Search results for: fuzzy model identification
6301 Seizure Effects of FP Bearings on the Seismic Reliability of Base-Isolated Systems
Authors: Paolo Castaldo, Bruno Palazzo, Laura Lodato
Abstract:
This study deals with the seizure effects of friction pendulum (FP) bearings on the seismic reliability of a 3D base-isolated nonlinear structural system, designed according to Italian seismic code (NTC08). The isolated system consists in a 3D reinforced concrete superstructure, a r.c. substructure and the FP devices, described by employing a velocity dependent model. The seismic input uncertainty is considered as a random variable relevant to the problem, by employing a set of natural seismic records selected in compliance with L’Aquila (Italy) seismic hazard as provided from NTC08. Several non-linear dynamic analyses considering the three components of each ground motion have been performed with the aim to evaluate the seismic reliability of the superstructure, substructure, and isolation level, also taking into account the seizure event of the isolation devices. Finally, a design solution aimed at increasing the seismic robustness of the base-isolated systems with FPS is analyzed.Keywords: FP devices, seismic reliability, seismic robustness, seizure
Procedia PDF Downloads 4136300 Drone Classification Using Classification Methods Using Conventional Model With Embedded Audio-Visual Features
Authors: Hrishi Rakshit, Pooneh Bagheri Zadeh
Abstract:
This paper investigates the performance of drone classification methods using conventional DCNN with different hyperparameters, when additional drone audio data is embedded in the dataset for training and further classification. In this paper, first a custom dataset is created using different images of drones from University of South California (USC) datasets and Leeds Beckett university datasets with embedded drone audio signal. The three well-known DCNN architectures namely, Resnet50, Darknet53 and Shufflenet are employed over the created dataset tuning their hyperparameters such as, learning rates, maximum epochs, Mini Batch size with different optimizers. Precision-Recall curves and F1 Scores-Threshold curves are used to evaluate the performance of the named classification algorithms. Experimental results show that Resnet50 has the highest efficiency compared to other DCNN methods.Keywords: drone classifications, deep convolutional neural network, hyperparameters, drone audio signal
Procedia PDF Downloads 1046299 FLEX: A Backdoor Detection and Elimination Method in Federated Scenario
Authors: Shuqi Zhang
Abstract:
Federated learning allows users to participate in collaborative model training without sending data to third-party servers, reducing the risk of user data privacy leakage, and is widely used in smart finance and smart healthcare. However, the distributed architecture design of federation learning itself and the existence of secure aggregation protocols make it inherently vulnerable to backdoor attacks. To solve this problem, the federated learning backdoor defense framework FLEX based on group aggregation, cluster analysis, and neuron pruning is proposed, and inter-compatibility with secure aggregation protocols is achieved. The good performance of FLEX is verified by building a horizontal federated learning framework on the CIFAR-10 dataset for experiments, which achieves 98% success rate of backdoor detection and reduces the success rate of backdoor tasks to 0% ~ 10%.Keywords: federated learning, secure aggregation, backdoor attack, cluster analysis, neuron pruning
Procedia PDF Downloads 966298 The Evaluation of Fuel Desulfurization Performance of Choline-Chloride Based Deep Eutectic Solvents with Addition of Graphene Oxide as Catalyst
Authors: Chiau Yuan Lim, Hayyiratul Fatimah Mohd Zaid, Fai Kait Chong
Abstract:
Deep Eutectic Solvent (DES) is used in various applications due to its simplicity in synthesis procedure, biodegradable, inexpensive and easily available chemical ingredients. Graphene Oxide is a popular catalyst that being used in various processes due to its stacking carbon sheets in layer which theoretically rapid up the catalytic processes. In this study, choline chloride based DESs were synthesized and ChCl-PEG(1:4) was found to be the most effective DES in performing desulfurization, which it is able to remove up to 47.4% of the sulfur content in the model oil in just 10 minutes, and up to 95% of sulfur content after repeat the process for six times. ChCl-PEG(1:4) able to perform up to 32.7% desulfurization on real diesel after 6 multiple stages. Thus, future research works should focus on removing the impurities on real diesel before utilising DESs in petroleum field.Keywords: choline chloride, deep eutectic solvent, fuel desulfurization, graphene oxide
