Search results for: robust filtering
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1803

Search results for: robust filtering

543 A Review on Applications of Evolutionary Algorithms to Reservoir Operation for Hydropower Production

Authors: Nkechi Neboh, Josiah Adeyemo, Abimbola Enitan, Oludayo Olugbara

Abstract:

Evolutionary algorithms are techniques extensively used in the planning and management of water resources and systems. It is useful in finding optimal solutions to water resources problems considering the complexities involved in the analysis. River basin management is an essential area that involves the management of upstream, river inflow and outflow including downstream aspects of a reservoir. Water as a scarce resource is needed by human and the environment for survival and its management involve a lot of complexities. Management of this scarce resource is necessary for proper distribution to competing users in a river basin. This presents a lot of complexities involving many constraints and conflicting objectives. Evolutionary algorithms are very useful in solving this kind of complex problems with ease. Evolutionary algorithms are easy to use, fast and robust with many other advantages. Many applications of evolutionary algorithms, which are population based search algorithm, are discussed. Different methodologies involved in the modeling and simulation of water management problems in river basins are explained. It was found from this work that different evolutionary algorithms are suitable for different problems. Therefore, appropriate algorithms are suggested for different methodologies and applications based on results of previous studies reviewed. It is concluded that evolutionary algorithms, with wide applications in water resources management, are viable and easy algorithms for most of the applications. The results suggested that evolutionary algorithms, applied in the right application areas, can suggest superior solutions for river basin management especially in reservoir operations, irrigation planning and management, stream flow forecasting and real-time applications. The future directions in this work are suggested. This study will assist decision makers and stakeholders on the best evolutionary algorithm to use in varied optimization issues in water resources management.

Keywords: evolutionary algorithm, multi-objective, reservoir operation, river basin management

Procedia PDF Downloads 491
542 Post-Pandemic Public Space, Case Study of Public Parks in Kerala

Authors: Nirupama Sam

Abstract:

COVID-19, the greatest pandemic since the turn of the century, presents several issues for urban planners, the most significant of which is determining appropriate mitigation techniques for creating pandemic-friendly and resilient public spaces. The study is conducted in four stages. The first stage consisted of literature reviews to examine the evolution and transformation of public spaces during pandemics throughout history and the role of public spaces during pandemic outbreaks. The second stage is to determine the factors that influence the success of public spaces, which was accomplished by an analysis of current literature and case studies. The influencing factors are categorized under comfort and images, uses and activity, access and linkages, and sociability. The third stage is to establish the priority of identified factors for which a questionnaire survey of stakeholders is conducted and analyzing of certain factors with the help of GIS tools. COVID-19 has been in effect in India for the last two years. Kerala has the highest daily COVID-19 prevalence due to its high population density, making it more susceptible to viral outbreaks. Despite all preventive measures taken against COVID-19, Kerala remains the worst-affected state in the country. Finally, two live case studies of the hardest-hit localities, namely Subhash bose park and Napier Museum park in the Ernakulam and Trivandrum districts of Kerala, respectively, were chosen as study areas for the survey. The responses to the questionnaire were analyzed using SPSS for determining the weights of the influencing factors. The spatial success of the selected case studies was examined using the GIS interpolation model. Following the overall assessment, the fourth stage is to develop strategies and guidelines for planning public spaces to make them more efficient and robust, which further leads to improved quality, safety and resilience to future pandemics.

