Search results for: algorithms decision tree
5104 Ethical Decision-Making in AI and Robotics Research: A Proposed Model
Authors: Sylvie Michel, Emmanuelle Gagnou, Joanne Hamet
Abstract:
Researchers in the fields of AI and Robotics frequently encounter ethical dilemmas throughout their research endeavors. Various ethical challenges have been pinpointed in the existing literature, including biases and discriminatory outcomes, diffusion of responsibility, and a deficit in transparency within AI operations. This research aims to pinpoint these ethical quandaries faced by researchers and shed light on the mechanisms behind ethical decision-making in the research process. By synthesizing insights from existing literature and acknowledging prevalent shortcomings, such as overlooking the heterogeneous nature of decision-making, non-accumulative results, and a lack of consensus on numerous factors due to limited empirical research, the objective is to conceptualize and validate a model. This model will incorporate influences from individual perspectives and situational contexts, considering potential moderating factors in the ethical decision-making process. Qualitative analyses were conducted based on direct observation of an AI/Robotics research team focusing on collaborative robotics for several months. Subsequently, semi-structured interviews with 16 team members were conducted. The entire process took place during the first semester of 2023. Observations were analyzed using an analysis grid, and the interviews underwent thematic analysis using Nvivo software. An initial finding involves identifying the ethical challenges that AI/robotics researchers confront, underlining a disparity between practical applications and theoretical considerations regarding ethical dilemmas in the realm of AI. Notably, researchers in AI prioritize the publication and recognition of their work, sparking the genesis of these ethical inquiries. Furthermore, this article illustrated that researchers tend to embrace a consequentialist ethical framework concerning safety (for humans engaging with robots/AI), worker autonomy in relation to robots, and the societal implications of labor (can robots displace jobs?). A second significant contribution entails proposing a model for ethical decision-making within the AI/Robotics research sphere. The model proposed adopts a process-oriented approach, delineating various research stages (topic proposal, hypothesis formulation, experimentation, conclusion, and valorization). Across these stages and the ethical queries, they entail, a comprehensive four-point comprehension of ethical decision-making is presented: recognition of the moral quandary; moral judgment, signifying the decision-maker's aptitude to discern the morally righteous course of action; moral intention, reflecting the ability to prioritize moral values above others; and moral behavior, denoting the application of moral intention to the situation. Variables such as political inclinations ((anti)-capitalism, environmentalism, veganism) seem to wield significant influence. Moreover, age emerges as a noteworthy moderating factor. AI and robotics researchers are continually confronted with ethical dilemmas during their research endeavors, necessitating thoughtful decision-making. The contribution involves introducing a contextually tailored model, derived from meticulous observations and insightful interviews, enabling the identification of factors that shape ethical decision-making at different stages of the research process.Keywords: ethical decision making, artificial intelligence, robotics, research
Procedia PDF Downloads 785103 Revolutionizing Healthcare Facility Maintenance: A Groundbreaking AI, BIM, and IoT Integration Framework
Authors: Mina Sadat Orooje, Mohammad Mehdi Latifi, Behnam Fereydooni Eftekhari
Abstract:
The integration of cutting-edge Internet of Things (IoT) technologies with advanced Artificial Intelligence (AI) systems is revolutionizing healthcare facility management. However, the current landscape of hospital building maintenance suffers from slow, repetitive, and disjointed processes, leading to significant financial, resource, and time losses. Additionally, the potential of Building Information Modeling (BIM) in facility maintenance is hindered by a lack of data within digital models of built environments, necessitating a more streamlined data collection process. This paper presents a robust framework that harmonizes AI with BIM-IoT technology to elevate healthcare Facility Maintenance Management (FMM) and address these pressing challenges. The methodology begins with a thorough literature review and requirements analysis, providing insights into existing technological landscapes and associated obstacles. Extensive data collection and analysis efforts follow to deepen understanding of hospital infrastructure and maintenance records. Critical AI algorithms are identified to address predictive maintenance, anomaly detection, and optimization needs alongside integration strategies for BIM and IoT technologies, enabling real-time data collection and analysis. The framework outlines protocols for data processing, analysis, and decision-making. A prototype implementation is executed to showcase the framework's functionality, followed by a rigorous validation process to evaluate its efficacy and gather user feedback. Refinement and optimization steps are then undertaken based on evaluation outcomes. Emphasis is placed on the scalability of the framework in real-world scenarios and its potential applications across diverse healthcare facility contexts. Finally, the findings are meticulously documented and shared within the healthcare and facility management communities. This framework aims to significantly boost maintenance efficiency, cut costs, provide decision support, enable real-time monitoring, offer data-driven insights, and ultimately enhance patient safety and satisfaction. By tackling current challenges in healthcare facility maintenance management it paves the way for the adoption of smarter and more efficient maintenance practices in healthcare facilities.Keywords: artificial intelligence, building information modeling, healthcare facility maintenance, internet of things integration, maintenance efficiency
Procedia PDF Downloads 565102 Predicting the Success of Bank Telemarketing Using Artificial Neural Network
Authors: Mokrane Selma
Abstract:
The shift towards decision making (DM) based on artificial intelligence (AI) techniques will change the way in which consumer markets and our societies function. Through AI, predictive analytics is being used by businesses to identify these patterns and major trends with the objective to improve the DM and influence future business outcomes. This paper proposes an Artificial Neural Network (ANN) approach to predict the success of telemarketing calls for selling bank long-term deposits. To validate the proposed model, we uses the bank marketing data of 41188 phone calls. The ANN attains 98.93% of accuracy which outperforms other conventional classifiers and confirms that it is credible and valuable approach for telemarketing campaign managers.Keywords: bank telemarketing, prediction, decision making, artificial intelligence, artificial neural network
Procedia PDF Downloads 1585101 The Application of Participatory Social Media in Collaborative Planning: A Systematic Review