Procedia PDF Downloads 1526297 Structural and Magnetic Properties of Mn-Doped 6H-SiC
Authors: M. Al Azri, M. Elzain, K. Bouziane, S. M. Chérif
Abstract:
n-Type 6H-SiC(0001) substrates were implanted with three fluencies of Mn+ 5x1015 Mn/cm2 (Mn content: 0.7%), 1x1016 (~2 %), and 5x1016 cm–2 (7%) with implantation energy of 80 keV and substrate temperature of 365ºC. The samples were characterized using Rutherford Backscattering and Channeling Spectroscopy (RBS/C), High-Resolution X-Ray Diffraction technique (HRXRD), micro-Raman Spectroscopy (μRS), and Superconducting Quantum Interference Device (SQUID) techniques. The aim of our work is to investigate implantation induced defects with dose and to study any correlation between disorder-composition and magnetic properties. In addition, ab-initio calculations were used to investigate the structural and magnetic properties of Mn-doped 6H-SiC. Various configurations of Mn sites and vacancy types were considered. The calculations showed that a substitutional Mn atom at Si site possesses larger magnetic moment than Mn atom at C site. A model is introduced to explain the dependence of the magnetic structure on site occupation. The magnetic properties of ferromagnetically (FM) and antiferromagnetically (AFM) coupled pairs of Mn atoms with and without neighboring vacancies have also been explored.Keywords: ab-initio calculations, diluted magnetic semiconductors, magnetic properties, silicon carbide
Procedia PDF Downloads 3246296 Syndromic Surveillance Framework Using Tweets Data Analytics
Authors: David Ming Liu, Benjamin Hirsch, Bashir Aden
Abstract:
Syndromic surveillance is to detect or predict disease outbreaks through the analysis of medical sources of data. Using social media data like tweets to do syndromic surveillance becomes more and more popular with the aid of open platform to collect data and the advantage of microblogging text and mobile geographic location features. In this paper, a Syndromic Surveillance Framework is presented with machine learning kernel using tweets data analytics. Influenza and the three cities Abu Dhabi, Al Ain and Dubai of United Arabic Emirates are used as the test disease and trial areas. Hospital cases data provided by the Health Authority of Abu Dhabi (HAAD) are used for the correlation purpose. In our model, Latent Dirichlet allocation (LDA) engine is adapted to do supervised learning classification and N-Fold cross validation confusion matrix are given as the simulation results with overall system recall 85.595% performance achieved.Keywords: Syndromic surveillance, Tweets, Machine Learning, data mining, Latent Dirichlet allocation (LDA), Influenza
Procedia PDF Downloads 1166295 A Data-Driven Platform for Studying the Liquid Plug Splitting Ratio
Authors: Ehsan Atefi, Michael Grigware
Abstract:
Respiratory failure secondary to surfactant deficiency resulting from respiratory distress syndrome is considered one major cause of morbidity in preterm infants. Surfactant replacement treatment (SRT) is considered an effective treatment for this disease. Here, we introduce an AI-mediated approach for estimating the distribution of surfactant in the lung airway of a newborn infant during SRT. Our approach implements machine learning to precisely estimate the splitting ratio of a liquid drop during bifurcation at different injection velocities and patient orientations. This technique can be used to calculate the surfactant residue remaining on the airway wall during the surfactant injection process. Our model works by minimizing the pressure drop difference between the two airway branches at each generation, subject to mass and momentum conservation. Our platform can be used to generate feedback for immediately adjusting the velocity of injection and patient orientation during SRT.Keywords: respiratory failure, surfactant deficiency, surfactant replacement, machine learning
Procedia PDF Downloads 1266294 Computer Aided Engineering Optimization of Synchronous Reluctance Motor and Vibro-Acoustic Analysis for Lift Systems
Authors: Ezio Bassi, Francesco Vercesi, Francesco Benzi
Abstract:
The aim of this study is to evaluate the potentiality of synchronous reluctance motors for lift systems by also evaluating the vibroacoustic behaviour of the motor. Two types of synchronous machines are designed, analysed, and compared with an equivalent induction motor, which is the more common solution in such gearbox applications. The machines' performance are further improved with optimization procedures based on multiobjective optimization genetic algorithm (MOGA). The difference between the two synchronous motors consists in the rotor geometry; a symmetric and an asymmetric rotor design were investigated. The evaluation of the vibroacoustic performance has been conducted with a multi-variable model and finite element software taking into account electromagnetic, mechanical, and thermal features of the motor, therefore carrying out a multi-physics analysis of the electrical machine.Keywords: synchronous reluctance motor, vibro-acoustic, lift systems, genetic algorithm
