outcome of this study involved medical procedures with the same kVp, mAs, and nearly identical positions for different diagnostic X-ray procedures executed over a period of two months. The result showed the mean ESD value was 260.34±50.06 µGy due to the approximate size of pets. Based on the results, the ESD value is associated with animal size, and larger animals have higher values. If a procedure doesn't require repetition, the dose can be optimized. For smaller animals, the main challenge in veterinary radiology is the dose increase caused by repetitions, which is most noticeable in the ventrodorsal position due to the difficulty in immobilizing the animal. Animals are an area of regulatory importance. Acute doses of 0.1 Gy/d (10 rad/d) or below are highly unlikely to produce permanent, measurable negative effects on populations or communities of plants or animals. The advancement of radio diagnostics for domestic animals, particularly dogs and cats, has gained popularity in veterinary medicine. As pets are considered to be members of the family worldwide, they are entitled to the same care and protection. It is important to have a system of radiological protection for nonhuman organisms that complies with the focus on human health as outlined in ICRP publication 19. The present study attempts to assess surface-skin entrance doses in small pets undergoing abdominal radio diagnostic procedures utilizing direct measurements.

Keywords: direct dose measuring, dosimetry, radiation protection, veterinary medicine

Procedia PDF Downloads 70
1298 Quantification Model for Capability Evaluation of Optical-Based in-Situ Monitoring System for Laser Powder Bed Fusion (LPBF) Process

Authors: Song Zhang, Hui Wang, Johannes Henrich Schleifenbaum

Abstract:

Due to the increasing demand for quality assurance and reliability for additive manufacturing, the development of an advanced in-situ monitoring system is required to monitor the process anomalies as input for further process control. Optical-based monitoring systems, such as CMOS cameras and NIR cameras, are proved as effective ways to monitor the geometrical distortion and exceptional thermal distribution. Therefore, many studies and applications are focusing on the availability of the optical-based monitoring system for detecting varied types of defects. However, the capability of the monitoring setup is not quantified. In this study, a quantification model to evaluate the capability of the monitoring setups for the LPBF machine based on acquired monitoring data of a designed test artifact is presented, while the design of the relevant test artifacts is discussed. The monitoring setup is evaluated based on its hardware properties, location of the integration, and light condition. Methodology of data processing to quantify the capacity for each aspect is discussed. The minimal capability of the detectable size of the monitoring set up in the application is estimated by quantifying its resolution and accuracy. The quantification model is validated using a CCD camera-based monitoring system for LPBF machines in the laboratory with different setups. The result shows the model to quantify the monitoring system's performance, which makes the evaluation of monitoring systems with the same concept but different setups possible for the LPBF process and provides the direction to improve the setups.

Keywords: data processing, in-situ monitoring, LPBF process, optical system, quantization model, test artifact

Procedia PDF Downloads 197
1297 Application of Artificial Neural Network and Background Subtraction for Determining Body Mass Index (BMI) in Android Devices Using Bluetooth

Authors: Neil Erick Q. Madariaga, Noel B. Linsangan

Abstract:

Body Mass Index (BMI) is one of the different ways to monitor the health of a person. It is based on the height and weight of the person. This study aims to compute for the BMI using an Android tablet by obtaining the height of the person by using a camera and measuring the weight of the person by using a weighing scale or load cell. The height of the person was estimated by applying background subtraction to the image captured and applying different processes such as getting the vanishing point and applying Artificial Neural Network. The weight was measured by using Wheatstone bridge load cell configuration and sending the value to the computer by using Gizduino microcontroller and Bluetooth technology after the amplification using AD620 instrumentation amplifier. The application will process the images and read the measured values and show the BMI of the person. The study met all the objectives needed and further studies will be needed to improve the design project.

