Search results for: computational error
2533 Intelligent Indoor Localization Using WLAN Fingerprinting
Authors: Gideon C. Joseph
Abstract:
The ability to localize mobile devices is quite important, as some applications may require location information of these devices to operate or deliver better services to the users. Although there are several ways of acquiring location data of mobile devices, the WLAN fingerprinting approach has been considered in this work. This approach uses the Received Signal Strength Indicator (RSSI) measurement as a function of the position of the mobile device. RSSI is a quantitative technique of describing the radio frequency power carried by a signal. RSSI may be used to determine RF link quality and is very useful in dense traffic scenarios where interference is of major concern, for example, indoor environments. This research aims to design a system that can predict the location of a mobile device, when supplied with the mobile’s RSSIs. The developed system takes as input the RSSIs relating to the mobile device, and outputs parameters that describe the location of the device such as the longitude, latitude, floor, and building. The relationship between the Received Signal Strengths (RSSs) of mobile devices and their corresponding locations is meant to be modelled; hence, subsequent locations of mobile devices can be predicted using the developed model. It is obvious that describing mathematical relationships between the RSSIs measurements and localization parameters is one option to modelling the problem, but the complexity of such an approach is a serious turn-off. In contrast, we propose an intelligent system that can learn the mapping of such RSSIs measurements to the localization parameters to be predicted. The system is capable of upgrading its performance as more experiential knowledge is acquired. The most appealing consideration to using such a system for this task is that complicated mathematical analysis and theoretical frameworks are excluded or not needed; the intelligent system on its own learns the underlying relationship in the supplied data (RSSI levels) that corresponds to the localization parameters. These localization parameters to be predicted are of two different tasks: Longitude and latitude of mobile devices are real values (regression problem), while the floor and building of the mobile devices are of integer values or categorical (classification problem). This research work presents artificial neural network based intelligent systems to model the relationship between the RSSIs predictors and the mobile device localization parameters. The designed systems were trained and validated on the collected WLAN fingerprint database. The trained networks were then tested with another supplied database to obtain the performance of trained systems on achieved Mean Absolute Error (MAE) and error rates for the regression and classification tasks involved therein.Keywords: indoor localization, WLAN fingerprinting, neural networks, classification, regression
Procedia PDF Downloads 3492532 Simplified Linearized Layering Method for Stress Intensity Factor Determination
Authors: Jeries J. Abou-Hanna, Bradley Storm
Abstract:
This paper looks to reduce the complexity of determining stress intensity factors while maintaining high levels of accuracy by the use of a linearized layering approach. Many techniques for stress intensity factor determination exist, but they can be limited by conservative results, requiring too many user parameters, or by being too computationally intensive. Multiple notch geometries with various crack lengths were investigated in this study to better understand the effectiveness of the proposed method. By linearizing the average stresses in radial layers around the crack tip, stress intensity factors were found to have error ranging from -10.03% to 8.94% when compared to analytically exact solutions. This approach proved to be a robust and efficient method of accurately determining stress intensity factors.Keywords: fracture mechanics, finite element method, stress intensity factor, stress linearization
Procedia PDF Downloads 1432531 Validating Quantitative Stormwater Simulations in Edmonton Using MIKE URBAN
Authors: Mohamed Gaafar, Evan Davies
Abstract:
Many municipalities within Canada and abroad use chloramination to disinfect drinking water so as to avert the production of the disinfection by-products (DBPs) that result from conventional chlorination processes and their consequential public health risks. However, the long-lasting monochloramine disinfectant (NH2Cl) can pose a significant risk to the environment. As, it can be introduced into stormwater sewers, from different water uses, and thus freshwater sources. Little research has been undertaken to monitor and characterize the decay of NH2Cl and to study the parameters affecting its decomposition in stormwater networks. Therefore, the current study was intended to investigate this decay starting by building a stormwater model and validating its hydraulic and hydrologic computations, and then modelling water quality in the storm sewers and examining the effects of different parameters on chloramine decay. The presented work here is only the first stage of this study. The 30th Avenue basin in Southern Edmonton was chosen as a case study, because the well-developed basin has various land-use types including commercial, industrial, residential, parks and recreational. The City of Edmonton has already built a MIKE-URBAN stormwater model for modelling floods. Nevertheless, this model was built to the trunk level which means that only the main drainage features were presented. Additionally, this model was not calibrated and known to consistently compute pipe flows higher than the observed values; not to the benefit of studying water quality. So the first goal was to complete modelling and updating all stormwater network components. Then, available GIS Data was used to calculate different catchment properties such as slope, length and imperviousness. In order to calibrate and validate this model, data of two temporary pipe flow monitoring stations, collected during last summer, was used along with records of two other permanent stations available for eight consecutive summer seasons. The effect of various hydrological parameters on model results was investigated. It was found that model results were affected by the ratio of impervious areas. The catchment length was tested, however calculated, because it is approximate representation of the catchment shape. Surface roughness coefficients were calibrated using. Consequently, computed flows at the two temporary locations had correlation coefficients of values 0.846 and 0.815, where the lower value pertained to the larger attached catchment area. Other statistical measures, such as peak error of 0.65%, volume error of 5.6%, maximum positive and negative differences of 2.17 and -1.63 respectively, were all found in acceptable ranges.Keywords: stormwater, urban drainage, simulation, validation, MIKE URBAN
Procedia PDF Downloads 3002530 The Effect of Oil Price Uncertainty on Food Price in South Africa
Authors: Goodness C. Aye
Abstract:
This paper examines the effect of the volatility of oil prices on food price in South Africa using monthly data covering the period 2002:01 to 2014:09. Food price is measured by the South African consumer price index for food while oil price is proxied by the Brent crude oil. The study employs the GARCH-in-mean VAR model, which allows the investigation of the effect of a negative and positive shock in oil price volatility on food price. The model also allows the oil price uncertainty to be measured as the conditional standard deviation of a one-step-ahead forecast error of the change in oil price. The results show that oil price uncertainty has a positive and significant effect on food price in South Africa. The responses of food price to a positive and negative oil price shocks is asymmetric.Keywords: oil price volatility, food price, bivariate, GARCH-in-mean VAR, asymmetric