Procedia PDF Downloads 1786293 Determining Antecedents of Employee Turnover: A Study on Blue Collar vs White Collar Workers on Marco Level
Authors: Evy Rombaut, Marie-Anne Guerry
Abstract:
Predicting voluntary turnover of employees is an important topic of study, both in academia and industry. Researchers try to uncover determinants for a broader understanding and possible prevention of turnover. In the current study, we use a data set based approach to reveal determinants for turnover, differing for blue and white collar workers. Our data set based approach made it possible to study actual turnover for more than 500000 employees in 15692 Belgian corporations. We use logistic regression to calculate individual turnover probabilities and test the goodness of our model with the AUC (area under the ROC-curve) method. The results of the study confirm the relationship of known determinants to employee turnover such as age, seniority, pay and work distance. In addition, the study unravels unknown and verifies known differences between blue and white collar workers. It shows opposite relationships to turnover for gender, marital status, the number of children, nationality, and pay.Keywords: employee turnover, blue collar, white collar, dataset analysis
Procedia PDF Downloads 2916292 Unsupervised Domain Adaptive Text Retrieval with Query Generation
Authors: Rui Yin, Haojie Wang, Xun Li
Abstract:
Recently, mainstream dense retrieval methods have obtained state-of-the-art results on some datasets and tasks. However, they require large amounts of training data, which is not available in most domains. The severe performance degradation of dense retrievers on new data domains has limited the use of dense retrieval methods to only a few domains with large training datasets. In this paper, we propose an unsupervised domain-adaptive approach based on query generation. First, a generative model is used to generate relevant queries for each passage in the target corpus, and then the generated queries are used for mining negative passages. Finally, the query-passage pairs are labeled with a cross-encoder and used to train a domain-adapted dense retriever. Experiments show that our approach is more robust than previous methods in target domains that require less unlabeled data.Keywords: dense retrieval, query generation, unsupervised training, text retrieval
Procedia PDF Downloads 736291 Study of Natural Convection Heat Transfer of Plate-Fin Heat Sink
Authors: Han-Taw Chen, Tzu-Hsiang Lin, Chung-Hou Lai
Abstract:
This study applies the inverse method and three-dimensional CFD commercial software in conjunction with the experimental temperature data to investigate the heat transfer and fluid flow characteristics of the plate-fin heat sink in a rectangular closed enclosure. The inverse method with the finite difference method and the experimental temperature data is applied to determine the approximate heat transfer coefficient. Later, based on the obtained results, the zero-equation turbulence model is used to obtain the heat transfer and fluid flow characteristics between two fins. To validate the accuracy of the results obtained, the comparison of the heat transfer coefficient is made. The obtained temperature at selected measurement locations of the fin is also compared with experimental data. The effect of the height of the rectangular enclosure on the obtained results is discussed.Keywords: inverse method, fluent, heat transfer characteristics, plate-fin heat sink
Procedia PDF Downloads 3896290 A Mutually Exclusive Task Generation Method Based on Data Augmentation
Authors: Haojie Wang, Xun Li, Rui Yin
Abstract:
In order to solve the memorization overfitting in the model-agnostic meta-learning MAML algorithm, a method of generating mutually exclusive tasks based on data augmentation is proposed. This method generates a mutex task by corresponding one feature of the data to multiple labels so that the generated mutex task is inconsistent with the data distribution in the initial dataset. Because generating mutex tasks for all data will produce a large number of invalid data and, in the worst case, lead to an exponential growth of computation, this paper also proposes a key data extraction method that only extract part of the data to generate the mutex task. The experiments show that the method of generating mutually exclusive tasks can effectively solve the memorization overfitting in the meta-learning MAML algorithm.Keywords: mutex task generation, data augmentation, meta-learning, text classification.
