Search results for: volatility target
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2958

Search results for: volatility target

1668 Directional Search for Dark Matter Using Nuclear Emulsion

Authors: Ali Murat Guler

Abstract:

A variety of experiments have been developed over the past decades, aiming at the detection of Weakly Interactive Massive Particles (WIMPs) via their scattering in an instrumented medium. The sensitivity of these experiments has improved with a tremendous speed, thanks to a constant development of detectors and analysis methods. Detectors capable of reconstructing the direction of the nuclear recoil induced by the WIMP scattering are opening a new frontier to possibly extend Dark Matter searches beyond the neutrino background. Measurement of WIMP’s direction will allow us to detect the galactic origin of dark matter and, therefore to have a clear signal-background separation. The NEWSdm experiment, based on nuclear emulsions, is intended to measure the direction of WIMP-induced nuclear coils with a solid-state detector, thus with high sensitivity. We discuss the discovery potential of a directional experiment based on the use of a solid target made of newly developed nuclear emulsions and novel read-out systems achieving nanometric resolution. We also report results of a technical test conducted in Gran Sasso.

Keywords: dark matter, direct detection, nuclear emulsion, WIMPS

Procedia PDF Downloads 271
1667 Unseen Classes: The Paradigm Shift in Machine Learning

Authors: Vani Singhal, Jitendra Parmar, Satyendra Singh Chouhan

Abstract:

Unseen class discovery has now become an important part of a machine-learning algorithm to judge new classes. Unseen classes are the classes on which the machine learning model is not trained on. With the advancement in technology and AI replacing humans, the amount of data has increased to the next level. So while implementing a model on real-world examples, we come across unseen new classes. Our aim is to find the number of unseen classes by using a hierarchical-based active learning algorithm. The algorithm is based on hierarchical clustering as well as active sampling. The number of clusters that we will get in the end will give the number of unseen classes. The total clusters will also contain some clusters that have unseen classes. Instead of first discovering unseen classes and then finding their number, we directly calculated the number by applying the algorithm. The dataset used is for intent classification. The target data is the intent of the corresponding query. We conclude that when the machine learning model will encounter real-world data, it will automatically find the number of unseen classes. In the future, our next work would be to label these unseen classes correctly.

Keywords: active sampling, hierarchical clustering, open world learning, unseen class discovery

Procedia PDF Downloads 170
1666 Effects of Aging on Auditory and Visual Recall Abilities

Authors: Rashmi D. G., Aishwarya G., Niharika M. K.

Abstract:

Purpose: Free recall tasks target cognitive and linguistic processes like episodic memory, lexical access and retrieval. Consequently, the free recall paradigm is suitable for assessing memory deterioration caused by aging; this also depends on linguistic factors, including the use of first and second languages and their relative ability. Hence, the present study aimed to determine if aging has an effect on visual and auditory recall abilities. Method: Twenty young adults (mean age: 25.4±0.99) and older adults (mean age: 63.3±3.51) participated in the study. Participants performed a free recall task under two conditions – related and unrelated and two modalities - visual and auditory where they were instructed to recall as many items as possible with no specific order and time limit. Results: Free recall performance was calculated as the mean number of correctly recalled items. Although younger participants recalled a higher number of items, the performance across conditions and modality was variable. Conclusion: In summary, the findings of the present study revealed an age-related decline in the efficiency of episodic memory, which is crucial to remember recent events.

Keywords: recall, episodic memory, aging, modality

Procedia PDF Downloads 94
1665 Simulation of Flow through Dam Foundation by FEM and ANN Methods Case Study: Shahid Abbaspour Dam

Authors: Mehrdad Shahrbanozadeh, Gholam Abbas Barani, Saeed Shojaee

Abstract:

In this study, a finite element (Seep3D model) and an artificial neural network (ANN) model were developed to simulate flow through dam foundation. Seep3D model is capable of simulating three-dimensional flow through a heterogeneous and anisotropic, saturated and unsaturated porous media. Flow through the Shahid Abbaspour dam foundation has been used as a case study. The FEM with 24960 triangular elements and 28707 nodes applied to model flow through foundation of this dam. The FEM being made denser in the neighborhood of the curtain screen. The ANN model developed for Shahid Abbaspour dam is a feedforward four layer network employing the sigmoid function as an activator and the back-propagation algorithm for the network learning. The water level elevations of the upstream and downstream of the dam have been used as input variables and the piezometric heads as the target outputs in the ANN model. The two models are calibrated and verified using the Shahid Abbaspour’s dam piezometric data. Results of the models were compared with those measured by the piezometers which are in good agreement. The model results also revealed that the ANN model performed as good as and in some cases better than the FEM.