Procedia PDF Downloads 4792529 Facial Recognition of University Entrance Exam Candidates using FaceMatch Software in Iran
Authors: Mahshid Arabi
Abstract:
In recent years, remarkable advancements in the fields of artificial intelligence and machine learning have led to the development of facial recognition technologies. These technologies are now employed in a wide range of applications, including security, surveillance, healthcare, and education. In the field of education, the identification of university entrance exam candidates has been one of the fundamental challenges. Traditional methods such as using ID cards and handwritten signatures are not only inefficient and prone to fraud but also susceptible to errors. In this context, utilizing advanced technologies like facial recognition can be an effective and efficient solution to increase the accuracy and reliability of identity verification in entrance exams. This article examines the use of FaceMatch software for recognizing the faces of university entrance exam candidates in Iran. The main objective of this research is to evaluate the efficiency and accuracy of FaceMatch software in identifying university entrance exam candidates to prevent fraud and ensure the authenticity of individuals' identities. Additionally, this research investigates the advantages and challenges of using this technology in Iran's educational systems. This research was conducted using an experimental method and random sampling. In this study, 1000 university entrance exam candidates in Iran were selected as samples. The facial images of these candidates were processed and analyzed using FaceMatch software. The software's accuracy and efficiency were evaluated using various metrics, including accuracy rate, error rate, and processing time. The research results indicated that FaceMatch software could accurately identify candidates with a precision of 98.5%. The software's error rate was less than 1.5%, demonstrating its high efficiency in facial recognition. Additionally, the average processing time for each candidate's image was less than 2 seconds, indicating the software's high efficiency. Statistical evaluation of the results using precise statistical tests, including analysis of variance (ANOVA) and t-test, showed that the observed differences were significant, and the software's accuracy in identity verification is high. The findings of this research suggest that FaceMatch software can be effectively used as a tool for identifying university entrance exam candidates in Iran. This technology not only enhances security and prevents fraud but also simplifies and streamlines the exam administration process. However, challenges such as preserving candidates' privacy and the costs of implementation must also be considered. The use of facial recognition technology with FaceMatch software in Iran's educational systems can be an effective solution for preventing fraud and ensuring the authenticity of university entrance exam candidates' identities. Given the promising results of this research, it is recommended that this technology be more widely implemented and utilized in the country's educational systems.Keywords: facial recognition, FaceMatch software, Iran, university entrance exam
Procedia PDF Downloads 492528 Application of Optimization Techniques in Overcurrent Relay Coordination: A Review
Authors: Syed Auon Raza, Tahir Mahmood, Syed Basit Ali Bukhari
Abstract:
In power system properly coordinated protection scheme is designed to make sure that only the faulty part of the system will be isolated when abnormal operating condition of the system will reach. The complexity of the system as well as the increased user demand and the deregulated environment enforce the utilities to improve system reliability by using a properly coordinated protection scheme. This paper presents overview of over current relay coordination techniques. Different techniques such as Deterministic Techniques, Meta Heuristic Optimization techniques, Hybrid Optimization Techniques, and Trial and Error Optimization Techniques have been reviewed in terms of method of their implementation, operation modes, nature of distribution system, and finally their advantages as well as the disadvantages.Keywords: distribution system, relay coordination, optimization, Plug Setting Multiplier (PSM)
Procedia PDF Downloads 3992527 Preliminary Study of Hand Gesture Classification in Upper-Limb Prosthetics Using Machine Learning with EMG Signals
Authors: Linghui Meng, James Atlas, Deborah Munro
Abstract:
There is an increasing demand for prosthetics capable of mimicking natural limb movements and hand gestures, but precise movement control of prosthetics using only electrode signals continues to be challenging. This study considers the implementation of machine learning as a means of improving accuracy and presents an initial investigation into hand gesture recognition using models based on electromyographic (EMG) signals. EMG signals, which capture muscle activity, are used as inputs to machine learning algorithms to improve prosthetic control accuracy, functionality and adaptivity. Using logistic regression, a machine learning classifier, this study evaluates the accuracy of classifying two hand gestures from the publicly available Ninapro dataset using two-time series feature extraction algorithms: Time Series Feature Extraction (TSFE) and Convolutional Neural Networks (CNNs). Trials were conducted using varying numbers of EMG channels from one to eight to determine the impact of channel quantity on classification accuracy. The results suggest that although both algorithms can successfully distinguish between hand gesture EMG signals, CNNs outperform TSFE in extracting useful information for both accuracy and computational efficiency. In addition, although more channels of EMG signals provide more useful information, they also require more complex and computationally intensive feature extractors and consequently do not perform as well as lower numbers of channels. The findings also underscore the potential of machine learning techniques in developing more effective and adaptive prosthetic control systems.Keywords: EMG, machine learning, prosthetic control, electromyographic prosthetics, hand gesture classification, CNN, computational neural networks, TSFE, time series feature extraction, channel count, logistic regression, ninapro, classifiers
Procedia PDF Downloads 382526 Analysis of Advanced Modulation Format Using Gain and Loss Spectrum for Long Range Radio over Fiber System
Authors: Shaina Nagpal, Amit Gupta
Abstract:
In this work, all optical Stimulated Brillouin Scattering (SBS) generated single sideband with suppressed carrier is presented to provide better efficiency. The generation of single sideband and enhanced carrier power signal using the SBS technique is further used to strengthen the low shifted sideband and to suppress the upshifted sideband. These generated single sideband signals are able to work at high frequency ranges. Also, generated single sideband is validated over 90 km transmission using single mode fiber with acceptable bit error rate. The results for an equivalent are then compared so that the acceptable technique is chosen and also the required quality for the optimum performance of the system is reported.Keywords: stimulated Brillouin scattering, radio over fiber, upper side band, quality factor
Procedia PDF Downloads 2362525 Information Visualization Methods Applied to Nanostructured Biosensors
Authors: Osvaldo N. Oliveira Jr.