Keywords: urban design, public space, covid-19, post-pandemic, public spaces

Procedia PDF Downloads 138
541 Towards a Robust Patch Based Multi-View Stereo Technique for Textureless and Occluded 3D Reconstruction

Authors: Ben Haines, Li Bai

Abstract:

Patch based reconstruction methods have been and still are one of the top performing approaches to 3D reconstruction to date. Their local approach to refining the position and orientation of a patch, free of global minimisation and independent of surface smoothness, make patch based methods extremely powerful in recovering fine grained detail of an objects surface. However, patch based approaches still fail to faithfully reconstruct textureless or highly occluded surface regions thus though performing well under lab conditions, deteriorate in industrial or real world situations. They are also computationally expensive. Current patch based methods generate point clouds with holes in texturesless or occluded regions that require expensive energy minimisation techniques to fill and interpolate a high fidelity reconstruction. Such shortcomings hinder the adaptation of the methods for industrial applications where object surfaces are often highly textureless and the speed of reconstruction is an important factor. This paper presents on-going work towards a multi-resolution approach to address the problems, utilizing particle swarm optimisation to reconstruct high fidelity geometry, and increasing robustness to textureless features through an adapted approach to the normalised cross correlation. The work also aims to speed up the reconstruction using advances in GPU technologies and remove the need for costly initialization and expansion. Through the combination of these enhancements, it is the intention of this work to create denser patch clouds even in textureless regions within a reasonable time. Initial results show the potential of such an approach to construct denser point clouds with a comparable accuracy to that of the current top-performing algorithms.

Keywords: 3D reconstruction, multiview stereo, particle swarm optimisation, photo consistency

Procedia PDF Downloads 206
540 Harmonizing Cities: Integrating Land Use Diversity and Multimodal Transit for Social Equity

Authors: Zi-Yan Chao

Abstract:

With the rapid development of urbanization and increasing demand for efficient transportation systems, the interaction between land use diversity and transportation resource allocation has become a critical issue in urban planning. Achieving a balance of land use types, such as residential, commercial, and industrial areas, is crucial role in ensuring social equity and sustainable urban development. Simultaneously, optimizing multimodal transportation networks, including bus, subway, and car routes, is essential for minimizing total travel time and costs, while ensuring fairness for all social groups, particularly in meeting the transportation needs of low-income populations. This study develops a bilevel programming model to address these challenges, with land use diversity as the foundation for measuring equity. The upper-level model maximizes land use diversity for balanced land distribution across regions. The lower-level model optimizes multimodal transportation networks to minimize travel time and costs while maintaining user equilibrium. The model also incorporates constraints to ensure fair resource allocation, such as balancing transportation accessibility and cost differences across various social groups. A solution approach is developed to solve the bilevel optimization problem, ensuring efficient exploration of the solution space for land use and transportation resource allocation. This study maximizes social equity by maximizing land use diversity and achieving user equilibrium with optimal transportation resource distribution. The proposed method provides a robust framework for addressing urban planning challenges, contributing to sustainable and equitable urban development.

Keywords: bilevel programming model, genetic algorithms, land use diversity, multimodal transportation optimization, social equity

Procedia PDF Downloads 24
539 The Role of Financial Literacy in Driving Consumer Well-Being

Authors: Amin Nazifi, Amir Raki, Doga Istanbulluoglu

Abstract:

The incorporation of technological advancements into financial services, commonly referred to as Fintech, is primarily aimed at promoting services that are accessible, convenient, and inclusive, thereby benefiting both consumers and businesses. Fintech services employ a variety of technologies, including Artificial Intelligence (AI), blockchain, and big data, to enhance the efficiency and productivity of traditional services. Cryptocurrency, a component of Fintech, is projected to be a trillion-dollar industry, with over 320 million consumers globally investing in various forms of cryptocurrencies. However, these potentially transformative services can also lead to adverse outcomes. For instance, recent Fintech innovations have been increasingly linked to misconduct and disservice, resulting in serious implications for consumer well-being. This could be attributed to the ease of access to Fintech, which enables adults to trade cryptocurrencies, shares, and stocks via mobile applications. However, there is little known about the darker aspects of technological advancements, such as Fintech. Hence, this study aims to generate scholarly insights into the design of robust and resilient Fintech services that can add value to businesses and enhance consumer well-being. Using a mixed-method approach, the study will investigate the personal and contextual factors influencing consumers’ adoption and usage of technology innovations and their impacts on consumer well-being. First, semi-structured interviews will be conducted with a sample of Fintech users until theoretical saturation is achieved. Subsequently, based on the findings of the first study, a quantitative study will be conducted to develop and empirically test the impacts of these factors on consumers’ well-being using an online survey with a sample of 300 participants experienced in using Fintech services. This study will contribute to the growing Transformative Service Research (TSR) literature by addressing the latest priorities in service research and shedding light on the impact of fintech services on consumer well-being.