Keywords: seepage, dam foundation, finite element method, neural network, seep 3D model

Procedia PDF Downloads 469
1664 Social Marketing – An Integrated and Comprehensive Nutrition Communication Strategy to Improve the Iron Nutriture among Preschool Children

Authors: Manjula Kola, K. Chandralekha

Abstract:

Anaemia is one of the world’s most widespread health problems. Prevalence of anemia in south Asia is among the highest in the world. Iron deficiency anemia accounts for almost 85 percent of all types of anemia in India and affects more than half of the total population. Women of childbearing age particularly pregnant women, infants, preschool children and adolescents are at greatest risk of developing iron deficiency anemia. In India, 74 percent children between 6-35 months of age are anemic. Children between 1-6 years in major cities are found with a high prevalence rate of 64.8 percent. Iron deficiency anemia is not only a public health problem, but also a development problem. Its prevention and reduction must be viewed as investment in human capital that will enhance development and reduce poverty. Ending this hidden hunger in the form of iron deficiency is the most important achievable international health goal. Eliminating the underlying problem is essential to the sustained elimination of the iron deficiency anemia. The intervention programmes toward the sustained elimination need to be broadly based so that interventions become accepted community practices. Hence, intervention strategies need to go well beyond traditional health and nutrition systems and based upon empowering people and communities so that they will be capable of arranging for and sustaining an adequate intake of foods with respect to iron, independent of external support. Such strategies must necessarily be multisectoral and integrate interventions with social communications, evaluation and surveillance. The main objective of the study was to design a community based Nutrition intervention using theoretical framework of social marketing to sustain improvement of iron nutriture among preschool children. In order to carryout the study eight rural communities In Chittoor district of Andhra Pradesh, India were selected. A formative research was carryout for situational analysis and baseline data was generated with regard to demographic and socioeconomic status, dietary intakes, Knowledge, Attitude and Practices of the mothers of preschool children, clinical and hemoglobin status of the target group. Based on the formative research results, the research area was divides into four groups as experimental area I,II,III and control area. A community based, integrated and comprehensive social marketing intervention was designed based on various theories and models of nutrition education/ communication. In Experimental area I, Nutrition intervention using social marketing and a weekly iron folic acid supplementation was given to improve iron nutriture of preschool children. In experimental area II, Social marketing alone was implemented and in experimental area III Iron supplementation alone was given. No intervention was given in control area. The Impact evaluation revealed that among different interventions tested, the integrated social marketing intervention resulted best outcomes. The overall observations of the study state that social marketing, an integrated and functional strategy for nutrition communication to prevent and control iron deficiency. Various theoretical frame works / models for nutrition communication facilitate to design culturally appropriate interventions thus achieved improvements in the knowledge, attitude and practices there by resulting successful impact on nutritional status of the target groups.

Keywords: anemia, iron deficiency, social marketing, theoretical framework

Procedia PDF Downloads 405
1663 Nanotechnology: A New Revolution to Increase Agricultural Production

Authors: Reshu Chaudhary, R. S. Sengar

Abstract:

To increase the agricultural production Indian farmer needs to aware of the latest technology i.e. precision farming to maximize the crop yield and minimize the input (fertilizer, pesticide etc.) through monitoring the environmental factors. Biotechnology and information technology have provided lots of opportunities for the development of agriculture. But, still we have to do much more for increasing our agricultural production in order to achieve the target growth of agriculture to secure food, to eliminate poverty and improve living style, to enhance agricultural exports and national income and to improve quality of agricultural products. Nanotechnology can be a great element to satisfy these requirements and to boost the multi-dimensional development of agriculture in order to fulfill the dream of Indian farmers. Nanotechnology is the most rapidly growing area of science and technology with its application in physical science, chemical science, life science, material science and earth science. Nanotechnology is a part of any nation’s future. Research in nanotechnology has extremely high potential to benefit society through application in agricultural sciences. Nanotechnology has greater potential to bring revolution in the agricultural sector.

Keywords: agriculture, biotechnology, crop yield, nanotechnology

Procedia PDF Downloads 357
1662 Time-Frequency Feature Extraction Method Based on Micro-Doppler Signature of Ground Moving Targets

Authors: Ke Ren, Huiruo Shi, Linsen Li, Baoshuai Wang, Yu Zhou

Abstract:

Since some discriminative features are required for ground moving targets classification, we propose a new feature extraction method based on micro-Doppler signature. Firstly, the time-frequency analysis of measured data indicates that the time-frequency spectrograms of the three kinds of ground moving targets, i.e., single walking person, two people walking and a moving wheeled vehicle, are discriminative. Then, a three-dimensional time-frequency feature vector is extracted from the time-frequency spectrograms to depict these differences. At last, a Support Vector Machine (SVM) classifier is trained with the proposed three-dimensional feature vector. The classification accuracy to categorize ground moving targets into the three kinds of the measured data is found to be over 96%, which demonstrates the good discriminative ability of the proposed micro-Doppler feature.