Procedia PDF Downloads 1436289 Modeling Football Penalty Shootouts: How Improving Individual Performance Affects Team Performance and the Fairness of the ABAB Sequence
Authors: Pablo Enrique Sartor Del Giudice
Abstract:
Penalty shootouts often decide the outcome of important soccer matches. Although usually referred to as ”lotteries”, there is evidence that some national teams and clubs consistently perform better than others. The outcomes are therefore not explained just by mere luck, and therefore there are ways to improve the average performance of players, naturally at the expense of some sort of effort. In this article we study the payoff of player performance improvements in terms of the performance of the team as a whole. To do so we develop an analytical model with static individual performances, as well as Monte Carlo models that take into account the known influence of partial score and round number on individual performances. We find that within a range of usual values, the team performance improves above 70% faster than individual performances do. Using these models, we also estimate that the new ABBA penalty shootout ordering under test reduces almost all the known bias in favor of the first-shooting team under the current ABAB system.Keywords: football, penalty shootouts, Montecarlo simulation, ABBA
Procedia PDF Downloads 1626288 Cloud-Based Dynamic Routing with Feedback in Formal Methods
Authors: Jawid Ahmad Baktash, Mursal Dawodi, Tomokazu Nagata
Abstract:
With the rapid growth of Cloud Computing, Formal Methods became a good choice for the refinement of message specification and verification for Dynamic Routing in Cloud Computing. Cloud-based Dynamic Routing is becoming increasingly popular. We propose feedback in Formal Methods for Dynamic Routing and Cloud Computing; the model and topologies show how to send messages from index zero to all others formally. The responsibility of proper verification becomes crucial with Dynamic Routing in the cloud. Formal Methods can play an essential role in the routing and development of Networks, and the testing of distributed systems. Event-B is a formal technique that consists of describing the problem rigorously and introduces solutions or details in the refinement steps. Event-B is a variant of B, designed for developing distributed systems and message passing of the dynamic routing. In Event-B and formal methods, the events consist of guarded actions occurring spontaneously rather than being invoked.Keywords: cloud, dynamic routing, formal method, Pro-B, event-B
Procedia PDF Downloads 4236287 The Consumer Responses toward the Offensive Product Advertising
Authors: Chin Tangtarntana
Abstract:
The main purpose of this study was to investigate the effects of animation in offensive product advertising. Experiment was conducted to collect consumer responses toward animated and static ads of offensive and non-offensive products. The study was conducted by distributing questionnaires to the target respondents. According to statistics from Innovative Internet Research Center, Thailand, majority of internet users are 18 – 44 years old. The results revealed an interaction between ad design and offensive product. Specifically, when used in offensive product advertisements, animated ads were not effective for consumer attention, but yielded positive response in terms of attitude toward product. The findings support that information processing model is accurate in predicting consumer cognitive response toward cartoon ads, whereas U&G, arousal, and distinctive theory is more accurate in predicting consumer affective response. In practical, these findings can also be used to guide ad designers and marketers that are suitable for offensive products.Keywords: animation, banner ad design, consumer responses, offensive product advertising, stock exchange of Thailand
Procedia PDF Downloads 2686286 Laying the Proto-Ontological Conditions for Floating Architecture as a Climate Adaptation Solution for Rising Sea Levels: Conceptual Framework and Definition of a Performance Based Design
Authors: L. Calcagni, A. Battisti, M. Hensel, D. S. Hensel
Abstract:
Since the beginning of the 21st century, we have seen a dynamic growth of water-based (WB) architecture, mainly due to the increasing threat of floods caused by sea level rise and heavy rains, all correlated with climate change. At the same time, the shortage of land available for urban development also led architects, engineers, and policymakers to reclaim the seabed or to build floating structures. Furthermore, the drive to produce energy from renewable resources has expanded the sector of offshore research, mining, and energy industry which seeks new types of WB structures. In light of these considerations, the time is ripe to consider floating architecture as a full-fledged building typology. Currently, there is no universally recognized academic definition of a floating building. Research on floating architecture lacks a proper, commonly shared vocabulary and typology distinction. Moreover, there is no global international legal framework for urban development on water, and there is no structured performance based building design (PBBD) approach for floating architecture in most countries, let alone national regulatory systems. Thus, first of all, the research intends to overcome the semantic and typological issues through the conceptualization of floating architecture, laying the proto-ontological conditions for floating development, and