Keywords: body mass index, artificial neural network, vanishing point, bluetooth, wheatstone bridge load cell

Procedia PDF Downloads 324
1296 Automatic Staging and Subtype Determination for Non-Small Cell Lung Carcinoma Using PET Image Texture Analysis

Authors: Seyhan Karaçavuş, Bülent Yılmaz, Ömer Kayaaltı, Semra İçer, Arzu Taşdemir, Oğuzhan Ayyıldız, Kübra Eset, Eser Kaya

Abstract:

In this study, our goal was to perform tumor staging and subtype determination automatically using different texture analysis approaches for a very common cancer type, i.e., non-small cell lung carcinoma (NSCLC). Especially, we introduced a texture analysis approach, called Law’s texture filter, to be used in this context for the first time. The 18F-FDG PET images of 42 patients with NSCLC were evaluated. The number of patients for each tumor stage, i.e., I-II, III or IV, was 14. The patients had ~45% adenocarcinoma (ADC) and ~55% squamous cell carcinoma (SqCCs). MATLAB technical computing language was employed in the extraction of 51 features by using first order statistics (FOS), gray-level co-occurrence matrix (GLCM), gray-level run-length matrix (GLRLM), and Laws’ texture filters. The feature selection method employed was the sequential forward selection (SFS). Selected textural features were used in the automatic classification by k-nearest neighbors (k-NN) and support vector machines (SVM). In the automatic classification of tumor stage, the accuracy was approximately 59.5% with k-NN classifier (k=3) and 69% with SVM (with one versus one paradigm), using 5 features. In the automatic classification of tumor subtype, the accuracy was around 92.7% with SVM one vs. one. Texture analysis of FDG-PET images might be used, in addition to metabolic parameters as an objective tool to assess tumor histopathological characteristics and in automatic classification of tumor stage and subtype.

Keywords: cancer stage, cancer cell type, non-small cell lung carcinoma, PET, texture analysis

Procedia PDF Downloads 326
1295 Probability Model Accidents of Motorcyclist Based on Driver's Personality

Authors: Margareth E. Bolla, Ludfi Djakfar, Achmad Wicaksono

Abstract:

The increase in the number of motorcycle users in Indonesia is in line with the increase in accidents involving motorcycles. Several previous studies have shown that humans are the biggest factor causing accidents, and the driver's personality factor will affect his behavior on the road. This study was conducted to see how a person's personality traits will affect the probability of having an accident while driving. The Big Five Inventory (BFI) questionnaire and the Honda Riding Trainer (HRT) simulator were used as measuring tools, while the analysis carried out was logistic regression analysis. The results of the descriptive analysis of the respondent's personality based on the BFI show that the majority of drivers have the dominant character of neuroticism (34%), while the smallest group is the driver with the dominant type of openness character (6%). The percentage of motorists who were not involved in an accident was 54%. The results of the logistic regression analysis form a mathematical model as follows Y = -3.852 - 0.288 X1 + 0.596 X2 + 0.429 X3 - 0.386 X4 - 0.094 X5 + 0.436 X6 + 0.162 X7, where the results of hypothesis testing indicate that the variables openness, conscientiousness, extraversion, agreeableness, neuroticism, history of traffic accidents and age at starting driving did not have a significant effect on the probability of a motorcyclist being involved in an accident.

Keywords: accidents, BFI, probability, simulator

Procedia PDF Downloads 146
1294 Evaluation of Machine Learning Algorithms and Ensemble Methods for Prediction of Students’ Graduation

Authors: Soha A. Bahanshal, Vaibhav Verdhan, Bayong Kim

Abstract:

Graduation rates at six-year colleges are becoming a more essential indicator for incoming fresh students and for university rankings. Predicting student graduation is extremely beneficial to schools and has a huge potential for targeted intervention. It is important for educational institutions since it enables the development of strategic plans that will assist or improve students' performance in achieving their degrees on time (GOT). A first step and a helping hand in extracting useful information from these data and gaining insights into the prediction of students' progress and performance is offered by machine learning techniques. Data analysis and visualization techniques are applied to understand and interpret the data. The data used for the analysis contains students who have graduated in 6 years in the academic year 2017-2018 for science majors. This analysis can be used to predict the graduation of students in the next academic year. Different Predictive modelings such as logistic regression, decision trees, support vector machines, Random Forest, Naïve Bayes, and KNeighborsClassifier are applied to predict whether a student will graduate. These classifiers were evaluated with k folds of 5. The performance of these classifiers was compared based on accuracy measurement. The results indicated that Ensemble Classifier achieves better accuracy, about 91.12%. This GOT prediction model would hopefully be useful to university administration and academics in developing measures for assisting and boosting students' academic performance and ensuring they graduate on time.