Keywords: micro-doppler, time-frequency analysis, feature extraction, radar target classification

Procedia PDF Downloads 403
1661 An Empirical Diagnosis of the Maladies and Therapies of Budgeting in Nigeria

Authors: Ben-Caleb Egbide, Omolehinwa O. Eddy, Adeyemi S. Keyinde, Eriabie Sylvester, Ojeka Stephen

Abstract:

The national budget remains an integral part of the developmental plan of the economy of any country. The budget reflects the fundamental values underlying the government’s economic policies and objectives and whose execution is expected to realize national/public desires. In Nigeria, over three decades budget had failed to deliver the desired benefits, suggesting the existence of infractions, which are yet to be empirically ascertained. This paper attempts a diagnosis of the infractions peculiar to Nigeria budgetary system and their suggested panacea. Data were collected through the administration of questionnaire to a cross section of organizations/institutions representing government agencies and the general public. Mann-Whitney U test was employed to gauge the consistency in perception of the two groups. The result revealed that budget indiscipline, official corruption, allocative inefficiency and poor budget governance are the most influential infractions of budgeting in Nigeria. Consequently, it was suggested that budget transparency, target budgeting, zero tolerance on corruption and budget discipline are the most cogent therapies to the malfunctioning in Nigerian budgetary system.

Keywords: budgeting, budget maladies, budget therapies, Nigeria

Procedia PDF Downloads 291
1660 Developing Cucurbitacin a Minimum Inhibition Concentration of Meloidogyne Incognita Using a Computer-Based Model

Authors: Zakheleni P. Dube, Phatu W. Mashela

Abstract:

Minimum inhibition concentration (MIC) is the lowest concentration of a chemical that brings about significant inhibition of target organism. The conventional method for establishing the MIC for phytonematicides is tedious. The objective of this study was to use the Curve-fitting Allelochemical Response Data (CARD) to determine the MIC for pure cucurbitacin A on Meloidogyne incognita second-stage juveniles (J2) hatch, immobility and mortality. Meloidogyne incognita eggs and freshly hatched J2 were separately exposed to a series of pure cucurbitacin A concentrations of 0.00, 0.25, 0.50, 0.75, 1.00, 1.25, 1.50, 1.75, 2.00, 2.25 and 2.50 μg.mL⁻¹for 12, 24, 48 and 72 h in an incubator set at 25 ± 2°C. Meloidogyne incognita J2 hatch, immobility and mortality counts were determined using a stereomicroscope and the significant means were subjected to the CARD model. The model exhibited density-dependent growth (DDG) patterns of J2 hatch, immobility and mortality to increasing concentrations of cucurbitacin A. The average MIC for cucurbitacin A on M. incognita J2 hatch, immobility and mortality were 2.2, 0.58 and 0.63 µg.mL⁻¹, respectively. Meloidogyne incognita J2 hatch had the highest average MIC value followed by mortality and immobility had the least. In conclusion, the CARD model was able to generate MIC for cucurbitacin A, hence it could serve as a valuable tool in the chemical-nematode bioassay studies.

Keywords: inhibition concentration, phytonematicide, sensitivity index, threshold stimulation, triterpenoids.

Procedia PDF Downloads 190
1659 The Prediction of Sound Absorbing Coefficient for Multi-Layer Non-Woven

Authors: Un-Hwan Park, Jun-Hyeok Heo, In-Sung Lee, Tae-Hyeon Oh, Dae-Gyu Park

Abstract:

Automotive interior material consisting of several material layers has the sound-absorbing function. It is difficult to predict sound absorbing coefficient because of several material layers. So, many experimental tunings are required to achieve the target of sound absorption. Therefore, while the car interior materials are developed, so much time and money is spent. In this study, we present a method to predict the sound absorbing performance of the material with multi-layer using physical properties of each material. The properties are predicted by Foam-X software using the sound absorption coefficient data measured by impedance tube. Then, we will compare and analyze the predicted sound absorption coefficient with the data measured by scaled reverberation chamber and impedance tubes for a prototype. If the method is used instead of experimental tuning in the development of car interior material, the time and money can be saved, and then, the development effort can be reduced because it can be optimized by simulation.

Keywords: multi-layer nonwoven, sound absorption coefficient, scaled reverberation chamber, impedance tubes

Procedia PDF Downloads 374
1658 Synchronization of Two Mobile Robots

Authors: R. M. López-Gutiérrez, J. A. Michel-Macarty, H. Cervantes-De Avila, J. I. Nieto-Hipólito, C. Cruz-Hernández, L. Cardoza-Avendaño, S. Cortiant-Velez

Abstract:

It is well know that mankind benefits from the application of robot control by virtual handlers in industrial environments. In recent years, great interest has emerged in the control of multiple robots in order to carry out collective tasks. One main trend is to copy the natural organization that some organisms have, such as, ants, bees, school of fish, birds’ migration, etc. Surely, this collaborative work, results in better outcomes than those obtain in an isolated or individual effort. This topic has a great drive because collaboration between several robots has the potential capability of carrying out more complicated tasks, doing so, with better efficiency, resiliency and fault tolerance, in cases such as: coordinate navigation towards a target, terrain exploration, and search-rescue operations. In this work, synchronization of multiple autonomous robots is shown over a variety of coupling topologies: star, ring, chain, and global. In all cases, collective synchronous behavior is achieved, in the complex networks formed with mobile robots. Nodes of these networks are modeled by a mass using Matlab to simulate them.