secondly to identify the parameters to be considered in the definition of a specific PBBD framework, setting the scene for national planning strategies. The theoretical overview and re-semanticization process involve the attribution of a new meaning to the term floating architecture. This terminological work of semantic redetermination is carried out through a systematic literature review and involves quantitative and historical research as well as logical argumentation methods. As it is expected that floating urban development is most likely to take place as an extension of coastal areas, the needs and design criteria are definitely more similar to those of the urban environment than to those of the offshore industry. Therefore, the identification and categorization of parameters –looking towards the potential formation of a PBBD framework for floating development– takes the urban and architectural guidelines and regulations as the starting point, taking the missing aspects, such as hydrodynamics (i.e. stability and buoyancy) from the offshore and shipping regulatory frameworks. This study is carried out through an evidence-based assessment of regulatory systems that are effective in different countries around the world, addressing on-land and on-water architecture as well as offshore and shipping industries. It involves evidence-based research and logical argumentation methods. Overall, inhabiting water is proposed not only as a viable response to the problem of rising sea levels, thus as a resilient frontier for urban development, but also as a response to energy insecurity, clean water, and food shortages, environmental concerns, and urbanization, in line with Blue Economy principles and the Agenda 2030. This review shows how floating architecture is to all intents and purposes, an urban adaptation measure and a solution towards self-sufficiency and energy-saving objectives. Moreover, the adopted methodology is, to all extents, open to further improvements and integrations, thus not rigid and already completely determined. Along with new designs and functions that will come into play in the practice field, eventually, life on water will seem no more unusual than life on land, especially by virtue of the multiple advantages it provides not only to users but also to the environment.Keywords: adaptation measures, building typology, floating architecture, performance based building design, rising sea levels
Procedia PDF Downloads 976285 Estimating Lost Digital Video Frames Using Unidirectional and Bidirectional Estimation Based on Autoregressive Time Model
Authors: Navid Daryasafar, Nima Farshidfar
Abstract:
In this article, we make attempt to hide error in video with an emphasis on the time-wise use of autoregressive (AR) models. To resolve this problem, we assume that all information in one or more video frames is lost. Then, lost frames are estimated using analogous Pixels time information in successive frames. Accordingly, after presenting autoregressive models and how they are applied to estimate lost frames, two general methods are presented for using these models. The first method which is the same standard method of autoregressive models estimates lost frame in unidirectional form. Usually, in such condition, previous frames information is used for estimating lost frame. Yet, in the second method, information from the previous and next frames is used for estimating the lost frame. As a result, this method is known as bidirectional estimation. Then, carrying out a series of tests, performance of each method is assessed in different modes. And, results are compared.Keywords: error steganography, unidirectional estimation, bidirectional estimation, AR linear estimation
Procedia PDF Downloads 5406284 The Potential Role of Some Nutrients and Drugs in Providing Protection from Neurotoxicity Induced by Aluminium in Rats
Authors: Azza A. Ali, Abeer I. Abd El-Fattah, Shaimaa S. Hussein, Hanan A. Abd El-Samea, Karema Abu-Elfotuh
Abstract:
Background: Aluminium (Al) represents an environmental risk factor. Exposure to high levels of Al causes neurotoxic effects and different diseases. Vinpocetine is widely used to improve cognitive functions, it possesses memory-protective and memory-enhancing properties and has the ability to increase cerebral blood flow and glucose uptake. Cocoa bean represents a rich source of iron as well as a potent antioxidant. It can protect from the impact of free radicals, reduces stress as well as depression and promotes better memory and concentration. Wheatgrass is primarily used as a concentrated source of nutrients. It contains vitamins, minerals, carbohydrates, amino acids and possesses antioxidant and anti-inflammatory activities. Coenzyme Q10 (CoQ10) is an intracellular antioxidant and mitochondrial membrane stabilizer. It is effective in improving cognitive disorders and has been used as anti-aging. Zinc is a structural element of many proteins and signaling messenger that is released by neural activity at many central excitatory synapses. Objective: To study the role of some nutrients and drugs as Vinpocetine, Cocoa, Wheatgrass, CoQ10 and Zinc against neurotoxicity induced by Al in rats as well as to compare between their potency in providing protection. Methods: Seven groups of rats were used and received daily for three weeks AlCl3 (70 mg/kg, IP) for Al-toxicity model groups except for the control group which received saline. All groups of Al-toxicity model except one group (non-treated) were