Keywords: prediction, decision trees, machine learning, support vector machine, ensemble model, student graduation, GOT graduate on time

Procedia PDF Downloads 72
1293 Urban Big Data: An Experimental Approach to Building-Value Estimation Using Web-Based Data

Authors: Sun-Young Jang, Sung-Ah Kim, Dongyoun Shin

Abstract:

Current real-estate value estimation, difficult for laymen, usually is performed by specialists. This paper presents an automated estimation process based on big data and machine-learning technology that calculates influences of building conditions on real-estate price measurement. The present study analyzed actual building sales sample data for Nonhyeon-dong, Gangnam-gu, Seoul, Korea, measuring the major influencing factors among the various building conditions. Further to that analysis, a prediction model was established and applied using RapidMiner Studio, a graphical user interface (GUI)-based tool for derivation of machine-learning prototypes. The prediction model is formulated by reference to previous examples. When new examples are applied, it analyses and predicts accordingly. The analysis process discerns the crucial factors effecting price increases by calculation of weighted values. The model was verified, and its accuracy determined, by comparing its predicted values with actual price increases.

Keywords: apartment complex, big data, life-cycle building value analysis, machine learning

Procedia PDF Downloads 374
1292 An Optimization Model for the Arrangement of Assembly Areas Considering Time Dynamic Area Requirements

Authors: Michael Zenker, Henrik Prinzhorn, Christian Böning, Tom Strating

Abstract:

Large-scale products are often assembled according to the job-site principle, meaning that during the assembly the product is located at a fixed position, while the area requirements are constantly changing. On one hand, the product itself is growing with each assembly step, whereas varying areas for storage, machines or working areas are temporarily required. This is an important factor when arranging products to be assembled within the factory. Currently, it is common to reserve a fixed area for each product to avoid overlaps or collisions with the other assemblies. Intending to be large enough to include the product and all adjacent areas, this reserved area corresponds to the superposition of the maximum extents of all required areas of the product. In this procedure, the reserved area is usually poorly utilized over the course of the entire assembly process; instead a large part of it remains unused. If the available area is a limited resource, a systematic arrangement of the products, which complies with the dynamic area requirements, will lead to an increased area utilization and productivity. This paper presents the results of a study on the arrangement of assembly objects assuming dynamic, competing area requirements. First, the problem situation is extensively explained, and existing research on associated topics is described and evaluated on the possibility of an adaptation. Then, a newly developed mathematical optimization model is introduced. This model allows an optimal arrangement of dynamic areas, considering logical and practical constraints. Finally, in order to quantify the potential of the developed method, some test series results are presented, showing the possible increase in area utilization.

Keywords: dynamic area requirements, facility layout problem, optimization model, product assembly

Procedia PDF Downloads 233
1291 Exploring Visual Methodologies for Measuring Public Perception of Sex Offenders

Authors: Sasha Goodwin

Abstract:

Sex offenders are often viewed as a homogenous group, but they encompass a diverse range of individuals with varying characteristics and offenses. The principal aim of this study was to ascertain how members of the Australian public perceive and define a sex offender while also investigating the emotional underpinnings associated with these attitudes and definitions. To assess public attitude, this study used the innovative utilization of visual methodologies to assess the public's perception of sex offenders. The study employed the iSquare approach, a visual methodology framework that offers unique viewpoints and insights into public attitudes toward sex offenders. Through the utilization of this approach, this study established an academic foundation for a deeper understanding of the public's perception of sex offenders. The data analysis revealed that most participants associated sex offenders with strong negative emotions, primarily disgust and anger. The findings of this research point towards the potential for fostering a social environment characterized by evidence-based discussions instead of reactionary punitive responses. Promoting a comprehensive understanding of the diverse nature of sexual offenders aims to broaden perceptions, fostering constructive attitudes.