Keywords: robots, synchronization, bidirectional, coordinate navigation

Procedia PDF Downloads 355
1657 Modeling and Dynamics Analysis for Intelligent Skid-Steering Vehicle Based on Trucksim-Simulink

Authors: Yansong Zhang, Xueyuan Li, Junjie Zhou, Xufeng Yin, Shihua Yuan, Shuxian Liu

Abstract:

Aiming at the verification of control algorithms for skid-steering vehicles, a vehicle simulation model of 6×6 electric skid-steering unmanned vehicle was established based on Trucksim and Simulink. The original transmission and steering mechanism of Trucksim are removed, and the electric skid-steering model and a closed-loop controller for the vehicle speed and yaw rate are built in Simulink. The simulation results are compared with the ones got by theoretical formulas. The results show that the predicted tire mechanics and vehicle kinematics of Trucksim-Simulink simulation model are closed to the theoretical results. Therefore, it can be used as an effective approach to study the dynamic performance and control algorithm of skid-steering vehicle. In this paper, a method of motion control based on feed forward control is also designed. The simulation results show that the feed forward control strategy can make the vehicle follow the target yaw rate more quickly and accurately, which makes the vehicle have more maneuverability.

Keywords: skid-steering, Trucksim-Simulink, feedforward control, dynamics

Procedia PDF Downloads 322
1656 Microbial Removal of Polycyclic Aromatic Hydrocarbons from Petroleum Refinery Sludge: A Consortial Approach

Authors: Dheepshika Kodieswaran

Abstract:

The persisting problem in the world that continuously impose our planet at risk is the increasing amounts of recalcitrant. One such issue is the disposal of the Petroleum Refinery Sludge (PRS) which constitutes hydrocarbons that are hazardous to terrestrial and aquatic life. The comparatively safe approach to handling these wastes is by microbial degradation, while the other chemical and physical methods are either expensive and/or produce secondary pollutants. The bacterial and algal systems have different pathways for the degradation of hydrocarbons, and their growth rates vary. This study shows how different bacterial and microalgal strains degrade the polyaromatic hydrocarbon PAHs individually and their symbiotic influence on degradation as well. In this system, the metabolites and gaseous exchange help each other in growth. This method using also aids in the accumulation of lipids in microalgal cells and from which bio-oils can also be extracted. The bacterial strains used in this experiment are reported to be indigenous strains isolated from PRS. The target PAH studied were anthracene and pyrene for a period of 28 days. The PAH degradation kinetics best fitted the Gompertz model, and the order of the kinetics, rate constants, and half-life was determined.

Keywords: petroleum refinery sludge, co-culturing, polycyclic hydrocarbons, microalgal-bacterial consortia

Procedia PDF Downloads 104
1655 Rehabilitation Robot in Primary Walking Pattern Training for SCI Patient at Home

Authors: Taisuke Sakaki, Toshihiko Shimokawa, Nobuhiro Ushimi, Koji Murakami, Yong-Kwun Lee, Kazuhiro Tsuruta, Kanta Aoki, Kaoru Fujiie, Ryuji Katamoto, Atsushi Sugyo

Abstract:

Recently attention has been focused on incomplete spinal cord injuries (SCI) to the central spine caused by pressure on parts of the white matter conduction pathway, such as the pyramidal tract. In this paper, we focus on a training robot designed to assist with primary walking-pattern training. The target patient for this training robot is relearning the basic functions of the usual walking pattern; it is meant especially for those with incomplete-type SCI to the central spine, who are capable of standing by themselves but not of performing walking motions. From the perspective of human engineering, we monitored the operator’s actions to the robot and investigated the movement of joints of the lower extremities, the circumference of the lower extremities, and exercise intensity with the machine. The concept of the device was to provide mild training without any sudden changes in heart rate or blood pressure, which will be particularly useful for the elderly and disabled. The mechanism of the robot is modified to be simple and lightweight with the expectation that it will be used at home.

Keywords: training, rehabilitation, SCI patient, welfare, robot

Procedia PDF Downloads 424
1654 Management Directions towards Social Responsibility in Special Population Groups by Airport Enterprises: The Case of Autism

Authors: Dimitrios J. Dimitriou, Maria F. Sartzetaki, Simoni K. Lintzerakou

Abstract:

Air transport links markets and individuals, promoting social and economic development. The review of management direction towards social responsibility and especially for the enhancement of passengers with autism is the key objective of this paper. According to a top-down approach, the key dimensions that affect the basic principles and directions of airport enterprises management towards social responsibility for the case of passengers with autism are presented. Conventional wisdom is to present actions undertaken in improving accessibility for special population groups and highlight the social dimension in the management of transport hubs. The target is to focus on transport hubs serving special groups of passengers such as passengers with autism and highlight good practices and motivate transport infrastructure management authorities and decision makers to promote the social footprint of transport. The highlights and key findings are essential for managers and decision makers to support actions and plans towards management of airport enterprises towards social responsibility, focusing on the case of passengers traveling with Autism Spectrum Disorder (ASD).