Keywords: consumer well-being, financial literacy, Fintech, service innovation

Procedia PDF Downloads 67
538 Clustering-Based Threshold Model for Condition Rating of Concrete Bridge Decks

Authors: M. Alsharqawi, T. Zayed, S. Abu Dabous

Abstract:

To ensure safety and serviceability of bridge infrastructure, accurate condition assessment and rating methods are needed to provide basis for bridge Maintenance, Repair and Replacement (MRR) decisions. In North America, the common practices to assess condition of bridges are through visual inspection. These practices are limited to detect surface defects and external flaws. Further, the thresholds that define the severity of bridge deterioration are selected arbitrarily. The current research discusses the main deteriorations and defects identified during visual inspection and Non-Destructive Evaluation (NDE). NDE techniques are becoming popular in augmenting the visual examination during inspection to detect subsurface defects. Quality inspection data and accurate condition assessment and rating are the basis for determining appropriate MRR decisions. Thus, in this paper, a novel method for bridge condition assessment using the Quality Function Deployment (QFD) theory is utilized. The QFD model is designed to provide an integrated condition by evaluating both the surface and subsurface defects for concrete bridges. Moreover, an integrated condition rating index with four thresholds is developed based on the QFD condition assessment model and using K-means clustering technique. Twenty case studies are analyzed by applying the QFD model and implementing the developed rating index. The results from the analyzed case studies show that the proposed threshold model produces robust MRR recommendations consistent with decisions and recommendations made by bridge managers on these projects. The proposed method is expected to advance the state of the art of bridges condition assessment and rating.

Keywords: concrete bridge decks, condition assessment and rating, quality function deployment, k-means clustering technique

Procedia PDF Downloads 225
537 Local Directional Encoded Derivative Binary Pattern Based Coral Image Classification Using Weighted Distance Gray Wolf Optimization Algorithm

Authors: Annalakshmi G., Sakthivel Murugan S.

Abstract:

This paper presents a local directional encoded derivative binary pattern (LDEDBP) feature extraction method that can be applied for the classification of submarine coral reef images. The classification of coral reef images using texture features is difficult due to the dissimilarities in class samples. In coral reef image classification, texture features are extracted using the proposed method called local directional encoded derivative binary pattern (LDEDBP). The proposed approach extracts the complete structural arrangement of the local region using local binary batten (LBP) and also extracts the edge information using local directional pattern (LDP) from the edge response available in a particular region, thereby achieving extra discriminative feature value. Typically the LDP extracts the edge details in all eight directions. The process of integrating edge responses along with the local binary pattern achieves a more robust texture descriptor than the other descriptors used in texture feature extraction methods. Finally, the proposed technique is applied to an extreme learning machine (ELM) method with a meta-heuristic algorithm known as weighted distance grey wolf optimizer (GWO) to optimize the input weight and biases of single-hidden-layer feed-forward neural networks (SLFN). In the empirical results, ELM-WDGWO demonstrated their better performance in terms of accuracy on all coral datasets, namely RSMAS, EILAT, EILAT2, and MLC, compared with other state-of-the-art algorithms. The proposed method achieves the highest overall classification accuracy of 94% compared to the other state of art methods.