Keywords: visual methodologies, public perception, sex offenders, offender characteristics, emotional attitudes, isquare approach, attitudes

Procedia PDF Downloads 63
1290 Effects of Benzo(k)Fluoranthene, a Polycyclic Aromatic Hydrocarbon, on DNA Damage and Oxidative Stress in Marine Gastropod Morula Granulata

Authors: Jacky Bhagat, Baban S Ingole

Abstract:

In this study, in vivo experiments were carried out to investigate the effects of a toxic polycyclic aromatic hydrocarbon (PAH), benzo(k)fluoranthene (B[k]F), on marine gastropod, Morula granulata collected from Goa, west coast of India. Snails were exposed to different concentrations of B(k)F (1, 10, 25 and 50 µg/L) for 96 h. The genotoxic effects were evaluated by measuring DNA strand breaks using alkaline comet assay and oxidative stress were measured with the help of battery of biomarkers such as superoxide dismutase (SOD) catalase (CAT), glutathione-s-transferase (GST), and lipid peroxidation (LPO). Concentration-dependent increase in percentage tail DNA (TDNA) was observed in snails exposed to B(k)F. Exposure concentrations above 1 µg/L of B(k)F, showed significant increase in SOD activity and LPO value in snails. After 96 h, SOD activity were found to be doubled for 50 µg/L of B(k)F with reference to control. Significant increase in CAT and GST activity was observed at all exposure conditions at the end of the exposure time. Our study showed that B(k)F induces oxidative stress in snails which further lead to genotoxic damage.

Keywords: benzo(k)fluoranthene, comet assay, gastropod, oxidative stress

Procedia PDF Downloads 344
1289 The Impact of Exercise on Osteoporosis and Body Composition in Individuals with Mild Intellectual Disabilities

Authors: Hisham Mughrabi

Abstract:

Osteoporosis is one of the most common diseases in the world and, its seriousness lies in the lack of clear symptoms. The researcher aims to identify the impact of sports activities on osteoporosis and the body component of those with mild intellectual disabilities of students in the schools in Saudi Arabia -Medina. The research sample was selected in an intentional manner and consisted of 45 students and they were divided into two groups. The first group consisted of 23 individuals participate in sports and the second group consisted of 22 individuals does not participate in sports. The researcher used the descriptive method and collected the data by measuring osteoporosis using and ultrasound osteoporosis screening device (OSTEO PRO B.M. Tech) and measured the body composition by using a Tanita devise (Body Composition Analyzer TBF- 300 Tanita). The results indicated that there was a statistical significant difference between the two comparing groups in osteoporosis measurement and body composition for the benefit of the group of sport participants. The researcher recommended the need to involve individuals with mild intellectual disabilities in physical activities to improve their rate of osteoporosis and body composition as well as to develop sports programs for individuals with mild intellectual disabilities.

Keywords: body composition, mild intellectual disabilities, osteoporosis, physical activities

Procedia PDF Downloads 142
1288 Prediction of Bodyweight of Cattle by Artificial Neural Networks Using Digital Images

Authors: Yalçın Bozkurt

Abstract:

Prediction models were developed for accurate prediction of bodyweight (BW) by using Digital Images of beef cattle body dimensions by Artificial Neural Networks (ANN). For this purpose, the animal data were collected at a private slaughter house and the digital images and the weights of each live animal were taken just before they were slaughtered and the body dimensions such as digital wither height (DJWH), digital body length (DJBL), digital body depth (DJBD), digital hip width (DJHW), digital hip height (DJHH) and digital pin bone length (DJPL) were determined from the images, using the data with 1069 observations for each traits. Then, prediction models were developed by ANN. Digital body measurements were analysed by ANN for body prediction and R2 values of DJBL, DJWH, DJHW, DJBD, DJHH and DJPL were approximately 94.32, 91.31, 80.70, 83.61, 89.45 and 70.56 % respectively. It can be concluded that in management situations where BW cannot be measured it can be predicted accurately by measuring DJBL and DJWH alone or both DJBD and even DJHH and different models may be needed to predict BW in different feeding and environmental conditions and breeds

Keywords: artificial neural networks, bodyweight, cattle, digital body measurements

Procedia PDF Downloads 372
1287 Analysis of the Predictive Performance of Value at Risk Estimations in Times of Financial Crisis

Authors: Alexander Marx

Abstract:

Measuring and mitigating market risk is essential for the stability of enterprises, especially for major banking corporations and investment bank firms. To employ these risk measurement and mitigation processes, the Value at Risk (VaR) is the most commonly used risk metric by practitioners. In the past years, we have seen significant weaknesses in the predictive performance of the VaR in times of financial market crisis. To address this issue, the purpose of this study is to investigate the value-at-risk (VaR) estimation models and their predictive performance by applying a series of backtesting methods on the stock market indices of the G7 countries (Canada, France, Germany, Italy, Japan, UK, US, Europe). The study employs parametric, non-parametric, and semi-parametric VaR estimation models and is conducted during three different periods which cover the most recent financial market crisis: the overall period (2006–2022), the global financial crisis period (2008–2009), and COVID-19 period (2020–2022). Since the regulatory authorities have introduced and mandated the Conditional Value at Risk (Expected Shortfall) as an additional regulatory risk management metric, the study will analyze and compare both risk metrics on their predictive performance.

Keywords: value at risk, financial market risk, banking, quantitative risk management

Procedia PDF Downloads 95
1286 Toehold Mediated Shape Transition of Nucleic Acid Nanoparticles

Authors: Emil F. Khisamutdinov

Abstract:

Development of functional materials undergoing structural transformations in response to an external stimulus such as environmental changes (pH, temperature, etc.), the presence of particular proteins, or short oligonucleotides are of great interest for a variety of applications ranging from medicine to electronics. The dynamic operations of most nucleic acid (NA) devices, including circuits, nano-machines, and biosensors, rely on networks of NA strand displacement processes in which an external or stimulus strand displaces a target strand from a DNA or RNA duplex. The rate of strand displacement can be greatly increased by the use of “toeholds,” single-stranded regions of the target complex to which the invading strand can bind to initiate the reaction, forming additional base pairs that provide a thermodynamic driving force for transformation. Herein, we developed a highly robust nanoparticle shape transition, sequentially transforming DNA polygons from one shape to another using the toehold-mediated DNA strand displacement technique. The shape transformation was confirmed by agarose gel electrophoresis and atomic force microscopy. Furthermore, we demonstrate that our approach is applicable for RNA shape transformation from triangle to square, which can be detected by fluorescence emission from malachite green binding RNA aptamer. Using gel-shift and fluorescence assays, we demonstrated efficient transformation occurs at isothermal conditions (37°C) that can be implemented within living cells as reporter molecules. This work is intended to provide a simple, cost-effective, and straightforward model for the development of biosensors and regulatory devices in nucleic acid nanotechnology.

Keywords: RNA nanotechnology, bionanotechnology, toehold mediated DNA switch, RNA split fluorogenic aptamers

Procedia PDF Downloads 80
1285 Visco - Plastic Transition and Transfer of Plastic Material with SGF in case of Linear Dry Friction Contact on Steel Surfaces

Authors: Lucian Capitanu, Virgil Florescu

Abstract:

Often for the laboratory studies, modeling of specific tribological processes raises special problems. One such problem is the modeling of some temperatures and extremely high contact pressures, allowing modeling of temperatures and pressures at which the injection or extrusion processing of thermoplastic materials takes place. Tribological problems occur mainly in thermoplastics materials reinforced with glass fibers. They produce an advanced wear to the barrels and screws of processing machines, in short time. Obtaining temperatures around 210 °C and higher, as well as pressures around 100 MPa is very difficult in the laboratory. This paper reports a simple and convenient solution to get these conditions, using friction sliding couples with linear contact, cylindrical liner plastic filled with glass fibers on plate steel samples, polished and super-finished. C120 steel, which is a steel for moulds and Rp3 steel, high speed steel for tools, were used. Obtaining the pressure was achieved by continuous request of the liner in rotational movement up to its elasticity limits, when the dry friction coefficient reaches or exceeds the hardness value of 0.5 HB. By dissipation of the power lost by friction on flat steel sample, are reached contact temperatures at the metal surface that reach and exceed 230 °C, being placed in the range temperature values of the injection. Contact pressures (in load and materials conditions used) ranging from 16.3-36.4 MPa were obtained depending on the plastic material used and the glass fibers content.