Keywords: social responsibility, special groups, airport enterprises, AUTISM

Procedia PDF Downloads 127
1653 Liquid Temperature Effect on Sound Propagation in Polymeric Solution with Gas Bubbles

Authors: S. Levitsky

Abstract:

Acoustic properties of polymeric liquids are high sensitive to free gas traces in the form of fine bubbles. Their presence is typical for such liquids because of chemical reactions, small wettability of solid boundaries, trapping of air in technological operations, etc. Liquid temperature influences essentially its rheological properties, which may have an impact on the bubble pulsations and sound propagation in the system. The target of the paper is modeling of the liquid temperature effect on single bubble dynamics and sound dispersion and attenuation in polymeric solution with spherical gas bubbles. The basic sources of attenuation (heat exchange between gas in microbubbles and surrounding liquid, rheological and acoustic losses) are taken into account. It is supposed that in the studied temperature range the interface mass transfer has a minor effect on bubble dynamics. The results of the study indicate that temperature raise yields enhancement of bubble pulsations and increase in sound attenuation in the near-resonance range and may have a strong impact on sound dispersion in the liquid-bubble mixture at frequencies close to the resonance frequency of bubbles.

Keywords: sound propagation, gas bubbles, temperature effect, polymeric liquid

Procedia PDF Downloads 303
1652 Hyperspectral Data Classification Algorithm Based on the Deep Belief and Self-Organizing Neural Network

Authors: Li Qingjian, Li Ke, He Chun, Huang Yong

Abstract:

In this paper, the method of combining the Pohl Seidman's deep belief network with the self-organizing neural network is proposed to classify the target. This method is mainly aimed at the high nonlinearity of the hyperspectral image, the high sample dimension and the difficulty in designing the classifier. The main feature of original data is extracted by deep belief network. In the process of extracting features, adding known labels samples to fine tune the network, enriching the main characteristics. Then, the extracted feature vectors are classified into the self-organizing neural network. This method can effectively reduce the dimensions of data in the spectrum dimension in the preservation of large amounts of raw data information, to solve the traditional clustering and the long training time when labeled samples less deep learning algorithm for training problems, improve the classification accuracy and robustness. Through the data simulation, the results show that the proposed network structure can get a higher classification precision in the case of a small number of known label samples.

Keywords: DBN, SOM, pattern classification, hyperspectral, data compression

Procedia PDF Downloads 340
1651 Exploring the Implementation of Strategic Management Process in Egyptian Five-Star Hotels: Resorts versus Downtown Hotels

Authors: Jailan Mohamed El Demerdash

Abstract:

In consideration of the challenges and the fierce global competition that have emerged in today’s hotel industry, it was important to shed light on the subject of strategic management. In addition, five-star hotels play a crucial role in supporting the tourism industry and investment in Egypt. Therefore, this study aims at exploring the scope of implementing strategic management practices in five-star hotels in Egypt and examining the differences between resorts and downtown hotels regarding the implementation of a strategic management process. The impact of the difference in hotel types on the implementation of the strategic management process will be examined. Simple random sampling technique will be employed to select the sample from the target population, including hotels from Sharm El- Sheikh, Cairo, and Hurghada cities. The data collection instrument employed in the current study is an interviewer-administered questionnaire. Eventually, combining the results of the study with the literature review helped to present a number of recommendations that have to be directed to hotel managers in the area of strategic management practices.

Keywords: strategic management, strategic tools, five-star hotels, resorts, downtown hotels, Egypt

Procedia PDF Downloads 143
1650 Analysis of the Diffusion Behavior of an Information and Communication Technology Platform for City Logistics

Authors: Giulio Mangano, Alberto De Marco, Giovanni Zenezini

Abstract:

The concept of City Logistics (CL) has emerged to improve the impacts of last mile freight distribution in urban areas. In this paper, a System Dynamics (SD) model exploring the dynamics of the diffusion of a ICT platform for CL management across different populations is proposed. For the development of the model two sources have been used. On the one hand, the major diffusion variables and feedback loops are derived from a literature review of existing diffusion models. On the other hand, the parameters are represented by the value propositions delivered by the platform as a response to some of the users’ needs. To extract the most important value propositions the Business Model Canvas approach has been used. Such approach in fact focuses on understanding how a company can create value for her target customers. These variables and parameters are thus translated into a SD diffusion model with three different populations namely municipalities, logistics service providers, and own account carriers. Results show that, the three populations under analysis fully adopt the platform within the simulation time frame, highlighting a strong demand by different stakeholders for CL projects aiming at carrying out more efficient urban logistics operations.

Keywords: city logistics, simulation, system dynamics, business model

Procedia PDF Downloads 264
1649 Development and Adaptation of a LGBM Machine Learning Model, with a Suitable Concept Drift Detection and Adaptation Technique, for Barcelona Household Electric Load Forecasting During Covid-19 Pandemic Periods (Pre-Pandemic and Strict Lockdown)

Authors: Eric Pla Erra, Mariana Jimenez Martinez

Abstract:

While aggregated loads at a community level tend to be easier to predict, individual household load forecasting present more challenges with higher volatility and uncertainty. Furthermore, the drastic changes that our behavior patterns have suffered due to the COVID-19 pandemic have modified our daily electrical consumption curves and, therefore, further complicated the forecasting methods used to predict short-term electric load. Load forecasting is vital for the smooth and optimized planning and operation of our electric grids, but it also plays a crucial role for individual domestic consumers that rely on a HEMS (Home Energy Management Systems) to optimize their energy usage through self-generation, storage, or smart appliances management. An accurate forecasting leads to higher energy savings and overall energy efficiency of the household when paired with a proper HEMS. In order to study how COVID-19 has affected the accuracy of forecasting methods, an evaluation of the performance of a state-of-the-art LGBM (Light Gradient Boosting Model) will be conducted during the transition between pre-pandemic and lockdowns periods, considering day-ahead electric load forecasting. LGBM improves the capabilities of standard Decision Tree models in both speed and reduction of memory consumption, but it still offers a high accuracy. Even though LGBM has complex non-linear modelling capabilities, it has proven to be a competitive method under challenging forecasting scenarios such as short series, heterogeneous series, or data patterns with minimal prior knowledge. An adaptation of the LGBM model – called “resilient LGBM” – will be also tested, incorporating a concept drift detection technique for time series analysis, with the purpose to evaluate its capabilities to improve the model’s accuracy during extreme events such as COVID-19 lockdowns. The results for the LGBM and resilient LGBM will be compared using standard RMSE (Root Mean Squared Error) as the main performance metric. The models’ performance will be evaluated over a set of real households’ hourly electricity consumption data measured before and during the COVID-19 pandemic. All households are located in the city of Barcelona, Spain, and present different consumption profiles. This study is carried out under the ComMit-20 project, financed by AGAUR (Agència de Gestiód’AjutsUniversitaris), which aims to determine the short and long-term impacts of the COVID-19 pandemic on building energy consumption, incrementing the resilience of electrical systems through the use of tools such as HEMS and artificial intelligence.

Keywords: concept drift, forecasting, home energy management system (HEMS), light gradient boosting model (LGBM)

Procedia PDF Downloads 105
1648 Multi-Perspective Learning in a Real Production Plant Using Experiential Learning in Heterogeneous Groups to Develop System Competencies for Production System Improvements

Authors: Marlies Achenbach

Abstract:

System competencies play a key role to ensure an effective and efficient improvement of production systems. Thus, there can be observed an increasing demand for developing system competencies in industry as well as in engineering education. System competencies consist of the following two main abilities: Evaluating the current state of a production system and developing a target state. The innovative course ‘multi-perspective learning in a real production plant (multi real)’ is developed to create a learning setting that supports the development of these system competencies. Therefore, the setting combines two innovative aspects: First, the Learning takes place in heterogeneous groups formed by students as well as professionals and managers from industry. Second, the learning takes place in a real production plant. This paper presents the innovative didactic concept of ‘multi real’ in detail, which will initially be implemented in October/November 2016 in the industrial engineering, logistics and mechanical master’s program at TU Dortmund University.

Keywords: experiential learning, heterogeneous groups, improving production systems, system competencies

Procedia PDF Downloads 424
1647 Adaptive Discharge Time Control for Battery Operation Time Enhancement

Authors: Jong-Bae Lee, Seongsoo Lee

Abstract:

This paper proposes an adaptive discharge time control method to balance cell voltages in alternating battery cell discharging method. In the alternating battery cell discharging method, battery cells are periodically discharged in turn. Recovery effect increases battery output voltage while the given battery cell rests without discharging, thus battery operation time of target system increases. However, voltage mismatch between cells leads two problems. First, voltage difference between cells induces inter-cell current with wasted power. Second, it degrades battery operation time, since system stops when any cell reaches to the minimum system operation voltage. To solve this problem, the proposed method adaptively controls cell discharge time to equalize both cell voltages. In the proposed method, battery operation time increases about 19%, while alternating battery cell discharging method shows about 7% improvement.

Keywords: battery, recovery effect, low-power, alternating battery cell discharging, adaptive discharge time control

Procedia PDF Downloads 351
1646 Blood Lipid Management: Combined Treatment with Hydrotherapy and Ozone Bubbles Bursting in Water

Authors: M. M. Wickramasinghe

Abstract:

Cholesterol and triglycerides are lipids, mainly essential to maintain the cellular structure of the human body. Cholesterol is also important for hormone production, vitamin D production, proper digestion functions, and strengthening the immune system. Excess fats in the blood circulation, known as hyperlipidemia, become harmful leading to arterial clogging and causing atherosclerosis. Aim of this research is to develop a treatment protocol to efficiently break down and maintain circulatory lipids by improving blood circulation without strenuous physical exercises while immersed in a tub of water. To achieve the target of strong exercise effect, this method involves generating powerful ozone bubbles to spin, collide, and burst in the water. Powerful emission of air into water is capable of transferring locked energy of the water molecules and releasing energy. This method involves water and air-based impact generated by pumping ozone at the speed of 46 lts/sec with a concentration of 0.03-0.05 ppt according to safety standards of The Federal Institute for Drugs and Medical Devices, BfArM, Germany. The direct impact of ozone bubbles on the muscular system and skin becomes the main target and is capable of increasing the heart rate while immersed in water. A total time duration of 20 minutes is adequate to exert a strong exercise effect, improve blood circulation, and stimulate the nervous and endocrine systems. Unstable ozone breakdown into oxygen release onto the surface of the water giving additional benefits and supplying high-quality air rich in oxygen required to maintain efficient metabolic functions. The breathing technique was introduced to improve the efficiency of lung functions and benefit the air exchange mechanism. The temperature of the water is maintained at 39c to 40c to support arterial dilation and enzyme functions and efficiently improve blood circulation to the vital organs. The buoyancy of water and natural hydrostatic pressure release the tension of the body weight and relax the mind and body. Sufficient hydration (3lts of water per day) is an essential requirement to transport nutrients and remove waste byproducts to process through the liver, kidney, and skin. Proper nutritional intake is an added advantage to optimize the efficiency of this method which aids in a fast recovery process. Within 20-30 days of daily treatment, triglycerides, low-density lipoproteins (LDL), and total cholesterol reduction were observed in patients with abnormal levels of lipid profile. Borderline patients were cleared within 10–15 days of treatment. This is a highly efficient system that provides many benefits and is able to achieve a successful reduction of triglycerides, LDL, and total cholesterol within a short period of time. Supported by proper hydration and nutritional balance, this system of natural treatment maintains healthy levels of lipids in the blood and avoids the risk of cerebral stroke, high blood pressure, and heart attacks.

Keywords: atherosclerosis, cholesterol, hydrotherapy, hyperlipidemia, lipid management, ozone therapy, triglycerides

Procedia PDF Downloads 90
1645 SLAMF5 Regulates Myeloid Cells Activation in the Eae Model

Authors: Laura Bellassen, Idit Shachar

Abstract:

Multiple sclerosis (MS) is a chronic neurological disorder characterized by demyelination of the central nervous system (CNS), leading to a wide range of physical and cognitive impairments. Myeloid cells in the CNS, such microglia and border associated macrophage cells, participate in the neuroinflammation in MS. Activation of those cells in MS contributes to the inflammatory response in the CNS and recruitment of immune cells in the this compartment. SLAMF5 is a cell surface receptor that functions as a homophilic adhesion molecule, whose signaling can activate or inhibit leukocyte function. In the current study we followed the expression and function of SLAMF5 in myeloid cells in the CNS and in the periphery in the murine model for MS, the experimental autoimmune encephalomyelitis model (EAE). Our results show that SLAMF5 deficiency or blocking decreases the expression of activation molecules and costimulatory molecules such as MHCII and CD80, resulting in delayed onset and reduced progression of the disease. Moreover, blocking SLAMF5 in peripheral monocytes derived from MS patients and iPSC-derived microglia cells, controls the expression of HLA-DR and CD80. Thus, SLAMF5 is a regulator of myeloid cells function and can serve as a therapeutic target in autoimmune disorders as Multiple Sclerosis.

Keywords: multiple sclerosis, EAE model, myeloid cells, new antibody, neuroimmunology

Procedia PDF Downloads 51
1644 Designing and Costing the Concept of Servicer Satellites That Can Be Used to De-Orbit Space Debris

Authors: Paras Adlakha

Abstract:

Today the major threat to our existing and future satellites is space debris; the collision of bodies like defunct satellites with any other objects in space, including the new age ASAT (anti-satellite) weaponry system, are the main causes of the increasing amount of space debris every year. After analyzing the current situation of space debris, low earth orbit is found to be having a large density of debris as compared to any other orbit range; that's why it is selected as the target orbit for space debris removal mission. In this paper, the complete data of 24000 debris is studied based on size, altitude, inclination, mass, number of existing satellites threaten by each debris from which the rocket bodies are the type of wreckage found to be most suited for removal. The optimal method of active debris removal using a robotic arm for capturing the body to attach a de-orbit kit is used to move the debris from its orbit without making the actual contact of servicer with the debris to reduce the further the threat of collision with defunct material. The major factors which are brought into consideration while designing the concept of debris removal are tumbling, removal of debris under a low-cost mission and decreasing the factor of collisions during the mission.

Keywords: de-orbit, debris, servicer, satellite, space junk

Procedia PDF Downloads 136
1643 Missing Link Data Estimation with Recurrent Neural Network: An Application Using Speed Data of Daegu Metropolitan Area

Authors: JaeHwan Yang, Da-Woon Jeong, Seung-Young Kho, Dong-Kyu Kim

Abstract:

In terms of ITS, information on link characteristic is an essential factor for plan or operation. But in practical cases, not every link has installed sensors on it. The link that does not have data on it is called “Missing Link”. The purpose of this study is to impute data of these missing links. To get these data, this study applies the machine learning method. With the machine learning process, especially for the deep learning process, missing link data can be estimated from present link data. For deep learning process, this study uses “Recurrent Neural Network” to take time-series data of road. As input data, Dedicated Short-range Communications (DSRC) data of Dalgubul-daero of Daegu Metropolitan Area had been fed into the learning process. Neural Network structure has 17 links with present data as input, 2 hidden layers, for 1 missing link data. As a result, forecasted data of target link show about 94% of accuracy compared with actual data.