Abstract:
The control of molecular architecture inherent in some experimental methods to produce nanostructured films has had great impact on devices of various types, including sensors and biosensors. The self-assembly monolayers (SAMs) and the electrostatic layer-by-layer (LbL) techniques, for example, are now routinely used to produce tailored architectures for biosensing where biomolecules are immobilized with long-lasting preserved activity. Enzymes, antigens, antibodies, peptides and many other molecules serve as the molecular recognition elements for detecting an equally wide variety of analytes. The principles of detection are also varied, including electrochemical methods, fluorescence spectroscopy and impedance spectroscopy. In this presentation an overview will be provided of biosensors made with nanostructured films to detect antibodies associated with tropical diseases and HIV, in addition to detection of analytes of medical interest such as cholesterol and triglycerides. Because large amounts of data are generated in the biosensing experiments, use has been made of computational and statistical methods to optimize performance. Multidimensional projection techniques such as Sammon´s mapping have been shown more efficient than traditional multivariate statistical analysis in identifying small concentrations of anti-HIV antibodies and for distinguishing between blood serum samples of animals infected with two tropical diseases, namely Chagas´ disease and Leishmaniasis. Optimization of biosensing may include a combination of another information visualization method, the Parallel Coordinate technique, with artificial intelligence methods in order to identify the most suitable frequencies for reaching higher sensitivity using impedance spectroscopy. Also discussed will be the possible convergence of technologies, through which machine learning and other computational methods may be used to treat data from biosensors within an expert system for clinical diagnosis.Keywords: clinical diagnosis, information visualization, nanostructured films, layer-by-layer technique
Procedia PDF Downloads 3372524 Quality of Service of Transportation Networks: A Hybrid Measurement of Travel Time and Reliability
Authors: Chin-Chia Jane
Abstract:
In a transportation network, travel time refers to the transmission time from source node to destination node, whereas reliability refers to the probability of a successful connection from source node to destination node. With an increasing emphasis on quality of service (QoS), both performance indexes are significant in the design and analysis of transportation systems. In this work, we extend the well-known flow network model for transportation networks so that travel time and reliability are integrated into the QoS measurement simultaneously. In the extended model, in addition to the general arc capacities, each intermediate node has a time weight which is the travel time for per unit of commodity going through the node. Meanwhile, arcs and nodes are treated as binary random variables that switch between operation and failure with associated probabilities. For pre-specified travel time limitation and demand requirement, the QoS of a transportation network is the probability that source can successfully transport the demand requirement to destination while the total transmission time is under the travel time limitation. This work is pioneering, since existing literatures that evaluate travel time reliability via a single optimization path, the proposed QoS focuses the performance of the whole network system. To compute the QoS of transportation networks, we first transfer the extended network model into an equivalent min-cost max-flow network model. In the transferred network, each arc has a new travel time weight which takes value 0. Each intermediate node is replaced by two nodes u and v, and an arc directed from u to v. The newly generated nodes u and v are perfect nodes. The new direct arc has three weights: travel time, capacity, and operation probability. Then the universal set of state vectors is recursively decomposed into disjoint subsets of reliable, unreliable, and stochastic vectors until no stochastic vector is left. The decomposition is made possible by applying existing efficient min-cost max-flow algorithm. Because the reliable subsets are disjoint, QoS can be obtained directly by summing the probabilities of these reliable subsets. Computational experiments are conducted on a benchmark network which has 11 nodes and 21 arcs. Five travel time limitations and five demand requirements are set to compute the QoS value. To make a comparison, we test the exhaustive complete enumeration method. Computational results reveal the proposed algorithm is much more efficient than the complete enumeration method. In this work, a transportation network is analyzed by an extended flow network model where each arc has a fixed capacity, each intermediate node has a time weight, and both arcs and nodes are independent binary random variables. The quality of service of the transportation network is an integration of customer demands, travel time, and the probability of connection. We present a decomposition algorithm to compute the QoS efficiently. Computational experiments conducted on a prototype network show that the proposed algorithm is superior to existing complete enumeration methods.Keywords: quality of service, reliability, transportation network, travel time
Procedia PDF Downloads 2222523 Hydrodynamic Analysis of Fish Fin Kinematics of Oreochromis Niloticus Using Machine Learning and Image Processing
Authors: Paramvir Singh
Abstract:
The locomotion of aquatic organisms has long fascinated biologists and engineers alike, with fish fins serving as a prime example of nature's remarkable adaptations for efficient underwater propulsion. This paper presents a comprehensive study focused on the hydrodynamic analysis of fish fin kinematics, employing an innovative approach that combines machine learning and image processing techniques. Through high-speed videography and advanced computational tools, we gain insights into the complex and dynamic motion of the fins of a Tilapia (Oreochromis Niloticus) fish. This study was initially done by experimentally capturing videos of the various motions of a Tilapia in a custom-made setup. Using deep learning and image processing on the videos, the motion of the Caudal and Pectoral fin was extracted. This motion included the fin configuration (i.e., the angle of deviation from the mean position) with respect to time. Numerical investigations for the flapping fins are then performed using a Computational Fluid Dynamics (CFD) solver. 3D models of the fins were created, mimicking the real-life geometry of the fins. Thrust Characteristics of separate fins (i.e., Caudal and Pectoral separately) and when the fins are together were studied. The relationship and the phase between caudal and pectoral fin motion were also discussed. The key objectives include mathematical modeling of the motion of a flapping fin at different naturally occurring frequencies and amplitudes. The interactions between both fins (caudal and pectoral) were also an area of keen interest. This work aims to improve on research that has been done in the past on similar topics. Also, these results can help in the better and more efficient design of the propulsion systems for biomimetic underwater vehicles that are used to study aquatic ecosystems, explore uncharted or challenging underwater regions, do ocean bed modeling, etc.Keywords: biomimetics, fish fin kinematics, image processing, fish tracking, underwater vehicles