Keywords: plastics with glass fibers, dry friction, linear contact, contact temperature, contact pressure, experimental simulation

Procedia PDF Downloads 302
1284 Identification of Spam Keywords Using Hierarchical Category in C2C E-Commerce

Authors: Shao Bo Cheng, Yong-Jin Han, Se Young Park, Seong-Bae Park

Abstract:

Consumer-to-Consumer (C2C) E-commerce has been growing at a very high speed in recent years. Since identical or nearly-same kinds of products compete one another by relying on keyword search in C2C E-commerce, some sellers describe their products with spam keywords that are popular but are not related to their products. Though such products get more chances to be retrieved and selected by consumers than those without spam keywords, the spam keywords mislead the consumers and waste their time. This problem has been reported in many commercial services like e-bay and taobao, but there have been little research to solve this problem. As a solution to this problem, this paper proposes a method to classify whether keywords of a product are spam or not. The proposed method assumes that a keyword for a given product is more reliable if the keyword is observed commonly in specifications of products which are the same or the same kind as the given product. This is because that a hierarchical category of a product in general determined precisely by a seller of the product and so is the specification of the product. Since higher layers of the hierarchical category represent more general kinds of products, a reliable degree is differently determined according to the layers. Hence, reliable degrees from different layers of a hierarchical category become features for keywords and they are used together with features only from specifications for classification of the keywords. Support Vector Machines are adopted as a basic classifier using the features, since it is powerful, and widely used in many classification tasks. In the experiments, the proposed method is evaluated with a golden standard dataset from Yi-han-wang, a Chinese C2C e-commerce, and is compared with a baseline method that does not consider the hierarchical category. The experimental results show that the proposed method outperforms the baseline in F1-measure, which proves that spam keywords are effectively identified by a hierarchical category in C2C e-commerce.

Keywords: spam keyword, e-commerce, keyword features, spam filtering

Procedia PDF Downloads 294
1283 An Investigation of Influential Factors in Adopting the Cloud Computing in Saudi Arabia: An Application of Technology Acceptance Model

Authors: Shayem Saleh ALresheedi, Lu Song Feng, Abdulaziz Abdulwahab M. Fatani

Abstract:

Cloud computing is an emerging concept in the technological sphere. Its development enables many applications to avail information online and on demand. It is becoming an essential element for businesses due to its ability to diminish the costs of IT infrastructure and is being adopted in Saudi Arabia. However, there exist many factors that affect its adoption. Several researchers in the field have ignored the study of the TAM model for identifying the relevant factors and their impact for adopting of cloud computing. This study focuses on evaluating the acceptability of cloud computing and analyzing its impacting factors using Technology Acceptance Model (TAM) of technology adoption in Saudi Arabia. It suggests a model to examine the influential factors of the TAM model along with external factors of technical support in adapting the cloud computing. The proposed model has been tested through the use of multiple hypotheses based on calculation tools and collected data from customers through questionnaires. The findings of the study prove that the TAM model along with external factors can be applied in measuring the expected adoption of cloud computing. The study presents an investigation of influential factors and further recommendation in adopting cloud computing in Saudi Arabia.

Keywords: cloud computing, acceptability, adoption, determinants

Procedia PDF Downloads 193
1282 Using Facebook as an Alternative Learning Tools in Malaysian Higher Learning Institutions: A Structural Equation Modelling Approach

Authors: Ahasanul Haque, Abdullah Sarwar, Khaliq Ahmed

Abstract:

Networking is important among students to achieve better understanding. Social networking plays an important role in the education. Realizing its huge potential, various organizations, including institutions of higher learning have moved to the area of social networks to interact with their students especially through Facebook. Therefore, measuring the effectiveness of Facebook as a learning tool has become an area of interest to academicians and researchers. Therefore, this study tried to integrate and propose new theoretical and empirical evidences by linking the western idea of adopting Facebook as an alternative learning platform from a Malaysian perspective. This study, thus, aimed to fill a gap by being among the pioneering research that tries to study the effectiveness of adopting Facebook as a learning platform across other cultural settings, namely Malaysia. Structural equation modelling was employed for data analysis and hypothesis testing. This study findings have provided some insights that would likely affect students’ awareness towards using Facebook as an alternative learning platform in the Malaysian higher learning institutions. At the end, future direction is proposed.