Keywords: feature extraction, local directional pattern, ELM classifier, GWO optimization

Procedia PDF Downloads 164
536 Analysing the Renewable Energy Integration Paradigm in the Post-COVID-19 Era: An Examination of the Upcoming Energy Law of China

Authors: Lan Wu

Abstract:

The declared transformation towards a ‘new electricity system dominated by renewable energy’ by China requires a cleaner electricity consumption mix with high shares of renewable energy sourced-electricity (RES-E). Unfortunately, integration of RES-E into Chinese electricity markets remains a problem pending more robust legal support, evidenced by the curtailment of wind and solar power as a consequence of integration constraints. The upcoming energy law of the PRC (energy law) is expected to provide such long-awaiting support and coordinate the existing diverse sector-specific laws to deal with the weak implementation that dampening the delivery of their desired regulatory effects. However, in the shadow of the COVID-19 crisis, it remains uncertain how this new energy law brings synergies to RES-E integration, mindful of the significant impacts of the pandemic. Through the theoretical lens of the interplay between China’s electricity reform and legislative development, the present paper investigates whether there is a paradigm shift in energy law regarding renewable energy integration compared with the existing sector-specific energy laws. It examines the 2020 draft for comments on the energy law and analyses its relationship with sector-specific energy laws focusing on RES-E integration. The comparison is drawn upon five key aspects of the RES-E integration issue, including the status of renewables, marketisation, incentive schemes, consumption mechanisms, access to power grids, and dispatching. The analysis shows that it is reasonable to expect a more open and well-organized electricity market enabling absorption of high shares of RES-E. The present paper concludes that a period of prosperous development of RES-E in the post-COVID-19 era can be anticipated with the legal support by the upcoming energy law. It contributes to understanding the signals China is sending regarding the transition towards a cleaner energy future.

Keywords: energy law, energy transition, electricity market reform, renewable energy integration

Procedia PDF Downloads 195
535 A Machine Learning Approach for Detecting and Locating Hardware Trojans

Authors: Kaiwen Zheng, Wanting Zhou, Nan Tang, Lei Li, Yuanhang He

Abstract:

The integrated circuit industry has become a cornerstone of the information society, finding widespread application in areas such as industry, communication, medicine, and aerospace. However, with the increasing complexity of integrated circuits, Hardware Trojans (HTs) implanted by attackers have become a significant threat to their security. In this paper, we proposed a hardware trojan detection method for large-scale circuits. As HTs introduce physical characteristic changes such as structure, area, and power consumption as additional redundant circuits, we proposed a machine-learning-based hardware trojan detection method based on the physical characteristics of gate-level netlists. This method transforms the hardware trojan detection problem into a machine-learning binary classification problem based on physical characteristics, greatly improving detection speed. To address the problem of imbalanced data, where the number of pure circuit samples is far less than that of HTs circuit samples, we used the SMOTETomek algorithm to expand the dataset and further improve the performance of the classifier. We used three machine learning algorithms, K-Nearest Neighbors, Random Forest, and Support Vector Machine, to train and validate benchmark circuits on Trust-Hub, and all achieved good results. In our case studies based on AES encryption circuits provided by trust-hub, the test results showed the effectiveness of the proposed method. To further validate the method’s effectiveness for detecting variant HTs, we designed variant HTs using open-source HTs. The proposed method can guarantee robust detection accuracy in the millisecond level detection time for IC, and FPGA design flows and has good detection performance for library variant HTs.

Keywords: hardware trojans, physical properties, machine learning, hardware security

Procedia PDF Downloads 148
534 Quality Assurance for the Climate Data Store

Authors: Judith Klostermann, Miguel Segura, Wilma Jans, Dragana Bojovic, Isadora Christel Jimenez, Francisco Doblas-Reyees, Judit Snethlage

Abstract:

The Climate Data Store (CDS), developed by the Copernicus Climate Change Service (C3S) implemented by the European Centre for Medium-Range Weather Forecasts (ECMWF) on behalf of the European Union, is intended to become a key instrument for exploring climate data. The CDS contains both raw and processed data to provide information to the users about the past, present and future climate of the earth. It allows for easy and free access to climate data and indicators, presenting an important asset for scientists and stakeholders on the path for achieving a more sustainable future. The C3S Evaluation and Quality Control (EQC) is assessing the quality of the CDS by undertaking a comprehensive user requirement assessment to measure the users’ satisfaction. Recommendations will be developed for the improvement and expansion of the CDS datasets and products. User requirements will be identified on the fitness of the datasets, the toolbox, and the overall CDS service. The EQC function of the CDS will help C3S to make the service more robust: integrated by validated data that follows high-quality standards while being user-friendly. This function will be closely developed with the users of the service. Through their feedback, suggestions, and contributions, the CDS can become more accessible and meet the requirements for a diverse range of users. Stakeholders and their active engagement are thus an important aspect of CDS development. This will be achieved with direct interactions with users such as meetings, interviews or workshops as well as different feedback mechanisms like surveys or helpdesk services at the CDS. The results provided by the users will be categorized as a function of CDS products so that their specific interests will be monitored and linked to the right product. Through this procedure, we will identify the requirements and criteria for data and products in order to build the correspondent recommendations for the improvement and expansion of the CDS datasets and products.

Keywords: climate data store, Copernicus, quality, user engagement

Procedia PDF Downloads 148
533 The Predictors of Head and Neck Cancer-Head and Neck Cancer-Related Lymphedema in Patients with Resected Advanced Head and Neck Cancer

Authors: Shu-Ching Chen, Li-Yun Lee

Abstract:

The purpose of the study was to identify the factors associated with head and neck cancer-related lymphoedema (HNCRL)-related symptoms, body image, and HNCRL-related functional outcomes among patients with resected advanced head and neck cancer. A cross-sectional correlational design was conducted to examine the predictors of HNCRL-related functional outcomes in patients with resected advanced head and neck cancer. Eligible patients were recruited from a single medical center in northern Taiwan. Consecutive patients were approached and recruited from the Radiation Head and Neck Outpatient Department of this medical center. Eligible subjects were assessed for the Symptom Distress Scale–Modified for Head and Neck Cancer (SDS-mhnc), Brief International Classification of Functioning, Disability and Health (ICF) Core Set for Head and Neck Cancer (BCSQ-H&N), Body Image Scale–Modified (BIS-m), The MD Anderson Head and Neck Lymphedema Rating Scale (MDAHNLRS), The Foldi’s Stages of Lymphedema (Foldi’s Scale), Patterson’s Scale, UCLA Shoulder Rating Scale (UCLA SRS), and Karnofsky’s Performance Status Index (KPS). The results showed that the worst problems with body HNCRL functional outcomes. Patients’ HNCRL symptom distress and performance status are robust predictors across over for overall HNCRL functional outcomes, problems with body HNCRL functional outcomes, and activity and social functioning HNCRL functional outcomes. Based on the results of this period research program, we will develop a Cancer Rehabilitation and Lymphedema Care Program (CRLCP) to use in the care of patients with resected advanced head and neck cancer.

Keywords: head and neck cancer, resected, lymphedema, symptom, body image, functional outcome

Procedia PDF Downloads 261
532 A Trend Based Forecasting Framework of the ATA Method and Its Performance on the M3-Competition Data

Authors: H. Taylan Selamlar, I. Yavuz, G. Yapar

Abstract:

It is difficult to make predictions especially about the future and making accurate predictions is not always easy. However, better predictions remain the foundation of all science therefore the development of accurate, robust and reliable forecasting methods is very important. Numerous number of forecasting methods have been proposed and studied in the literature. There are still two dominant major forecasting methods: Box-Jenkins ARIMA and Exponential Smoothing (ES), and still new methods are derived or inspired from them. After more than 50 years of widespread use, exponential smoothing is still one of the most practically relevant forecasting methods available due to their simplicity, robustness and accuracy as automatic forecasting procedures especially in the famous M-Competitions. Despite its success and widespread use in many areas, ES models have some shortcomings that negatively affect the accuracy of forecasts. Therefore, a new forecasting method in this study will be proposed to cope with these shortcomings and it will be called ATA method. This new method is obtained from traditional ES models by modifying the smoothing parameters therefore both methods have similar structural forms and ATA can be easily adapted to all of the individual ES models however ATA has many advantages due to its innovative new weighting scheme. In this paper, the focus is on modeling the trend component and handling seasonality patterns by utilizing classical decomposition. Therefore, ATA method is expanded to higher order ES methods for additive, multiplicative, additive damped and multiplicative damped trend components. The proposed models are called ATA trended models and their predictive performances are compared to their counter ES models on the M3 competition data set since it is still the most recent and comprehensive time-series data collection available. It is shown that the models outperform their counters on almost all settings and when a model selection is carried out amongst these trended models ATA outperforms all of the competitors in the M3- competition for both short term and long term forecasting horizons when the models’ forecasting accuracies are compared based on popular error metrics.