Authors: Yujie Chen , Zhen Li
Abstract:
In the context of planning transformation, how to promote public participation in the formulation and implementation of collaborative planning has been the focused issue of discussion. However, existing studies have often been case-specific or focused on a specific design field, leaving the role of participatory social media (PSM) in urban collaborative planning generally questioned. A systematic database search was conducted in December 2019. Articles and projects were eligible if they reported a quantitative empirical study applying participatory social media in the collaborative planning process (a prospective, retrospective, experimental, longitudinal research, or collective actions in planning practices). Twenty studies and seven projects were included in the review. Findings showed that social media are generally applied in public spatial behavior, transportation behavior, and community planning fields, with new technologies and new datasets. PSM has provided a new platform for participatory design, decision analysis, and collaborative negotiation most widely used in participatory design. Findings extracted several existing forms of PSM. PSM mainly act as three roles: the language of decision-making for communication, study mode for spatial evaluation, and decision agenda for interactive decision support. Three optimization content of PSM were recognized, including improving participatory scale, improvement of the grass-root organization, and promotion of politics. However, basically, participants only could provide information and comment through PSM in the future collaborative planning process, therefore the issues of low data response rate, poor spatial data quality, and participation sustainability issues worth more attention and solutions.Keywords: participatory social media, collaborative planning, planning workshop, application mode
Procedia PDF Downloads 1325100 Adaption of the Design Thinking Method for Production Planning in the Meat Industry Using Machine Learning Algorithms
Authors: Alica Höpken, Hergen Pargmann
Abstract:
The resource-efficient planning of the complex production planning processes in the meat industry and the reduction of food waste is a permanent challenge. The complexity of the production planning process occurs in every part of the supply chain, from agriculture to the end consumer. It arises from long and uncertain planning phases. Uncertainties such as stochastic yields, fluctuations in demand, and resource variability are part of this process. In the meat industry, waste mainly relates to incorrect storage, technical causes in production, or overproduction. The high amount of food waste along the complex supply chain in the meat industry could not be reduced by simple solutions until now. Therefore, resource-efficient production planning by conventional methods is currently only partially feasible. The realization of intelligent, automated production planning is basically possible through the application of machine learning algorithms, such as those of reinforcement learning. By applying the adapted design thinking method, machine learning methods (especially reinforcement learning algorithms) are used for the complex production planning process in the meat industry. This method represents a concretization to the application area. A resource-efficient production planning process is made available by adapting the design thinking method. In addition, the complex processes can be planned efficiently by using this method, since this standardized approach offers new possibilities in order to challenge the complexity and the high time consumption. It represents a tool to support the efficient production planning in the meat industry. This paper shows an elegant adaption of the design thinking method to apply the reinforcement learning method for a resource-efficient production planning process in the meat industry. Following, the steps that are necessary to introduce machine learning algorithms into the production planning of the food industry are determined. This is achieved based on a case study which is part of the research project ”REIF - Resource Efficient, Economic and Intelligent Food Chain” supported by the German Federal Ministry for Economic Affairs and Climate Action of Germany and the German Aerospace Center. Through this structured approach, significantly better planning results are achieved, which would be too complex or very time consuming using conventional methods.Keywords: change management, design thinking method, machine learning, meat industry, reinforcement learning, resource-efficient production planning
Procedia PDF Downloads 1255099 Impacts of Community Forest on Forest Resources Management and Livelihood Improvement of Local People in Nepal
Authors: Samipraj Mishra
Abstract:
Despite the successful implementation of community forestry program, a number of pros and cons have been raised on Terai community forestry in the case of lowland locally called Terai region of Nepal, which is climatically belongs to tropical humid and possessed high quality forests in terms of ecology and economy. The study aims to investigate the local pricing strategy of forest products and its impacts on equitable forest benefit sharing, collection of community fund and carrying out livelihood improvement activities. The study was carried out on six community forests revealed that local people have substantially benefited from the community forests. However, being the region is heterogeneous by socio-economic conditions and forest resources have higher economical potential, the decision of low pricing strategy made by the local people have created inequality problems while sharing the forest benefits, and poorly contributed to community fund collection and consequently carrying out limited activities of livelihood improvement. The paper argued that the decision of low pricing strategy of forest products is counter-productive to promote the equitable benefit sharing in the areas of heterogeneous socio-economic conditions with high value forests. The low pricing strategy has been increasing accessibility of better off households at higher rate than poor; as such households always have higher affording capacity. It is also defective to increase the community fund and carry out activities of livelihood improvement effectively. The study concluded that unilateral decentralized forest policy and decision-making autonomy to the local people seems questionable unless their decision-making capacities are enriched sufficiently. Therefore, it is recommended that empowerment of decision-making capacity of local people and their respective institutions together with policy and program formulation are prerequisite for efficient and equitable community forest management and its long-term sustainability.Keywords: community forest, livelihood, socio-economy, pricing system, Nepal
Procedia PDF Downloads 2715098 The Impacts of Local Decision Making on Customisation Process Speed across Distributed Boundaries
Authors: Abdulrahman M. Qahtani, Gary. B. Wills, Andy. M. Gravell
Abstract:
Communicating and managing customers’ requirements in software development projects play a vital role in the software development process. While it is difficult to do so locally, it is even more difficult to communicate these requirements over distributed boundaries and to convey them to multiple distribution customers. This paper discusses the communication of multiple distribution customers’ requirements in the context of customised software products. The main purpose is to understand the challenges of communicating and managing customisation requirements across distributed boundaries. We propose a model for Communicating Customisation Requirements of Multi-Clients in a Distributed Domain (CCRD). Thereafter, we evaluate that model by presenting the findings of a case study conducted with a company with customisation projects for 18 distributed customers. Then, we compare the outputs of the real case process and the outputs of the CCRD model using simulation methods. Our conjecture is that the CCRD model can reduce the challenge of communication requirements over distributed organisational boundaries, and the delay in decision making and in the entire customisation process time.Keywords: customisation software products, global software engineering, local decision making, requirement engineering, simulation model
Procedia PDF Downloads 4285097 Decision Support System for the Management of the Shandong Peninsula, China
Authors: Natacha Fery, Guilherme L. Dalledonne, Xiangyang Zheng, Cheng Tang, Roberto Mayerle
Abstract:
A Decision Support System (DSS) for supporting decision makers in the management of the Shandong Peninsula has been developed. Emphasis has been given to coastal protection, coastal cage aquaculture and harbors. The investigations were done in the framework of a joint research project funded by the German Ministry of Education and Research (BMBF) and the Chinese Academy of Sciences (CAS). In this paper, a description of the DSS, the development of its components, and results of its application are presented. The system integrates in-situ measurements, process-based models, and a database management system. Numerical models for the simulation of flow, waves, sediment transport and morphodynamics covering the entire Bohai Sea are set up based on the Delft3D modelling suite (Deltares). Calibration and validation of the models were realized based on the measurements of moored Acoustic Doppler Current Profilers (ADCP) and High Frequency (HF) radars. In order to enable cost-effective and scalable applications, a database management system was developed. It enhances information processing, data evaluation, and supports the generation of data products. Results of the application of the DSS to the management of coastal protection, coastal cage aquaculture and harbors are presented here. Model simulations covering the most severe storms observed during the last decades were carried out leading to an improved understanding of hydrodynamics and morphodynamics. Results helped in the identification of coastal stretches subjected to higher levels of energy and improved support for coastal protection measures.Keywords: coastal protection, decision support system, in-situ measurements, numerical modelling
Procedia PDF Downloads 1945096 The Influence of Covariance Hankel Matrix Dimension on Algorithms for VARMA Models
Authors: Celina Pestano-Gabino, Concepcion Gonzalez-Concepcion, M. Candelaria Gil-Fariña
Abstract:
Some estimation methods for VARMA models, and Multivariate Time Series Models in general, rely on the use of a Hankel matrix. It is known that if the data sample is populous enough and the dimension of the Hankel matrix is unnecessarily large, this may result in an unnecessary number of computations as well as in numerical problems. In this sense, the aim of this paper is two-fold. First, we provide some theoretical results for these matrices which translate into a lower dimension for the matrices normally used in the algorithms. This contribution thus serves to improve those methods from a numerical and, presumably, statistical point of view. Second, we have chosen an estimation algorithm to illustrate in practice our improvements. The results we obtained in a simulation of VARMA models show that an increase in the size of the Hankel matrix beyond the theoretical bound proposed as valid does not necessarily lead to improved practical results. Therefore, for future research, we propose conducting similar studies using any of the linear system estimation methods that depend on Hankel matrices.Keywords: covariances Hankel matrices, Kronecker indices, system identification, VARMA models
Procedia PDF Downloads 2415095 Severe Infestation of Laspeyresia Koenigana Fab. and Alternaria Leaf Spot on Azadirachta Indica (Neem)
Authors: Shiwani Bhatnagar, K. K. Srivastava, Sangeeta Singh, Ameen Ullah Khan, Bundesh Kumar, Lokendra Singh Rathore
Abstract:
From the instigation of the world medicinal plants are treated as part and parcel of human society to fight against diseases. Azadirachta indica (Neem) a herbal plant has been used as an Indian traditional medicine since ages and its products are acknowledged to solve agricultural, forestry and public health related problems, owing to its beneficial medicinal properties. Each part of the neem tree is known for its medicinal property. Bark & leaf extracts of neem have been used to control leprosy, respiratory disorders, constipation and also as blood purifier and a general health tonic. Neem is still regarded as ' rural community dispensary' in India or a tree for solving medical problems. Use of Neem as pesticides for the management of insect pest of agriculture crops and forestry has been seen as a shift in the use of synthetic pesticides to ecofriendly botanicals. Neem oil and seed extracts possess germicidal and anti-bacterial properties which when sprayed on the plant helps in protecting them from foliage pests. Azadirachtin, the main active ingredient found in neem tree, acts as an insect repellent and antifeedant. However the young plants are susceptible to many insect pest and foliar diseases. Recently, in the avenue plantation, planted by Arid Forest Research Institute, Jodhpur, around the premises of IIT Jodhpur, two years old neem plants were found to be severely infested with tip borer Laspeyresia koenigana (Family: Eucosmidae). The adult moth of L. koenigana lays eggs on the tender shoots and the young larvae tunnel into the shoot and feed inside. A small pinhole can be seen at the entrance point, from where the larva enters in to the stem. The severely attached apical shoots exhibit profuse gum exudation resulting in development of a callus structure. The internal feeding causes the stem to wilt and the leaves to dry up from the tips resulting in growth retardation. Alternaria Leaf spot and blight symptoms were also recorded on these neem plants. For the management of tip borer and Alternaria Leaf spot, foliar spray of monocrotophos @0.05% and Dithane M-45 @ 0.15% and powermin @ 2ml/lit were found efficient in managing the insect pest and foliar disease problem. No Further incidence of pest/diseases was noticed.Keywords: azadirachta indica, alternaria leaf spot, laspeyresia koenigana, management
Procedia PDF Downloads 4765094 Influence of Dietary Herbal Blend on Crop Filling, Growth Performance and Nutrient Digestibility in Broiler Chickens
Authors: S. Ahmad, M. Rizwan, B. Ayub, S. Mehmood, P. Akhtar
Abstract:
This experiment was conducted to investigate the effect of supplementation of pure herbal blend on growth performance of boilers. One hundred and twenty birds were randomly distributed into 4 experimental units of 3 replicates (10 birds/replicate) as: negative control (basal diet), positive control (Lincomycin at the rate of 5g/bag), pure herbal blend at the rate of 150g/bag and pure herbal blend at the rate of 300g/bag. The data regarding weekly feed intake, body weight gain and feed conversion ratio were recorded, and fecal samples were collected at the end of starter and finisher phase for nutrient digestibility trial. The results of feed intake showed significant (P < 0.05) results in 1st (305g), 2nd (696.88g), 3rd (1046.9g) and 4th (1173.2g) week and feed conversion ratio indicated significant (P < 0.05) variations in 1st (2.54) and 4th (2.28) week of age. Also, both starter and finisher phase indicated significant (P < 0.05) differences among all treatment groups in feed intake (2023.4g) and (2302.6g) respectively. The statistical analysis indicated significant (P < 0.05) results in crop filling percentage (86.6%) after 2 hours of first feed supplementation. In case of nutrient digestibility trial, results showed significant (P < 0.05) values of crude protein and crude fat in starter phase as 69.65% and 56.62% respectively, and 69.57% and 48.55% respectively, in finisher phase. Based on overall results, it was concluded that the dietary inclusion of pure herbal blend containing neem tree leaves powder, garlic powder, ginger powder and turmeric powder increase the production performance of broilers.Keywords: neem tree leave, garlic, ginger, herbal blend, broiler
Procedia PDF Downloads 2075093 A Novel Gateway Location Algorithm for Wireless Mesh Networks
Authors: G. M. Komba
Abstract:
The Internet Gateway (IGW) has extra ability than a simple Mesh Router (MR) and the responsibility to route mostly the all traffic from Mesh Clients (MCs) to the Internet backbone however, IGWs are more expensive. Choosing strategic locations for the Internet Gateways (IGWs) best location in Backbone Wireless Mesh (BWM) precarious to the Wireless Mesh Network (WMN) and the location of IGW can improve a quantity of performance related problem. In this paper, we propose a novel algorithm, namely New Gateway Location Algorithm (NGLA), which aims to achieve four objectives, decreasing the network cost effective, minimizing delay, optimizing the throughput capacity, Different from existing algorithms, the NGLA increasingly recognizes IGWs, allocates mesh routers (MRs) to identify IGWs and promises to find a feasible IGW location and install minimum as possible number of IGWs while regularly conserving the all Quality of Service (QoS) requests. Simulation results showing that the NGLA outperforms other different algorithms by comparing the number of IGWs with a large margin and it placed 40% less IGWs and 80% gain of throughput. Furthermore the NGLA is easy to implement and could be employed for BWM.Keywords: Wireless Mesh Network, Gateway Location Algorithm, Quality of Service, BWM
Procedia PDF Downloads 3705092 Maintenance Alternatives Related to Costs of Wind Turbines Using Finite State Markov Model
Authors: Boukelkoul Lahcen
Abstract:
The cumulative costs for O&M may represent as much as 65%-90% of the turbine's investment cost. Nowadays the cost effectiveness concept becomes a decision-making and technology evaluation metric. The cost of energy metric accounts for the effect replacement cost and unscheduled maintenance cost parameters. One key of the proposed approach is the idea of maintaining the WTs which can be captured via use of a finite state Markov chain. Such a model can be embedded within a probabilistic operation and maintenance simulation reflecting the action to be done. In this paper, an approach of estimating the cost of O&M is presented. The finite state Markov model is used for decision problems with number of determined periods (life cycle) to predict the cost according to various options of maintenance.Keywords: cost, finite state, Markov model, operation and maintenance
Procedia PDF Downloads 5315091 Enhanced Imperialist Competitive Algorithm for the Cell Formation Problem Using Sequence Data
Authors: S. H. Borghei, E. Teymourian, M. Mobin, G. M. Komaki, S. Sheikh
Abstract:
Imperialist competitive algorithm (ICA) is a recent meta-heuristic method that is inspired by the social evolutions for solving NP-Hard problems. The ICA is a population based algorithm which has achieved a great performance in comparison to other meta-heuristics. This study is about developing enhanced ICA approach to solve the cell formation problem (CFP) using sequence data. In addition to the conventional ICA, an enhanced version of ICA, namely EICA, applies local search techniques to add more intensification aptitude and embed the features of exploration and intensification more successfully. Suitable performance measures are used to compare the proposed algorithms with some other powerful solution approaches in the literature. In the same way, for checking the proficiency of algorithms, forty test problems are presented. Five benchmark problems have sequence data, and other ones are based on 0-1 matrices modified to sequence based problems. Computational results elucidate the efficiency of the EICA in solving CFP problems.Keywords: cell formation problem, group technology, imperialist competitive algorithm, sequence data
Procedia PDF Downloads 4525090 A Transform Domain Function Controlled VSSLMS Algorithm for Sparse System Identification
Authors: Cemil Turan, Mohammad Shukri Salman
Abstract:
The convergence rate of the least-mean-square (LMS) algorithm deteriorates if the input signal to the filter is correlated. In a system identification problem, this convergence rate can be improved if the signal is white and/or if the system is sparse. We recently proposed a sparse transform domain LMS-type algorithm that uses a variable step-size for a sparse system identification. The proposed algorithm provided high performance even if the input signal is highly correlated. In this work, we investigate the performance of the proposed TD-LMS algorithm for a large number of filter tap which is also a critical issue for standard LMS algorithm. Additionally, the optimum value of the most important parameter is calculated for all experiments. Moreover, the convergence analysis of the proposed algorithm is provided. The performance of the proposed algorithm has been compared to different algorithms in a sparse system identification setting of different sparsity levels and different number of filter taps. Simulations have shown that the proposed algorithm has prominent performance compared to the other algorithms.Keywords: adaptive filtering, sparse system identification, TD-LMS algorithm, VSSLMS algorithm
Procedia PDF Downloads 3585089 Manifestations of Moral Imagination during the COVID-19 Pandemic in the Debates of Lithuanian Parliament
Authors: Laima Zakaraite, Vaidas Morkevicius
Abstract:
The COVID-19 pandemic brought important and pressing challenges for politicians around the world. Governments, parliaments, and political leaders had to make quick decisions about containment of the pandemic, usually without clear knowledge about the factual spread of the virus, the possible expected speed of spread, and levels of mortality. Opinions of experts were also divided, as some advocated for ‘herd immunity’ without closing down the economy and public life, and others supported the idea of strict lockdown. The debates about measures of pandemic containment were heated and involved strong moral tensions with regard to the possible outcomes. This paper proposes to study the manifestations of moral imagination in the political debates regarding the COVID-19 pandemic. Importantly, moral imagination is associated with twofold abilities of a decision-making actor: the ability to discern the moral aspects embedded within a situation and the ability to envision a range of possibilities alternative solutions to the situation from a moral perspective. The concept was most thoroughly investigated in business management studies. However, its relevance for the study of political decision-making is also rather clear. The results of the study show to what extent politicians are able to discern the wide range of moral issues related to a situation (in this case, consequences of COVID-19 pandemic in a country) and how broad (especially, from a moral perspective) are discussions of the possible solutions proposed for solving the problem (situation). Arguably, political discussions and considerations are broader and affected by a wider and more varied range of actors and ideas compared to decision making in the business management sector. However, the debates and ensuing solutions may also be restricted by ideological maxims and advocacy of special interests. Therefore, empirical study of policy proposals and their debates might reveal the actual breadth of moral imagination in political discussions. For this purpose, we carried out the qualitative study of the parliamentary debates related to the COVID-19 pandemic in Lithuania during the first wave (containment of which was considered very successful) and at the beginning and consequent acceleration of the second wave (when the spread of the virus became uncontrollable).Keywords: decision making, moral imagination, political debates, political decision
Procedia PDF Downloads 1465088 Nurses Care Practices at End of Life in Intensive Care Units in the Kingdom of Bahrain
Authors: M. Yaqoob, C. S. O’Neill, S. Faraj, C. L. O’Neill
Abstract:
This paper presents the preliminary findings from a study exploring nurse’s contributions to end of life decisions and to the care of dying patients in ICU units in the Kingdom of Bahrain. The process of dying is complex as medical clinicians are frequently unable to say with certainty when death will occur. It is generally accepted that end of life care begins when it is possible to know that death is imminent. Nurses do not make medical treatment decisions when caring for a dying patient. There are, however, many other types of decisions made when a patient is approaching the end of life and nurses are either formally or informally part of these decision making processes. This study explored nurses care practices at the end of life, in two ICU units in large hospitals in the Kingdom of Bahrain. The research design was a grounded theory approach. Ten nurses participated, six of whom were Bahraini nationals and four were Indian. A core category death avoidance talk was supported by three major subcategories, degrees of involvement in decision making; signalling and creating an awareness of death; care shifting from dying patients to family. Despite nurses asserting that they carried out the orders of doctors and had no role in decision making processes at end of life this study showed that there were degrees of nurse involvement. Doctors frequently discussed the patient’s clinical condition with nurses and also sought information regarding the family. Information about the family was of particular relevance if the doctor was considering a DNR order, which the nurses equated with dying. Families were not always informed when a DNR decision was made. When families were not informed the nurses engaged in sophisticated rituals signalling and creating awareness to family members that the death of their loved one was near. This process also involved a subtle shifting of care from the dying patient to the family. This seminar paper will focus particularly on how nurses signal and create an awareness of death in an ICU setting. The findings suggest that despite the avoidance of death talk in the ICU nurses indirectly convey and create an awareness that death is near to family members.Keywords: decision making, dying patients, end of life, intensive care unit
Procedia PDF Downloads 3905087 Data-Driven Decision Making: A Reference Model for Organizational, Educational and Competency-Based Learning Systems
Authors: Emanuel Koseos
Abstract:
Data-Driven Decision Making (DDDM) refers to making decisions that are based on historical data in order to inform practice, develop strategies and implement policies that benefit organizational settings. In educational technology, DDDM facilitates the implementation of differential educational learning approaches such as Educational Data Mining (EDM) and Competency-Based Education (CBE), which commonly target university classrooms. There is a current need for DDDM models applied to middle and secondary schools from a concern for assessing the needs, progress and performance of students and educators with respect to regional standards, policies and evolution of curriculums. To address these concerns, we propose a DDDM reference model developed using educational key process initiatives as inputs to a machine learning framework implemented with statistical software (SAS, R) to provide a best-practices, complex-free and automated approach for educators at their regional level. We assessed the efficiency of the model over a six-year period using data from 45 schools and grades K-12 in the Langley, BC, Canada regional school district. We concluded that the model has wider appeal, such as business learning systems.Keywords: competency-based learning, data-driven decision making, machine learning, secondary schools
Procedia PDF Downloads 1705086 Economic Analysis of Coffee Cultivation in Kodagu District of Karnataka State, India
Authors: P. S. Dhananjaya Swamy, B. Chinnappa, G. B. Ramesh, Naveen P. Kumar
Abstract:
Kodagu district is one of the most densely forested districts in the India as around sixty five per cent of geographical areas under tree cover. Nearly 53 per cent of the flora of Kodagu is endemic. The district is also a hotspot of endemic orchids found mainly in the Thadiandamol. Shade grown, eco-friendly coffee farms are perhaps a selected few places on this planet where nature runs wild. The Kodagu accounts for more than 8.8 per cent of floral diversity of Karnataka state. Estimation of unit cost of cultivation plays a vital role in determining the governmental program their market intervention policies. On an average, planters incurred around Rs. 17041 per acre. The extent of production risk was highest among small category of planters (66 %) compared to other two exhibiting production instability. The result shows that, the coffee productivity in medium plantations was 1051.2 kg per acre as against 758.5 and 789.2 kg in the case of small and large plantations. An annual net return per acre was highest in the case of medium planters (Rs. 26109.3) as against Rs. 20566.7 and Rs. 18572.7 in the case of small and large planters. Cost of production was lowest in the case of small planters (Rs. 18.9 per kg of output) followed by medium planters (Rs. 21.2 per kg of output) and large planters (Rs. 22.5 per kg of output). The productivity of coffee is less whenever it is grown under high shade and native tree cover; it is around 6 quintals per acre when compared with low shade conditions, which is around 8.9 quintals per acre, without a significant difference in the amount invested for growing coffee. Net gain was lower by Rs. 15.5 per kg for the planters growing under high shade and native trees cover when compared with low shade and exotic trees cover.Keywords: coffee, cultivation, economics, Kodagu