Keywords: Learning Management Tool, social networking, education, Malaysia

Procedia PDF Downloads 424
1281 Experimental Study of Mixture of R290/R600 to Replace R134a in a Domestic Refrigerator

Authors: T. O. Babarinde, B. O. Bolaji, S. O. Ismaila

Abstract:

Interest in natural refrigerants, such as hydrocarbons has been renewed in recent years because of the environmental problems associated with synthetic chlorofluorocarbon (CFC) and hydro-chlorofluorocarbon (HCFC) refrigerants. Due to the depletion of ozone-layer and global warming effects, synthetic refrigerants are being gradually phased out in accordance with the international protocols that aim to protect the environment. In this work, a refrigerator designed to work with R134a was used for this experiment, Liquefied Petroleum Gas (LPG) which consists of commercial propane and butane in a single evaporator domestic refrigerator with a total volume of 62 litres. In this experiment, type K thermocouples with their probes were used to measure the temperatures of four major components (evaporator, compressor, condenser and expansion device) of the refrigeration system. Also the system was instrumented with two pressure gauges at the inlet and outlet of the compressor for measuring the suction and discharged pressures. The experiments were carried out using 40, 60, 80,100g charges and the charges were measured with a digital charging scale. Thermodynamic properties of the LPG refrigerant were determined. The results obtained showed that using LPG charge of 60g. The system COP increased with 14.6% and the power consumption reduced with 9.8% when compared with R134a. Therefore, LPG can replace R134a in domestic refrigerator.

Keywords: domestic refrigerator, experimental, LPG, R134a

Procedia PDF Downloads 483
1280 A 7 Dimensional-Quantitative Structure-Activity Relationship Approach Combining Quantum Mechanics Based Grid and Solvation Models to Predict Hotspots and Kinetic Properties of Mutated Enzymes: An Enzyme Engineering Perspective

Authors: R. Pravin Kumar, L. Roopa

Abstract:

Enzymes are molecular machines used in various industries such as pharmaceuticals, cosmetics, food and animal feed, paper and leather processing, biofuel, and etc. Nevertheless, this has been possible only by the breath-taking efforts of the chemists and biologists to evolve/engineer these mysterious biomolecules to work the needful. Main agenda of this enzyme engineering project is to derive screening and selection tools to obtain focused libraries of enzyme variants with desired qualities. The methodologies for this research include the well-established directed evolution, rational redesign and relatively less established yet much faster and accurate insilico methods. This concept was initiated as a Receptor Rependent-4Dimensional Quantitative Structure Activity Relationship (RD-4D-QSAR) to predict kinetic properties of enzymes and extended here to study transaminase by a 7D QSAR approach. Induced-fit scenarios were explored using Quantum Mechanics/Molecular Mechanics (QM/MM) simulations which were then placed in a grid that stores interactions energies derived from QM parameters (QMgrid). In this study, the mutated enzymes were immersed completely inside the QMgrid and this was combined with solvation models to predict descriptors. After statistical screening of descriptors, QSAR models showed > 90% specificity and > 85% sensitivity towards the experimental activity. Mapping descriptors on the enzyme structure revealed hotspots important to enhance the enantioselectivity of the enzyme.

Keywords: QMgrid, QM/MM simulations, RD-4D-QSAR, transaminase

Procedia PDF Downloads 137
1279 Non-parametric Linear Technique for Measuring the Efficiency of Winter Road Maintenance in the Arctic Area

Authors: Mahshid Hatamzad, Geanette Polanco

Abstract:

Improving the performance of Winter Road Maintenance (WRM) can increase the traffic safety and reduce the cost as well as environmental impacts. This study evaluates the efficiency of WRM technique, named salting, in the Arctic area by using Data Envelopment Analysis (DEA), which is a non-parametric linear method to measure the efficiencies of decision-making units (DMUs) based on handling multiple inputs and multiple outputs at the same time that their associated weights are not known. Here, roads are considered as DMUs for which the efficiency must be determined. The three input variables considered are traffic flow, road area and WRM cost. In addition, the two output variables included are level of safety in the roads and environment impacts resulted from WRM, which is also considered as an uncontrollable factor in the second scenario. The results show the performance of DMUs from the most efficient WRM to the inefficient/least efficient one and this information provides decision makers with technical support and the required suggested improvements for inefficient WRM, in order to achieve a cost-effective WRM and a safe road transportation during wintertime in the Arctic areas.