Procedia PDF Downloads 912522 Fault Diagnosis in Induction Motor
Authors: Kirti Gosavi, Anita Bhole
Abstract:
The paper demonstrates simulation and steady-state performance of three phase squirrel cage induction motor and detection of rotor broken bar fault using MATLAB. This simulation model is successfully used in the fault detection of rotor broken bar for the induction machines. A dynamic model using PWM inverter and mathematical modelling of the motor is developed. The dynamic simulation of the small power induction motor is one of the key steps in the validation of the design process of the motor drive system and it is needed for eliminating advertent design errors and the resulting error in the prototype construction and testing. The simulation model will be helpful in detecting the faults in three phase induction motor using Motor current signature analysis.Keywords: squirrel cage induction motor, pulse width modulation (PWM), fault diagnosis, induction motor
Procedia PDF Downloads 6332521 Flexible Programmable Circuit Board Electromagnetic 1-D Scanning Micro-Mirror Laser Rangefinder by Active Triangulation
Authors: Vixen Joshua Tan, Siyuan He
Abstract:
Scanners have been implemented within single point laser rangefinders, to determine the ranges within an environment by sweeping the laser spot across the surface of interest. The research motivation is to exploit a smaller and cheaper alternative scanning component for the emitting portion within current designs of laser rangefinders. This research implements an FPCB (Flexible Programmable Circuit Board) Electromagnetic 1-Dimensional scanning micro-mirror as a scanning component for laser rangefinding by means of triangulation. The prototype uses a laser module, micro-mirror, and receiver. The laser module is infrared (850 nm) with a power output of 4.5 mW. The receiver consists of a 50 mm convex lens and a 45mm 1-dimensional PSD (Position Sensitive Detector) placed at the focal length of the lens at 50 mm. The scanning component is an elliptical Micro-Mirror attached onto an FPCB Structure. The FPCB structure has two miniature magnets placed symmetrically underneath it on either side, which are then electromagnetically actuated by small solenoids, causing the FPCB to mechanically rotate about its torsion beams. The laser module projects a laser spot onto the micro-mirror surface, hence producing a scanning motion of the laser spot during the rotational actuation of the FPCB. The receiver is placed at a fixed distance from the micro-mirror scanner and is oriented to capture the scanning motion of the laser spot during operation. The elliptical aperture dimensions of the micro-mirror are 8mm by 5.5 mm. The micro-mirror is supported by an FPCB with two torsion beams with dimensions of 4mm by 0.5mm. The overall length of the FPCB is 23 mm. The voltage supplied to the solenoids is sinusoidal with an amplitude of 3.5 volts and 4.5 volts to achieve optical scanning angles of +/- 10 and +/- 17 degrees respectively. The operating scanning frequency during experiments was 5 Hz. For an optical angle of +/- 10 degrees, the prototype is capable of detecting objects within the ranges from 0.3-1.2 meters with an error of less than 15%. As for an optical angle of +/- 17 degrees the measuring range was from 0.3-0.7 meters with an error of 16% or less. Discrepancy between the experimental and actual data is possibly caused by misalignment of the components during experiments. Furthermore, the power of the laser spot collected by the receiver gradually decreased as the object was placed further from the sensor. A higher powered laser will be tested to potentially measure further distances more accurately. Moreover, a wide-angled lens will be used in future experiments when higher scanning angles are used. Modulation within the current and future higher powered lasers will be implemented to enable the operation of the laser rangefinder prototype without the use of safety goggles.Keywords: FPCB electromagnetic 1-D scanning micro-mirror, laser rangefinder, position sensitive detector, PSD, triangulation
Procedia PDF Downloads 1352520 Chemical Kinetics and Computational Fluid-Dynamics Analysis of H2/CO/CO2/CH4 Syngas Combustion and NOx Formation in a Micro-Pilot-Ignited Supercharged Dual Fuel Engine
Authors: Ulugbek Azimov, Nearchos Stylianidis, Nobuyuki Kawahara, Eiji Tomita
Abstract:
A chemical kinetics and computational fluid-dynamics (CFD) analysis was performed to evaluate the combustion of syngas derived from biomass and coke-oven solid feedstock in a micro-pilot ignited supercharged dual-fuel engine under lean conditions. For this analysis, a new reduced syngas chemical kinetics mechanism was constructed and validated by comparing the ignition delay and laminar flame speed data with those obtained from experiments and other detail chemical kinetics mechanisms available in the literature. The reaction sensitivity analysis was conducted for ignition delay at elevated pressures in order to identify important chemical reactions that govern the combustion process. The chemical kinetics of NOx formation was analyzed for H2/CO/CO2/CH4 syngas mixtures by using counter flow burner and premixed laminar flame speed reactor models. The new mechanism showed a very good agreement with experimental measurements and accurately reproduced the effect of pressure, temperature and equivalence ratio on NOx formation. In order to identify the species important for NOx formation, a sensitivity analysis was conducted for pressures 4 bar, 10 bar and 16 bar and preheat temperature 300 K. The results show that the NOx formation is driven mostly by hydrogen based species while other species, such as N2, CO2 and CH4, have also important effects on combustion. Finally, the new mechanism was used in a multidimensional CFD simulation to predict the combustion of syngas in a micro-pilot-ignited supercharged dual-fuel engine and results were compared with experiments. The mechanism showed the closest prediction of the in-cylinder pressure and the rate of heat release (ROHR).Keywords: syngas, chemical kinetics mechanism, internal combustion engine, NOx formation