Procedia PDF Downloads 1925085 Delaunay Triangulations Efficiency for Conduction-Convection Problems
Authors: Bashar Albaalbaki, Roger E. Khayat
Abstract:
This work is a comparative study on the effect of Delaunay triangulation algorithms on discretization error for conduction-convection conservation problems. A structured triangulation and many unstructured Delaunay triangulations using three popular algorithms for node placement strategies are used. The numerical method employed is the vertex-centered finite volume method. It is found that when the computational domain can be meshed using a structured triangulation, the discretization error is lower for structured triangulations compared to unstructured ones for only low Peclet number values, i.e. when conduction is dominant. However, as the Peclet number is increased and convection becomes more significant, the unstructured triangulations reduce the discretization error. Also, no statistical correlation between triangulation angle extremums and the discretization error is found using 200 samples of randomly generated Delaunay and non-Delaunay triangulations. Thus, the angle extremums cannot be an indicator of the discretization error on their own and need to be combined with other triangulation quality measures, which is the subject of further studies.Keywords: conduction-convection problems, Delaunay triangulation, discretization error, finite volume method
Procedia PDF Downloads 1015084 Machine Learning Techniques for COVID-19 Detection: A Comparative Analysis
Authors: Abeer A. Aljohani
Abstract:
COVID-19 virus spread has been one of the extreme pandemics across the globe. It is also referred to as coronavirus, which is a contagious disease that continuously mutates into numerous variants. Currently, the B.1.1.529 variant labeled as omicron is detected in South Africa. The huge spread of COVID-19 disease has affected several lives and has surged exceptional pressure on the healthcare systems worldwide. Also, everyday life and the global economy have been at stake. This research aims to predict COVID-19 disease in its initial stage to reduce the death count. Machine learning (ML) is nowadays used in almost every area. Numerous COVID-19 cases have produced a huge burden on the hospitals as well as health workers. To reduce this burden, this paper predicts COVID-19 disease is based on the symptoms and medical history of the patient. This research presents a unique architecture for COVID-19 detection using ML techniques integrated with feature dimensionality reduction. This paper uses a standard UCI dataset for predicting COVID-19 disease. This dataset comprises symptoms of 5434 patients. This paper also compares several supervised ML techniques to the presented architecture. The architecture has also utilized 10-fold cross validation process for generalization and the principal component analysis (PCA) technique for feature reduction. Standard parameters are used to evaluate the proposed architecture including F1-Score, precision, accuracy, recall, receiver operating characteristic (ROC), and area under curve (AUC). The results depict that decision tree, random forest, and neural networks outperform all other state-of-the-art ML techniques. This achieved result can help effectively in identifying COVID-19 infection cases.Keywords: supervised machine learning, COVID-19 prediction, healthcare analytics, random forest, neural network
Procedia PDF Downloads 925083 FlexPoints: Efficient Algorithm for Detection of Electrocardiogram Characteristic Points
Authors: Daniel Bulanda, Janusz A. Starzyk, Adrian Horzyk
Abstract:
The electrocardiogram (ECG) is one of the most commonly used medical tests, essential for correct diagnosis and treatment of the patient. While ECG devices generate a huge amount of data, only a small part of them carries valuable medical information. To deal with this problem, many compression algorithms and filters have been developed over the past years. However, the rapid development of new machine learning techniques poses new challenges. To address this class of problems, we created the FlexPoints algorithm that searches for characteristic points on the ECG signal and ignores all other points that do not carry relevant medical information. The conducted experiments proved that the presented algorithm can significantly reduce the number of data points which represents ECG signal without losing valuable medical information. These sparse but essential characteristic points (flex points) can be a perfect input for some modern machine learning models, which works much better using flex points as an input instead of raw data or data compressed by many popular algorithms.Keywords: characteristic points, electrocardiogram, ECG, machine learning, signal compression
Procedia PDF Downloads 1605082 Comparison Between Genetic Algorithms and Particle Swarm Optimization Optimized Proportional Integral Derirative and PSS for Single Machine Infinite System
Authors: Benalia Nadia, Zerzouri Nora, Ben Si Ali Nadia
Abstract:
Abstract: Among the many different modern heuristic optimization methods, genetic algorithms (GA) and the particle swarm optimization (PSO) technique have been attracting a lot of interest. The GA has gained popularity in academia and business mostly because to its simplicity, ability to solve highly nonlinear mixed integer optimization problems that are typical of complex engineering systems, and intuitiveness. The mechanics of the PSO methodology, a relatively recent heuristic search tool, are modeled after the swarming or cooperative behavior of biological groups. It is suitable to compare the performance of the two techniques since they both aim to solve a particular objective function but make use of distinct computing methods. In this article, PSO and GA optimization approaches are used for the parameter tuning of the power system stabilizer and Proportional integral derivative regulator. Load angle and rotor speed variations in the single machine infinite bus bar system is used to measure the performance of the suggested solution.Keywords: SMIB, genetic algorithm, PSO, transient stability, power system stabilizer, PID
Procedia PDF Downloads 805081 ACO-TS: an ACO-based Algorithm for Optimizing Cloud Task Scheduling
Authors: Fahad Y. Al-dawish
Abstract:
The current trend by a large number of organizations and individuals to use cloud computing. Many consider it a significant shift in the field of computing. Cloud computing are distributed and parallel systems consisting of a collection of interconnected physical and virtual machines. With increasing request and profit of cloud computing infrastructure, diverse computing processes can be executed on cloud environment. Many organizations and individuals around the world depend on the cloud computing environments infrastructure to carry their applications, platform, and infrastructure. One of the major and essential issues in this environment related to allocating incoming tasks to suitable virtual machine (cloud task scheduling). Cloud task scheduling is classified as optimization problem, and there are several meta-heuristic algorithms have been anticipated to solve and optimize this problem. Good task scheduler should execute its scheduling technique on altering environment and the types of incoming task set. In this research project a cloud task scheduling methodology based on ant colony optimization ACO algorithm, we call it ACO-TS Ant Colony Optimization for Task Scheduling has been proposed and compared with different scheduling algorithms (Random, First Come First Serve FCFS, and Fastest Processor to the Largest Task First FPLTF). Ant Colony Optimization (ACO) is random optimization search method that will be used for assigning incoming tasks to available virtual machines VMs. The main role of proposed algorithm is to minimizing the makespan of certain tasks set and maximizing resource utilization by balance the load among virtual machines. The proposed scheduling algorithm was evaluated by using Cloudsim toolkit framework. Finally after analyzing and evaluating the performance of experimental results we find that the proposed algorithm ACO-TS perform better than Random, FCFS, and FPLTF algorithms in each of the makespaan and resource utilization.Keywords: cloud Task scheduling, ant colony optimization (ACO), cloudsim, cloud computing
Procedia PDF Downloads 4205080 Prediction of All-Beta Protein Secondary Structure Using Garnier-Osguthorpe-Robson Method
Authors: K. Tejasri, K. Suvarna Vani, S. Prathyusha, S. Ramya
Abstract:
Proteins are chained sequences of amino acids which are brought together by the peptide bonds. Many varying formations of the chains are possible due to multiple combinations of amino acids and rotation in numerous positions along the chain. Protein structure prediction is one of the crucial goals worked towards by the members of bioinformatics and theoretical chemistry backgrounds. Among the four different structure levels in proteins, we emphasize mainly the secondary level structure. Generally, the secondary protein basically comprises alpha-helix and beta-sheets. Multi-class classification problem of data with disparity is truly a challenge to overcome and has to be addressed for the beta strands. Imbalanced data distribution constitutes a couple of the classes of data having very limited training samples collated with other classes. The secondary structure data is extracted from the protein primary sequence, and the beta-strands are predicted using suitable machine learning algorithms.Keywords: proteins, secondary structure elements, beta-sheets, beta-strands, alpha-helices, machine learning algorithms
Procedia PDF Downloads 925079 Hidro-IA: An Artificial Intelligent Tool Applied to Optimize the Operation Planning of Hydrothermal Systems with Historical Streamflow
Authors: Thiago Ribeiro de Alencar, Jacyro Gramulia Junior, Patricia Teixeira Leite
Abstract:
The area of the electricity sector that deals with energy needs by the hydroelectric in a coordinated manner is called Operation Planning of Hydrothermal Power Systems (OPHPS). The purpose of this is to find a political operative to provide electrical power to the system in a given period, with reliability and minimal cost. Therefore, it is necessary to determine an optimal schedule of generation for each hydroelectric, each range, so that the system meets the demand reliably, avoiding rationing in years of severe drought, and that minimizes the expected cost of operation during the planning, defining an appropriate strategy for thermal complementation. Several optimization algorithms specifically applied to this problem have been developed and are used. Although providing solutions to various problems encountered, these algorithms have some weaknesses, difficulties in convergence, simplification of the original formulation of the problem, or owing to the complexity of the objective function. An alternative to these challenges is the development of techniques for simulation optimization and more sophisticated and reliable, it can assist the planning of the operation. Thus, this paper presents the development of a computational tool, namely Hydro-IA for solving optimization problem identified and to provide the User an easy handling. Adopted as intelligent optimization technique is Genetic Algorithm (GA) and programming language is Java. First made the modeling of the chromosomes, then implemented the function assessment of the problem and the operators involved, and finally the drafting of the graphical interfaces for access to the User. The results with the Genetic Algorithms were compared with the optimization technique nonlinear programming (NLP). Tests were conducted with seven hydroelectric plants interconnected hydraulically with historical stream flow from 1953 to 1955. The results of comparison between the GA and NLP techniques shows that the cost of operating the GA becomes increasingly smaller than the NLP when the number of hydroelectric plants interconnected increases. The program has managed to relate a coherent performance in problem resolution without the need for simplification of the calculations together with the ease of manipulating the parameters of simulation and visualization of output results.Keywords: energy, optimization, hydrothermal power systems, artificial intelligence and genetic algorithms
Procedia PDF Downloads 4195078 Cross-Sectional Study of Critical Parameters on RSET and Decision-Making of At-Risk Groups in Fire Evacuation
Authors: Naser Kazemi Eilaki, Ilona Heldal, Carolyn Ahmer, Bjarne Christian Hagen
Abstract:
Elderly people and people with disabilities are recognized as at-risk groups when it comes to egress and travel from hazard zone to a safe place. One's disability can negatively influence her or his escape time, and this becomes even more important when people from this target group live alone. While earlier studies have frequently addressed quantitative measurements regarding at-risk groups' physical characteristics (e.g., their speed of travel), this paper considers the influence of at-risk groups’ characteristics on their decision and determining better escape routes. Most of evacuation models are based on mapping people's movement and their behaviour to summation times for common activity types on a timeline. Usually, timeline models estimate required safe egress time (RSET) as a sum of four timespans: detection, alarm, premovement, and movement time, and compare this with the available safe egress time (ASET) to determine what is influencing the margin of safety.This paper presents a cross-sectional study for identifying the most critical items on RSET and people's decision-making and with possibilities to include safety knowledge regarding people with physical or cognitive functional impairments. The result will contribute to increased knowledge on considering at-risk groups and disabilities for designing and developing safe escape routes. The expected results can be an asset to predict the probabilistic behavioural pattern of at-risk groups and necessary components for defining a framework for understanding how stakeholders can consider various disabilities when determining the margin of safety for a safe escape route.Keywords: fire safety, evacuation, decision-making, at-risk groups