Keywords: environmental impacts, DEA, risk and safety, WRM

Procedia PDF Downloads 118
1278 A Model-Reference Sliding Mode for Dual-Stage Actuator Servo Control in HDD

Authors: S. Sonkham, U. Pinsopon, W. Chatlatanagulchai

Abstract:

This paper presents a method of sliding mode control (SMC) designing and developing for the servo system in a dual-stage actuator (DSA) hard disk drive. Mathematical modelling of hard disk drive actuators is obtained, extracted from measuring frequency response of the voice-coil motor (VCM) and PZT micro-actuator separately. Matlab software tools are used for mathematical model estimation and also for controller design and simulation. A model-reference approach for tracking requirement is selected as a proposed technique. The simulation results show that performance of a model-reference SMC controller design in DSA servo control can be satisfied in the tracking error, as well as keeping the positioning of the head within the boundary of +/-5% of track width under the presence of internal and external disturbance. The overall results of model-reference SMC design in DSA are met per requirement specifications and significant reduction in %off track is found when compared to the single-state actuator (SSA).

Keywords: hard disk drive, dual-stage actuator, track following, hdd servo control, sliding mode control, model-reference, tracking control

Procedia PDF Downloads 365
1277 Self-Organizing Maps for Credit Card Fraud Detection

Authors: ChunYi Peng, Wei Hsuan CHeng, Shyh Kuang Ueng

Abstract:

This study focuses on the application of self-organizing maps (SOM) technology in analyzing credit card transaction data, aiming to enhance the accuracy and efficiency of fraud detection. Som, as an artificial neural network, is particularly suited for pattern recognition and data classification, making it highly effective for the complex and variable nature of credit card transaction data. By analyzing transaction characteristics with SOM, the research identifies abnormal transaction patterns that could indicate potentially fraudulent activities. Moreover, this study has developed a specialized visualization tool to intuitively present the relationships between SOM analysis outcomes and transaction data, aiding financial institution personnel in quickly identifying and responding to potential fraud, thereby reducing financial losses. Additionally, the research explores the integration of SOM technology with composite intelligent system technologies (including finite state machines, fuzzy logic, and decision trees) to further improve fraud detection accuracy. This multimodal approach provides a comprehensive perspective for identifying and understanding various types of fraud within credit card transactions. In summary, by integrating SOM technology with visualization tools and composite intelligent system technologies, this research offers a more effective method of fraud detection for the financial industry, not only enhancing detection accuracy but also deepening the overall understanding of fraudulent activities.

Keywords: self-organizing map technology, fraud detection, information visualization, data analysis, composite intelligent system technologies, decision support technologies

Procedia PDF Downloads 57
1276 The Impact of Internal Dynamics of Standing Committees on Legislative Productivity in the Korean National Assembly

Authors: Lee Da Hyun

Abstract:

The purpose of this study is to explore the relation between the internal dynamics of standing committees and legislative productivity of the Korean National Assembly using statistical methods. Studies on legislation in South Korea have been largely revolved around political parties due to the uniqueness of its political context including strong party cohesion and party’s nomination right. However, as standing committees have been at the center of legislatures since the 6th National Assembly, there is a growing need for studying the operation and effectiveness of standing committees in legislation process. Thus, through panel data analysis for the sixteen standing committees across the four terms of the Korean National Assembly-from the 16th to the 19th-this article attempts to reveal that legislators’ bill passing rate is not a sole function of factors pertaining to political party as the existing studies have believed. By measuring the ideological distribution within a committee and the bill passing rate, this article provides differentiated interpretation from established theories of standing committees and presents compelling evidence describing complex interactions and independent operation of the standing committees with the subsequent legislative results.

Keywords: collective decision-making, lawmaking, legislation, political polarization, standing committees

Procedia PDF Downloads 144