Procedia PDF Downloads 4102519 Investigating the Process Kinetics and Nitrogen Gas Production in Anammox Hybrid Reactor with Special Emphasis on the Role of Filter Media
Authors: Swati Tomar, Sunil Kumar Gupta
Abstract:
Anammox is a novel and promising technology that has changed the traditional concept of biological nitrogen removal. The process facilitates direct oxidation of ammonical nitrogen under anaerobic conditions with nitrite as an electron acceptor without the addition of external carbon sources. The present study investigated the feasibility of anammox hybrid reactor (AHR) combining the dual advantages of suspended and attached growth media for biodegradation of ammonical nitrogen in wastewater. The experimental unit consisted of 4 nos. of 5L capacity AHR inoculated with mixed seed culture containing anoxic and activated sludge (1:1). The process was established by feeding the reactors with synthetic wastewater containing NH4-H and NO2-N in the ratio 1:1 at HRT (hydraulic retention time) of 1 day. The reactors were gradually acclimated to higher ammonium concentration till it attained pseudo steady state removal at a total nitrogen concentration of 1200 mg/l. During this period, the performance of the AHR was monitored at twelve different HRTs varying from 0.25-3.0 d with increasing NLR from 0.4 to 4.8 kg N/m3d. AHR demonstrated significantly higher nitrogen removal (95.1%) at optimal HRT of 1 day. Filter media in AHR contributed an additional 27.2% ammonium removal in addition to 72% reduction in the sludge washout rate. This may be attributed to the functional mechanism of filter media which acts as a mechanical sieve and reduces the sludge washout rate many folds. This enhances the biomass retention capacity of the reactor by 25%, which is the key parameter for successful operation of high rate bioreactors. The effluent nitrate concentration, which is one of the bottlenecks of anammox process was also minimised significantly (42.3-52.3 mg/L). Process kinetics was evaluated using first order and Grau-second order models. The first-order substrate removal rate constant was found as 13.0 d-1. Model validation revealed that Grau second order model was more precise and predicted effluent nitrogen concentration with least error (1.84±10%). A new mathematical model based on mass balance was developed to predict N2 gas in AHR. The mass balance model derived from total nitrogen dictated significantly higher correlation (R2=0.986) and predicted N2 gas with least error of precision (0.12±8.49%). SEM study of biomass indicated the presence of the heterogeneous population of cocci and rod shaped bacteria of average diameter varying from 1.2-1.5 mm. Owing to enhanced NRE coupled with meagre production of effluent nitrate and its ability to retain high biomass, AHR proved to be the most competitive reactor configuration for dealing with nitrogen laden wastewater.Keywords: anammox, filter media, kinetics, nitrogen removal
Procedia PDF Downloads 3822518 The Effect of Written Corrective Feedback on the Accurate Use of Grammatical Forms by Japanese Low-Intermediate EFL Learners
Authors: Ayako Hasegawa, Ken Ubukata
Abstract:
The purpose of this study is to investigate whether corrective feedback has any significant effect on Japanese low-intermediate EFL learners’ performance on a specific set of linguistic features. The subjects are Japanese college students majoring in English. They have studied English for about 7 years, but their inter-language seems to fossilize because non-target like errors is frequently observed in traditional deductive teacher-fronted approach. It has been reported that corrective feedback plays an important role in diminishing or overcoming inter-language fossilization and achieving TL competency. Therefore, it was examined how the corrective feedback (the focus of this study was metalinguistic feedback) and self-correction raised the students’ awareness and helped them notice the gaps between their inter-language and the TL.Keywords: written corrective feedback, fossilized error, grammar teaching, language teaching
Procedia PDF Downloads 3612517 VIAN-DH: Computational Multimodal Conversation Analysis Software and Infrastructure
Authors: Teodora Vukovic, Christoph Hottiger, Noah Bubenhofer
Abstract:
The development of VIAN-DH aims at bridging two linguistic approaches: conversation analysis/interactional linguistics (IL), so far a dominantly qualitative field, and computational/corpus linguistics and its quantitative and automated methods. Contemporary IL investigates the systematic organization of conversations and interactions composed of speech, gaze, gestures, and body positioning, among others. These highly integrated multimodal behaviour is analysed based on video data aimed at uncovering so called “multimodal gestalts”, patterns of linguistic and embodied conduct that reoccur in specific sequential positions employed for specific purposes. Multimodal analyses (and other disciplines using videos) are so far dependent on time and resource intensive processes of manual transcription of each component from video materials. Automating these tasks requires advanced programming skills, which is often not in the scope of IL. Moreover, the use of different tools makes the integration and analysis of different formats challenging. Consequently, IL research often deals with relatively small samples of annotated data which are suitable for qualitative analysis but not enough for making generalized empirical claims derived quantitatively. VIAN-DH aims to create a workspace where many annotation layers required for the multimodal analysis of videos can be created, processed, and correlated in one platform. VIAN-DH will provide a graphical interface that operates state-of-the-art tools for automating parts of the data processing. The integration of tools that already exist in computational linguistics and computer vision, facilitates data processing for researchers lacking programming skills, speeds up the overall research process, and enables the processing of large amounts of data. The main features to be introduced are automatic speech recognition for the transcription of language, automatic image recognition for extraction of gestures and other visual cues, as well as grammatical annotation for adding morphological and syntactic information to the verbal content. In the ongoing instance of VIAN-DH, we focus on gesture extraction (pointing gestures, in particular), making use of existing models created for sign language and adapting them for this specific purpose. In order to view and search the data, VIAN-DH will provide a unified format and enable the import of the main existing formats of annotated video data and the export to other formats used in the field, while integrating different data source formats in a way that they can be combined in research. VIAN-DH will adapt querying methods from corpus linguistics to enable parallel search of many annotation levels, combining token-level and chronological search for various types of data. VIAN-DH strives to bring crucial and potentially revolutionary innovation to the field of IL, (that can also extend to other fields using video materials). It will allow the processing of large amounts of data automatically and, the implementation of quantitative analyses, combining it with the qualitative approach. It will facilitate the investigation of correlations between linguistic patterns (lexical or grammatical) with conversational aspects (turn-taking or gestures). Users will be able to automatically transcribe and annotate visual, spoken and grammatical information from videos, and to correlate those different levels and perform queries and analyses.Keywords: multimodal analysis, corpus linguistics, computational linguistics, image recognition, speech recognition