co-administered orally together with AlCl3 the following treatments; Vinpocetine (20mg/kg), Cocoa powder (24mg/kg), Wheat grass (100mg/kg), CoQ10 (200mg/kg) or Zinc (32mg/kg). Biochemical changes in the rat brain as acetyl cholinesterase (ACHE), Aβ, brain derived neurotrophic factor (BDNF), inflammatory mediators (TNF-α, IL-1β), oxidative parameters (MDA, SOD, TAC) were estimated for all groups besides histopathological examinations in different brain regions. Results: Neurotoxicity and neurodegenerations in the rat brain after three weeks of Al exposure were indicated by the significant increase in Aβ, ACHE, MDA, TNF-α, IL-1β, DNA fragmentation together with the significant decrease in SOD, TAC, BDNF and confirmed by the histopathological changes in the brain. On the other hand, co-administration of each of Vinpocetine, Cocoa, Wheatgrass, CoQ10 or Zinc together with AlCl3 provided protection against hazards of neurotoxicity and neurodegenerations induced by Al, their protection were indicated by the decrease in Aβ, ACHE, MDA, TNF-α, IL-1β, DNA fragmentation together with the increase in SOD, TAC, BDNF and confirmed by the histopathological examinations of different brain regions. Vinpocetine and Cocoa showed the most pronounced protection while Zinc provided the least protective effects than the other used nutrients and drugs. Conclusion: Different degrees of protection from neurotoxicity and neuronal degenerations induced by Al could be achieved through the co-administration of some nutrients and drugs during its exposure. Vinpocetine and Cocoa provided the most protection than Wheat grass, CoQ10 or Zinc which showed the least protective effects.Keywords: aluminum, neurotoxicity, vinpocetine, cocoa, wheat grass, coenzyme Q10, Zinc, rats
Procedia PDF Downloads 2496283 A Particle Image Velocimetric (PIV) Experiment on Simplified Bottom Hole Flow Field
Authors: Heqian Zhao, Huaizhong Shi, Zhongwei Huang, Zhengliang Chen, Ziang Gu, Fei Gao
Abstract:
Hydraulics mechanics is significantly important in the drilling process of oil or gas exploration, especially for the drill bit. The fluid flows through the nozzles on the bit and generates a water jet to remove the cutting at the bottom hole. In this paper, a simplified bottom hole model is established. The Particle Image Velocimetric (PIV) is used to capture the flow field of the single nozzle. Due to the limitation of the bottom and wellbore, the potential core is shorter than that of the free water jet. The velocity magnitude rapidly attenuates when fluid close to the bottom is lower than about 5 mm. Besides, a vortex zone appears near the middle of the bottom beside the water jet zone. A modified exponential function can be used to fit the centerline velocity well. On the one hand, the results of this paper can provide verification for the numerical simulation of the bottom hole flow field. On the other hand, it also can provide an experimental basis for the hydraulic design of the drill bit.Keywords: oil and gas, hydraulic mechanic of drilling, PIV, bottom hole
Procedia PDF Downloads 2136282 Factors Influencing University Students' Online Disinhibition Behavior: The Moderating Effects of Deterrence and Social Identity
Authors: Wang, Kuei-Ing, Jou-Fan Shih
Abstract:
This study adopts deterrence theory as well as social identities as moderators, and explores their moderating affects on online toxic disinhibition. Survey and Experimental methodologies are applied to test the research model and four hypotheses are developed in this study. The controllability of identity positively influenced the behavior of toxic disinhibition both in experimental and control groups while the fluidity of the identity did not have significant influences on online disinhibition. Punishment certainty, punishment severity as well as social identity negatively moderated the relation between the controllability of the identity and the toxic disinhibition. The result of this study shows that internet users hide their real identities when they behave inappropriately on internet, but once they acknowledge that the inappropriate behavior will be found and punished severely, the inappropriate behavior then will be weakened.Keywords: seductive properties of internet, online disinhibition, punishment certainty, punishment severity, social identity
Procedia PDF Downloads 5086281 Attention-based Adaptive Convolution with Progressive Learning in Speech Enhancement
Authors: Tian Lan, Yixiang Wang, Wenxin Tai, Yilan Lyu, Zufeng Wu
Abstract:
The monaural speech enhancement task in the time-frequencydomain has a myriad of approaches, with the stacked con-volutional neural network (CNN) demonstrating superiorability in feature extraction and selection. However, usingstacked single convolutions method limits feature represen-tation capability and generalization ability. In order to solvethe aforementioned problem, we propose an attention-basedadaptive convolutional network that integrates the multi-scale convolutional operations into a operation-specific blockvia input dependent attention to adapt to complex auditoryscenes. In addition, we introduce a two-stage progressivelearning method to enlarge the receptive field without a dra-matic increase in computation burden. We conduct a series ofexperiments based on the TIMIT corpus, and the experimen-tal results prove that our proposed model is better than thestate-of-art models on all metrics.Keywords: speech enhancement, adaptive convolu-tion, progressive learning, time-frequency domain