Keywords: data estimation, link data, machine learning, road network

Procedia PDF Downloads 508
1642 Lipid-polymer Nanocarrier Platform Enables X-Ray Induced Photodynamic Therapy against Human Colorectal Cancer Cells

Authors: Rui Sang, Fei Deng, Alexander Engel, Ewa M. Goldys, Wei Deng

Abstract:

In this study, we brought together X-ray induced photodynamic therapy (X-PDT) and chemo-drug (5-FU) for the treatment on colorectal cancer cells. This was achieved by developing a lipid-polymer hybrid nanoparticle delivery system (FA-LPNPs-VP-5-FU). It was prepared by incorporating a photosensitizer (verteporfin), chemotherapy drug (5-FU), and a targeting moiety (folic acid) into one platform. The average size of these nanoparticles was around 100 nm with low polydispersity. When exposed to clinical doses of 4 Gy X-ray radiation, FA-LPNPs-VP-5-FU generated sufficient amounts of reactive oxygen species, triggering the apoptosis and necrosis pathway of cancer cells. Our combined X-PDT and chemo-drug strategy was effective in inhibiting cancer cells’ growth and proliferation. Cell cycle analyses revealed that our treatment induced G2/M and S phase arrest in HCT116 cells. Our results indicate that this combined treatment provides better antitumour effect in colorectal cancer cells than each of these modalities alone. This may offer a novel approach for effective colorectal cancer treatment with reduced off-target effect and drug toxicity.

Keywords: pdt, targeted lipid-polymer nanoparticles, verteporfin, colorectal cancer

Procedia PDF Downloads 74
1641 Shariah Compliance Space Planning for Hotel Room Design

Authors: Syaza Bt. Saifuddin, Rashidi Bin Othman, Muhammad Hafizuddin Akmal Bin Md Hashim, Ismail Bin Jasmani, Noor Hanita Bt. Abdul Majid

Abstract:

This paper illustrates the background of various concepts, approaches, terminologies used to describe the basic framework of an Islamic Hotel Room design. This paper reviews the theoretical views in establishing a suitable and optimum environment for Muslim as well as non-Muslim guests in hotel rooms while according to shariah. It involves a few research methodologies that requires the researcher to study on a few characteristics needed to create more efficient rooms in terms of social interaction, economic growth and other tolerable elements. This paper intends on revealing the elements that are vital and may contribute for hotels in achieving a more conclusive research on space planning for hotel rooms focusing on the shariah and Muslim guests. Malaysia is an Islamic country and has billion of tourists coming over for business and recreational purposes. Therefore, having a righteous environment that best suit this target user is important in terms of generating the economy as well as providing a better understanding to the community on the benefits of applying these qualities in a conventional resort design.

Keywords: design, Islam, room, shariah compliant hotel

Procedia PDF Downloads 345
1640 Impact of Nitrogenous Wastewater and Seawater Acidification on Algae

Authors: Pei Luen Jiang

Abstract:

Oysters (Ostreidae) and hard clams (Meretrix lusoria) are important shallow sea-cultured shellfish in Taiwan, and are mainly farmed in Changhua, Yunlin, Chiayi and Tainan. As these shellfish are fed primarily on natural plankton, the artificial feed is not required, leading to high economic value in aquatic farming. However, in recent years, though mariculture production areas have expanded steadily, large-scale deaths of farmed shellfish have also become increasingly common due to climate change and human factors. Through studies over the past few years, our research team has determined the impact of nitrogen deprivation on growth and morphological variations in algae and sea anemones (Actiniaria) and identified the target genes affected by adverse environmental factors. In mariculture, high-density farming is commonly adopted, which results in elevated concentrations of nitrogenous waste in the water. In addition, excessive carbon dioxide from the atmosphere also dissolves in seawater, causing a steady decrease in the pH of seawater, leading to acidification. This study to observe the impact of high concentrations of nitrogen sources and carbon dioxide on algae.

Keywords: algae, shellfish, nitrogen, acidification

Procedia PDF Downloads 179
1639 Improved Super-Resolution Using Deep Denoising Convolutional Neural Network

Authors: Pawan Kumar Mishra, Ganesh Singh Bisht

Abstract:

Super-resolution is the technique that is being used in computer vision to construct high-resolution images from a single low-resolution image. It is used to increase the frequency component, recover the lost details and removing the down sampling and noises that caused by camera during image acquisition process. High-resolution images or videos are desired part of all image processing tasks and its analysis in most of digital imaging application. The target behind super-resolution is to combine non-repetition information inside single or multiple low-resolution frames to generate a high-resolution image. Many methods have been proposed where multiple images are used as low-resolution images of same scene with different variation in transformation. This is called multi-image super resolution. And another family of methods is single image super-resolution that tries to learn redundancy that presents in image and reconstruction the lost information from a single low-resolution image. Use of deep learning is one of state of art method at present for solving reconstruction high-resolution image. In this research, we proposed Deep Denoising Super Resolution (DDSR) that is a deep neural network for effectively reconstruct the high-resolution image from low-resolution image.

Keywords: resolution, deep-learning, neural network, de-blurring

Procedia PDF Downloads 515