Procedia PDF Downloads 1102516 Stability Bound of Ruin Probability in a Reduced Two-Dimensional Risk Model
Authors: Zina Benouaret, Djamil Aissani
Abstract:
In this work, we introduce the qualitative and quantitative concept of the strong stability method in the risk process modeling two lines of business of the same insurance company or an insurance and re-insurance companies that divide between them both claims and premiums with a certain proportion. The approach proposed is based on the identification of the ruin probability associate to the model considered, with a stationary distribution of a Markov random process called a reversed process. Our objective, after clarifying the condition and the perturbation domain of parameters, is to obtain the stability inequality of the ruin probability which is applied to estimate the approximation error of a model with disturbance parameters by the considered model. In the stability bound obtained, all constants are explicitly written.Keywords: Markov chain, risk models, ruin probabilities, strong stability analysis
Procedia PDF Downloads 2492515 Robust Inference with a Skew T Distribution
Authors: M. Qamarul Islam, Ergun Dogan, Mehmet Yazici
Abstract:
There is a growing body of evidence that non-normal data is more prevalent in nature than the normal one. Examples can be quoted from, but not restricted to, the areas of Economics, Finance and Actuarial Science. The non-normality considered here is expressed in terms of fat-tailedness and asymmetry of the relevant distribution. In this study a skew t distribution that can be used to model a data that exhibit inherent non-normal behavior is considered. This distribution has tails fatter than a normal distribution and it also exhibits skewness. Although maximum likelihood estimates can be obtained by solving iteratively the likelihood equations that are non-linear in form, this can be problematic in terms of convergence and in many other respects as well. Therefore, it is preferred to use the method of modified maximum likelihood in which the likelihood estimates are derived by expressing the intractable non-linear likelihood equations in terms of standardized ordered variates and replacing the intractable terms by their linear approximations obtained from the first two terms of a Taylor series expansion about the quantiles of the distribution. These estimates, called modified maximum likelihood estimates, are obtained in closed form. Hence, they are easy to compute and to manipulate analytically. In fact the modified maximum likelihood estimates are equivalent to maximum likelihood estimates, asymptotically. Even in small samples the modified maximum likelihood estimates are found to be approximately the same as maximum likelihood estimates that are obtained iteratively. It is shown in this study that the modified maximum likelihood estimates are not only unbiased but substantially more efficient than the commonly used moment estimates or the least square estimates that are known to be biased and inefficient in such cases. Furthermore, in conventional regression analysis, it is assumed that the error terms are distributed normally and, hence, the well-known least square method is considered to be a suitable and preferred method for making the relevant statistical inferences. However, a number of empirical researches have shown that non-normal errors are more prevalent. Even transforming and/or filtering techniques may not produce normally distributed residuals. Here, a study is done for multiple linear regression models with random error having non-normal pattern. Through an extensive simulation it is shown that the modified maximum likelihood estimates of regression parameters are plausibly robust to the distributional assumptions and to various data anomalies as compared to the widely used least square estimates. Relevant tests of hypothesis are developed and are explored for desirable properties in terms of their size and power. The tests based upon modified maximum likelihood estimates are found to be substantially more powerful than the tests based upon least square estimates. Several examples are provided from the areas of Economics and Finance where such distributions are interpretable in terms of efficient market hypothesis with respect to asset pricing, portfolio selection, risk measurement and capital allocation, etc.Keywords: least square estimates, linear regression, maximum likelihood estimates, modified maximum likelihood method, non-normality, robustness
Procedia PDF Downloads 3972514 Analysis and Modeling of the Building’s Facades in Terms of Different Convection Coefficients
Authors: Enes Yasa, Guven Fidan
Abstract:
Building Simulation tools need to better evaluate convective heat exchanges between external air and wall surfaces. Previous analysis demonstrated the significant effects of convective heat transfer coefficient values on the room energy balance. Some authors have pointed out that large discrepancies observed between widely used building thermal models can be attributed to the different correlations used to calculate or impose the value of the convective heat transfer coefficients. Moreover, numerous researchers have made sensitivity calculations and proved that the choice of Convective Heat Transfer Coefficient values can lead to differences from 20% to 40% of energy demands. The thermal losses to the ambient from a building surface or a roof mounted solar collector represent an important portion of the overall energy balance and depend heavily on the wind induced convection. In an effort to help designers make better use of the available correlations in the literature for the external convection coefficients due to the wind, a critical discussion and a suitable tabulation is presented, on the basis of algebraic form of the coefficients and their dependence upon characteristic length and wind direction, in addition to wind speed. Many research works have been conducted since early eighties focused on the convection heat transfer problems inside buildings. In this context, a Computational Fluid Dynamics (CFD) program has been used to predict external convective heat transfer coefficients at external building surfaces. For the building facades model, effects of wind speed and temperature differences between the surfaces and the external air have been analyzed, showing different heat transfer conditions and coefficients. In order to provide further information on external convective heat transfer coefficients, a numerical work is presented in this paper, using a Computational Fluid Dynamics (CFD) commercial package (CFX) to predict convective heat transfer coefficients at external building surface.Keywords: CFD in buildings, external convective heat transfer coefficients, building facades, thermal modelling