Procedia PDF Downloads 1226280 Portable Hands-Free Process Assistant for Gas Turbine Maintenance
Authors: Elisabeth Brandenburg, Robert Woll, Rainer Stark
Abstract:
This paper presents how smart glasses and voice commands can be used for improving the maintenance process of industrial gas turbines. It presents the process of inspecting a gas turbine’s combustion chamber and how it is currently performed using a set of paper-based documents. In order to improve this process, a portable hands-free process assistance system has been conceived. In the following, it will be presented how the approach of user-centered design and the method of paper prototyping have been successfully applied in order to design a user interface and a corresponding workflow model that describes the possible interaction patterns between the user and the interface. The presented evaluation of these results suggests that the assistance system could help the user by rendering multiple manual activities obsolete, thus allowing him to work hands-free and to save time for generating protocols.Keywords: paper prototyping, smart glasses, turbine maintenance, user centered design
Procedia PDF Downloads 3216279 Analysis of the Attitude of Students in the Use of Simulation in Physics Teaching
Authors: Ricardo Merlo
Abstract:
The use of simulation as a digital didactic tool allowed students to reproduce the laws of Physics in order to improve their academic performance. The didactic resource of simulation also favored the motivation of most of the young people, depending on the subject of Physics to be developed in the classroom and in that sense, it was significant to know the favorable or unfavorable attitude that the students presented about the use of simulation resources to maximize the anchorage of the contents planned for the different classes developed in the classroom. The different real-time simulation applications that were offered free of charge through the Internet were not presented as a specific resource that could be used in a didactic model, and in that framework, the teachers of Physics at the university level did not apply these resources in a systematic way with the knowledge of the favorable or unfavorable attitude of the students towards these didactic resources. For this reason, this work proposed the design and application of attitude questionnaires to enhance the use of those simulation resources that allowed for improving the quality of the class and the academic performance of the students.Keywords: physics teaching, attitude, motivation, didactic resources
Procedia PDF Downloads 726278 Error Correction Method for 2D Ultra-Wideband Indoor Wireless Positioning System Using Logarithmic Error Model
Authors: Phornpat Chewasoonthorn, Surat Kwanmuang
Abstract:
Indoor positioning technologies have been evolved rapidly. They augment the Global Positioning System (GPS) which requires line-of-sight to the sky to track the location of people or objects. This study developed an error correction method for an indoor real-time location system (RTLS) based on an ultra-wideband (UWB) sensor from Decawave. Multiple stationary nodes (anchor) were installed throughout the workspace. The distance between stationary and moving nodes (tag) can be measured using a two-way-ranging (TWR) scheme. The result has shown that the uncorrected ranging error from the sensor system can be as large as 1 m. To reduce ranging error and thus increase positioning accuracy, This study purposes an online correction algorithm using the Kalman filter. The results from experiments have shown that the system can reduce ranging error down to 5 cm.Keywords: indoor positioning, ultra-wideband, error correction, Kalman filter
Procedia PDF Downloads 1606277 Development Planning in the System of the Islamic Republic of Iran in the Light of Development Laws: From Rationally Planning to Wisely Decision Making
Authors: Mohammad Sadeghi, Mahdieh Saniee
Abstract:
Nowadays, development laws have become a major branch of engineering science, laws help humankind achieve his/her basic needs, and it is attracted to the attention of the nations. Therefore, lawyers have been invited to contemplate legislator's approaches respecting legislating countries' economic, social and cultural development plans and to observe the reliance of approaches on two elements of distributive justice and transitional justice in light of legal rationality. Legal rationality in development planning has encountered us with this question that whether a rational approach and existing models in the Iran development planning system approximate us to the goal of development laws respecting the rationalist approach and also regarding wisely decision-making model. The present study will investigate processes, approaches, and damages of development planning in the legislation of country development plans to answer this question.Keywords: rationality, decision-making process, policymaking, development
Procedia PDF Downloads 1156276 Methodology of Choosing Technology and Sizing of the Hybrid Energy Storage Based on Cost-benefit Analysis
Authors: Krzysztof Rafał, Weronika Radziszewska, Hubert Biedka, Oskar Grabowski, Krzysztof Mik
Abstract:
We present a method to choose energy storage technologies and their parameters for the economic operation of a microgrid. A grid-connected system with local loads and PV generation is assumed, where an energy storage system (ESS) is attached to minimize energy cost by providing energy balancing and arbitrage functionalities. The ESS operates in a hybrid configuration and consists of two unique technologies operated in a coordinated way. Based on given energy profiles and economical data a model calculates financial flow for ESS investment, including energy cost and ESS depreciation resulting from degradation. The optimization strategy proposes a hybrid set of two technologies with their respective power and energy ratings to minimize overall system cost in a given timeframe. Results are validated through microgrid simulations using real-life input profiles.Keywords: energy storage, hybrid energy storage, cost-benefit analysis, microgrid, battery sizing
Procedia PDF Downloads 2206275 Dissolved Oxygen Prediction Using Support Vector Machine
Authors: Sorayya Malek, Mogeeb Mosleh, Sharifah M. Syed
Abstract:
In this study, Support Vector Machine (SVM) technique was applied to predict the dichotomized value of Dissolved oxygen (DO) from two freshwater lakes namely Chini and Bera Lake (Malaysia). Data sample contained 11 parameters for water quality features from year 2005 until 2009. All data parameters were used to predicate the dissolved oxygen concentration which was dichotomized into 3 different levels (High, Medium, and Low). The input parameters were ranked, and forward selection method was applied to determine the optimum parameters that yield the lowest errors, and highest accuracy. Initial results showed that pH, water temperature, and conductivity are the most important parameters that significantly affect the predication of DO. Then, SVM model was applied using the Anova kernel with those parameters yielded 74% accuracy rate. We concluded that using SVM models to predicate the DO is feasible, and using dichotomized value of DO yields higher prediction accuracy than using precise DO value.Keywords: dissolved oxygen, water quality, predication DO, support vector machine
Procedia PDF Downloads 2906274 Correlation to Predict the Effect of Particle Type on Axial Voidage Profile in Circulating Fluidized Beds
Authors: M. S. Khurram, S. A. Memon, S. Khan
Abstract:
Bed voidage behavior among different flow regimes for Geldart A, B, and D particles (fluid catalytic cracking catalyst (FCC), particle A and glass beads) of diameter range 57-872 μm, apparent density 1470-3092 kg/m3, and bulk density range 890-1773 kg/m3 were investigated in a gas-solid circulating fluidized bed of 0.1 m-i.d. and 2.56 m-height of plexi-glass. Effects of variables (gas velocity, particle properties, and static bed height) were analyzed on bed voidage. The axial voidage profile showed a typical trend along the riser: a dense bed at the lower part followed by a transition in the splash zone and a lean phase in the freeboard. Bed expansion and dense bed voidage increased with an increase of gas velocity as usual. From experimental results, a generalized model relationship based on inverse fluidization number for dense bed voidage from bubbling to fast fluidization regimes was presented.Keywords: axial voidage, circulating fluidized bed, splash zone, static bed
Procedia PDF Downloads 2856273 Brexit and Financial Stability: An Agent-Based Simulation
Authors: Aristeidis Samitas, Stathis Polyzos
Abstract:
As the UK and the EU prepare to start negotiations for Brexit, it is important for both sides to comprehend the full extent of the consequences of this process. In this paper, we employ an object oriented simulation framework in order to test for the short-term and long-term effects of Brexit on both sides of the Channel. The relative strength of the UK economy and the banking sector vis-à-vis the EU is taken under consideration. Our results confirm predictions in the relevant literature regarding the output cost of Brexit, with particular emphasis on the EU. Furthermore, we show that financial stability is also an important issue on both sides, with the banking system suffering significant losses, particularly over the longer term. Our findings suggest that policymakers should be extremely careful in handling Brexit negotiations, making sure to consider dynamic effects that may be caused by UK bank assets moving to the EU after Brexit. The model results show that, as the UK banking system loses its assets, the end state of the UK economy is deteriorated while the end state of EU economy is improved.Keywords: Banking Crises, Brexit, Financial Stability, VBanking
Procedia PDF Downloads 2806272 Sliding Mode MRAS Observer for Optimized Backstepping Control of Induction Motor
Authors: Chaouch Souad, Abdou Latifa, Larbi Chrifi Alaoui
Abstract:
This paper deals with sensorless backstepping control of induction motor using MRAS technique associated to sliding mode approach. A high order genetic algorithm structure is used to approximate a control law designed by the Backstepping technique, and to find the best parameters globally optimized. However, the Backstepping control approach is unsuitable for high performance applications because the need of a speed sensor for increased accuracy and the absence of any error decay mechanism. In this paper a nonlinear observer, obtained by combining sliding mode structure and model reference adaptive system (MRAS), is designed for the rotor flux and rotor speed estimations. To validate the proposed method, the results are presented for showing the improved drive characteristics and performances.Keywords: Backstepping Control, Induction Motor, Genetic Algorithm, Sliding Mode observer
Procedia PDF Downloads 731