Procedia PDF Downloads 1015077 Susceptibility of Different Clones of Eucalyptus Species against Gall Wasp, Leptocybe invasa Fisher and La Salle in Punjab, India
Authors: Ashwinder K. Dhaliwal, G. P. S. Dhillon
Abstract:
Eucalyptus is one of the most important forest tree species that can tolerate and grow well on degraded and unfertile soils which are not suitable for other tree species. Besides this, these trees have a short rotation and good economic value. However, the gall inducing wasp Leptocybe invasa Fisher and La Salle has been reported from many countries throughout the world. The spread of L. invasa is of huge economic concern as more than 20,000 ha of young Eucalyptus trees have already been affected in southern states of India. The host plant resistance being the first line of defense against insect pests demands the screening of different germplasm source against L. invasa. Keeping this in view, fourteen different clones of Eucalyptus spp. were evaluated for their susceptibility to L. invasa from a replicated clonal trial planted at Punjab Agricultural University, Ludhiana. The degree of gall infestation was recorded from three plants of each clone in each replication. Three branches selected from the lower, middle and upper canopy of the trees were selected for recording the total number of galls induced by L. invasa. The statistical analysis was done as per the procedure laid down for completely randomised block design (CRBD), analysis of variance (ANOVA), critical difference (CD) and variance components using Proc GLM (SAS software 9.3, SAS Institute Ltd. U.S.A). All possible treatment means were compared with Duncan’s multiple range test (DMRT) at 1 % probability level. The results showed that the clones C-9, C-45 and C-42 were completely free from the infestation of L. invasa. However, there was minor infestation of L. invasa on C-2135, C-413, C-407, C-35, C-72 and C-37 clones. The clone C-6 was severely infested by L. invasa followed by C-11, C-12, F-316 and C-25 clones. The information generated by this study will be helpful for future breeding and use in afforestation programmes.Keywords: eucalyptus clones, gall wasp, Leptocybe invasa, screening, susceptibility
Procedia PDF Downloads 2205076 Human Insecurity and Migration in the Horn of Africa: Causes and Decision Processes
Authors: Belachew Gebrewold
Abstract:
The Horn of Africa is marred by complex and systematic internal and external political, economic and social-cultural causes of conflict that result in internal displacement and migration. This paper engages with them and shows how such a study can help us to understand migration, both in this region and more generally. The conflict has occurred within states, between states, among proxies, between armies. Human insecurities as a result of the state collapse of Somalia, the rise of Islamic fundamentalism in the whole region, recurrent drought affecting the livelihoods of subsistence farmers as well as nomads, exposure to hunger, environmental degradation, youth unemployment, rapid growth of slums around big cities, and political repression (especially in Eritrea) have been driving various segments of the regional population into regional and international migration. Eritrea has been going through a brutal dictatorship which pushes many Eritreans to flee their country and be exposed to human trafficking, torture, detention, and agony on their way to Europe mainly through Egypt, Libya and Israel. Similarly, Somalia has been devastated since 1991 by unending civil war, state collapse, and radical Islamists. There are some important aspects to highlight in the conflict-migration nexus in the Horn of Africa: first, the main push factor for the Somalis and Eritreans to leave their countries and risk their lives is the physical insecurity they have been facing in their countries. Secondly, as a result of the conflict the economic infrastructure is massively destroyed. Investment is rare; job opportunities are out of sight. Thirdly, in such a grim situation the politically and economically induced decision to migrate is a household decision, not only an individual decision. Based on this third point this research study took place in the Horn of Africa between 2014 and 2016 during different occasions. The main objective of the research was to understanding how the increasing migration is affecting the socio-economic and socio-political environment, and conversely how the socio-economic and socio-political environments are increasing migration decisions; and whether and how these decisions are individual or family decisions. The main finding is the higher the human insecurity, the higher the family decision; the lower the human insecurity, the higher the individual decision. These findings apply not only to the Eritrean, Somali migrants but also to Ethiopian migrants. But the general impacts of migration on sending countries’ human security is quite mixed and complex.Keywords: Eritrea, Ethiopia, Horn of Africa, insecurity, migration, Somalia
Procedia PDF Downloads 2755075 Designing a Model to Increase the Flow of Circular Economy Startups Using a Systemic and Multi-Generational Approach
Authors: Luís Marques, João Rocha, Andreia Fernandes, Maria Moura, Cláudia Caseiro, Filipa Figueiredo, João Nunes
Abstract:
The implementation of circularity strategies other than recycling, such as reducing the amount of raw material, as well as reusing or sharing existing products, remains marginal. The European Commission announced that the transition towards a more circular economy could lead to the net creation of about 700,000 jobs in Europe by 2030, through additional labour demand from recycling plants, repair services and other circular activities. Efforts to create new circular business models in accordance with completely circular processes, as opposed to linear ones, have increased considerably in recent years. In order to create a societal Circular Economy transition model, it is necessary to include innovative solutions, where startups play a key role. Early-stage startups based on new business models according to circular processes often face difficulties in creating enough impact. The StartUp Zero Program designs a model and approach to increase the flow of startups in the Circular Economy field, focusing on a systemic decision analysis and multi-generational approach, considering Multi-Criteria Decision Analysis to support a decision-making tool, which is also supported by the use of a combination of an Analytical Hierarchy Process and Multi-Attribute Value Theory methods. We define principles, criteria and indicators for evaluating startup prerogatives, quantifying the evaluation process in a unique result. Additionally, this entrepreneurship program spanning 16 months involved more than 2400 young people, from ages 14 to 23, in more than 200 interaction activities.Keywords: circular economy, entrepreneurship, startups;, multi-criteria decision analysis
Procedia PDF Downloads 104