Procedia PDF Downloads 4212513 Estimation of Population Mean under Random Non-Response in Two-Occasion Successive Sampling
Authors: M. Khalid, G. N. Singh
Abstract:
In this paper, we have considered the problems of estimation for the population mean on current (second) occasion in two-occasion successive sampling under random non-response situations. Some modified exponential type estimators have been proposed and their properties are studied under the assumptions that the number of sampling unit follows a discrete distribution due to random non-response situations. The performances of the proposed estimators are compared with linear combinations of two estimators, (a) sample mean estimator for fresh sample and (b) ratio estimator for matched sample under the complete response situations. Results are demonstrated through empirical studies which present the effectiveness of the proposed estimators. Suitable recommendations have been made to the survey practitioners.Keywords: modified exponential estimator, successive sampling, random non-response, auxiliary variable, bias, mean square error
Procedia PDF Downloads 3492512 Morphological Analysis of English L1-Persian L2 Adult Learners’ Interlanguage: From the Perspective of SLA Variation
Authors: Maassoumeh Bemani Naeini
Abstract:
Studies on interlanguage have long been engaged in describing the phenomenon of variation in SLA. Pursuing the same goal and particularly addressing the role of linguistic features, this study describes the use of Persian morphology in the interlanguage of two adult English-speaking learners of Persian L2. Taking the general approach of a combination of contrastive analysis, error analysis and interlanguage analysis, this study focuses on the identification and prediction of some possible instances of transfer from English L1 to Persian L2 across six elicitation tasks aiming to investigate whether any of contextual features may variably influence the learners’ order of morpheme accuracy in the areas of copula, possessives, articles, demonstratives, plural form, personal pronouns, and genitive cases. Results describe the existence of task variation in the interlanguage system of Persian L2 learners.Keywords: English L1, Interlanguage Analysis, Persian L2, SLA variation
Procedia PDF Downloads 3182511 Development of a Real Time Axial Force Measurement System and IoT-Based Monitoring for Smart Bearing
Authors: Hassam Ahmed, Yuanzhi Liu, Yassine Selami, Wei Tao, Hui Zhao
Abstract:
The purpose of this research is to develop a real time axial force measurement system for a smart bearing through the use of strain-gauges, whereby the data acquisition is performed by an Arduino microcontroller due to its easy manipulation and low-cost. The measured signal is acquired and then discretized using a Wheatstone Bridge and an Analog-Digital Converter (ADC) respectively. For bearing monitoring, a real time monitoring system based on Internet of things (IoT) and Bluetooth were developed. Experimental tests were performed on a bearing within a force range up to 600 kN. The experimental results show that there is a proportional linear relationship between the applied force and the output voltage, and the error R squared is within 0.9878 based on the regression analysis.Keywords: bearing, force measurement, IoT, strain gauge
Procedia PDF Downloads 1442510 The Impact of Intelligent Control Systems on Biomedical Engineering and Research
Authors: Melkamu Tadesse Getachew
Abstract:
Intelligent control systems have revolutionized biomedical engineering, advancing research and enhancing medical practice. This review paper examines the impact of intelligent control on various aspects of biomedical engineering. It analyzes how these systems enhance precision and accuracy in biomedical instrumentation, improving diagnostics, monitoring, and treatment. Integration challenges are addressed, and potential solutions are proposed. The paper also investigates the optimization of drug delivery systems through intelligent control. It explores how intelligent systems contribute to precise dosing, targeted drug release, and personalized medicine. Challenges related to controlled drug release and patient variability are discussed, along with potential avenues for overcoming them. The comparison of algorithms used in intelligent control systems in biomedical control is also reviewed. The implications of intelligent control in computational and systems biology are explored, showcasing how these systems enable enhanced analysis and prediction of complex biological processes. Challenges such as interpretability, human-machine interaction, and machine reliability are examined, along with potential solutions. Intelligent control in biomedical engineering also plays a crucial role in risk management during surgical operations. This section demonstrates how intelligent systems improve patient safety and surgical outcomes when integrated into surgical robots, augmented reality, and preoperative planning. The challenges associated with these implementations and potential solutions are discussed in detail. In summary, this review paper comprehensively explores the widespread impact of intelligent control on biomedical engineering, showing the future of human health issues promising. It discusses application areas, challenges, and potential solutions, highlighting the transformative potential of these systems in advancing research and improving medical practice.Keywords: Intelligent control systems, biomedical instrumentation, drug delivery systems, robotic surgical instruments, Computational monitoring and modeling
Procedia PDF Downloads 472509 The Size Effects of Keyboards (Keycaps) on Computer Typing Tasks
Authors: Chih-Chun Lai, Jun-Yu Wang
Abstract:
The keyboard is the most important equipment for computer tasks. However, improper design of keyboard would cause some symptoms like ulnar and/or radial deviations. The research goal of this study was to investigate the optimal size(s) of keycaps to increase efficiency. As shown in the questionnaire pre-study with 49 participants aged from 20 to 44, the most commonly used keyboards were 101-key standard keyboards. Most of the keycap sizes (W × L) were 1.3 × 1.5 cm and 1.5 × 1.5 cm. The fingertip breadths of most participants were 1.2 cm. Therefore, in the main study with 18 participants, a standard keyboard with each set of the 3-sized (1.2 × 1.4 cm, 1.3 × 1.5 cm, and 1.5 × 1.5 cm) keycaps was used to investigate their typing efficiency, respectively. The results revealed that the differences between the operating times for using 1.3 × 1.5 cm and 1.2 × 1.4 cm keycaps were insignificant while operating times for using 1.5 × 1.5 cm keycaps were significantly longer than for using 1.2 × 1.4 cm or 1.3 × 1.5 cm, respectively. As for the typing error rate, there was no significant difference.Keywords: keyboard, keycap size, typing efficiency, computer tasks
Procedia PDF Downloads 3832508 DeepLig: A de-novo Computational Drug Design Approach to Generate Multi-Targeted Drugs
Authors: Anika Chebrolu
Abstract:
Mono-targeted drugs can be of limited efficacy against complex diseases. Recently, multi-target drug design has been approached as a promising tool to fight against these challenging diseases. However, the scope of current computational approaches for multi-target drug design is limited. DeepLig presents a de-novo drug discovery platform that uses reinforcement learning to generate and optimize novel, potent, and multitargeted drug candidates against protein targets. DeepLig’s model consists of two networks in interplay: a generative network and a predictive network. The generative network, a Stack- Augmented Recurrent Neural Network, utilizes a stack memory unit to remember and recognize molecular patterns when generating novel ligands from scratch. The generative network passes each newly created ligand to the predictive network, which then uses multiple Graph Attention Networks simultaneously to forecast the average binding affinity of the generated ligand towards multiple target proteins. With each iteration, given feedback from the predictive network, the generative network learns to optimize itself to create molecules with a higher average binding affinity towards multiple proteins. DeepLig was evaluated based on its ability to generate multi-target ligands against two distinct proteins, multi-target ligands against three distinct proteins, and multi-target ligands against two distinct binding pockets on the same protein. With each test case, DeepLig was able to create a library of valid, synthetically accessible, and novel molecules with optimal and equipotent binding energies. We propose that DeepLig provides an effective approach to design multi-targeted drug therapies that can potentially show higher success rates during in-vitro trials.Keywords: drug design, multitargeticity, de-novo, reinforcement learning
Procedia PDF Downloads 992507 A Fuzzy Linear Regression Model Based on Dissemblance Index
Authors: Shih-Pin Chen, Shih-Syuan You
Abstract:
Fuzzy regression models are useful for investigating the relationship between explanatory variables and responses in fuzzy environments. To overcome the deficiencies of previous models and increase the explanatory power of fuzzy data, the graded mean integration (GMI) representation is applied to determine representative crisp regression coefficients. A fuzzy regression model is constructed based on the modified dissemblance index (MDI), which can precisely measure the actual total error. Compared with previous studies based on the proposed MDI and distance criterion, the results from commonly used test examples show that the proposed fuzzy linear regression model has higher explanatory power and forecasting accuracy.Keywords: dissemblance index, fuzzy linear regression, graded mean integration, mathematical programming
Procedia PDF Downloads 4422506 Target and Equalizer Design for Perpendicular Heat-Assisted Magnetic Recording
Authors: P. Tueku, P. Supnithi, R. Wongsathan
Abstract:
Heat-Assisted Magnetic Recording (HAMR) is one of the leading technologies identified to enable areal density beyond 1 Tb/in2 of magnetic recording systems. A key challenge to HAMR designing is accuracy of positioning, timing of the firing laser, power of the laser, thermo-magnetic head, head-disk interface and cooling system. We study the effect of HAMR parameters on transition center and transition width. The HAMR is model using Thermal Williams-Comstock (TWC) and microtrack model. The target and equalizer are designed by the minimum mean square error (MMSE). The result shows that the unit energy constraint outperforms other constraints.Keywords: heat-assisted magnetic recording, thermal Williams-Comstock equation, microtrack model, equalizer
Procedia PDF Downloads 3532505 Estimating Cyclone Intensity Using INSAT-3D IR Images Based on Convolution Neural Network Model
Authors: Divvela Vishnu Sai Kumar, Deepak Arora, Sheenu Rizvi
Abstract:
Forecasting a cyclone through satellite images consists of the estimation of the intensity of the cyclone and predicting it before a cyclone comes. This research work can help people to take safety measures before the cyclone comes. The prediction of the intensity of a cyclone is very important to save lives and minimize the damage caused by cyclones. These cyclones are very costliest natural disasters that cause a lot of damage globally due to a lot of hazards. Authors have proposed five different CNN (Convolutional Neural Network) models that estimate the intensity of cyclones through INSAT-3D IR images. There are a lot of techniques that are used to estimate the intensity; the best model proposed by authors estimates intensity with a root mean squared error (RMSE) of 10.02 kts.Keywords: estimating cyclone intensity, deep learning, convolution neural network, prediction models
Procedia PDF Downloads 1312504 Application of EEG Wavelet Power to Prediction of Antidepressant Treatment Response
Authors: Dorota Witkowska, Paweł Gosek, Lukasz Swiecicki, Wojciech Jernajczyk, Bruce J. West, Miroslaw Latka
Abstract:
In clinical practice, the selection of an antidepressant often degrades to lengthy trial-and-error. In this work we employ a normalized wavelet power of alpha waves as a biomarker of antidepressant treatment response. This novel EEG metric takes into account both non-stationarity and intersubject variability of alpha waves. We recorded resting, 19-channel EEG (closed eyes) in 22 inpatients suffering from unipolar (UD, n=10) or bipolar (BD, n=12) depression. The EEG measurement was done at the end of the short washout period which followed previously unsuccessful pharmacotherapy. The normalized alpha wavelet power of 11 responders was markedly different than that of 11 nonresponders at several, mostly temporoparietal sites. Using the prediction of treatment response based on the normalized alpha wavelet power, we achieved 81.8% sensitivity and 81.8% specificity for channel T4.Keywords: alpha waves, antidepressant, treatment outcome, wavelet
Procedia PDF Downloads 316