Keywords: accuracy, exponential smoothing, forecasting, initial value

Procedia PDF Downloads 177
531 Efficient Compact Micro Dielectric Barrier Discharge (DBD) Plasma Reactor for Ozone Generation for Industrial Application in Liquid and Gas Phase Systems

Authors: D. Kuvshinov, A. Siswanto, J. Lozano-Parada, W. Zimmerman

Abstract:

Ozone is well known as a powerful fast reaction rate oxidant. The ozone based processes produce no by-product left as a non-reacted ozone returns back to the original oxygen molecule. Therefore an application of ozone is widely accepted as one of the main directions for a sustainable and clean technologies development. There are number of technologies require ozone to be delivered to specific points of a production network or reactors construction. Due to space constrains, high reactivity and short life time of ozone the use of ozone generators even of a bench top scale is practically limited. This requires development of mini/micro scale ozone generator which can be directly incorporated into production units. Our report presents a feasibility study of a new micro scale rector for ozone generation (MROG). Data on MROG calibration and indigo decomposition at different operation conditions are presented. At selected operation conditions with residence time of 0.25 s the process of ozone generation is not limited by reaction rate and the amount of ozone produced is a function of power applied. It was shown that the MROG is capable to produce ozone at voltage level starting from 3.5kV with ozone concentration of 5.28E-6 (mol/L) at 5kV. This is in line with data presented on numerical investigation for a MROG. It was shown that in compare to a conventional ozone generator, MROG has lower power consumption at low voltages and atmospheric pressure. The MROG construction makes it applicable for emerged and dry systems. With a robust compact design MROG can be used as incorporated unit for production lines of high complexity.

Keywords: dielectric barrier discharge (DBD), micro reactor, ozone, plasma

Procedia PDF Downloads 338
530 Facile Synthesis of Sulfur Doped TiO2 Nanoparticles with Enhanced Photocatalytic Activity

Authors: Vishnu V. Pillai, Sunil P. Lonkar, Akhil M. Abraham, Saeed M. Alhassan

Abstract:

An effectual technology for wastewater treatment is a great demand now in order to encounter the water pollution caused by organic pollutants. Photocatalytic oxidation technology is widely used in removal of such unsafe contaminants. Among the semi-conducting metal oxides, robust and thermally stable TiO2 has emerged as a fascinating material for photocatalysis. Enhanced catalytic activity was observed for nanostructured TiO2 due to its higher surface, chemical stability and higher oxidation ability. However, higher charge carrier recombination and wide band gap of TiO2 limits its use as a photocatalyst in the UV region. It is desirable to develop a photocatalyst that can efficiently absorb the visible light, which occupies the main part of the solar spectrum. Hence, in order to extend its photocatalytic efficiency under visible light, TiO2 nanoparticles are often doped with metallic or non-metallic elements. Non-metallic doping of TiO2 has attracted much attention due to the low thermal stability and enhanced recombination of charge carriers endowed by metallic doping of TiO2. Amongst, sulfur doped TiO2 is most widely used photocatalyst in environmental purification. However, the most of S-TiO2 synthesis technique uses toxic chemicals and complex procedures. Hence, a facile, scalable and environmentally benign preparation process for S-TiO2 is highly desirable. In present work, we have demonstrated new and facile solid-state reaction method for S-TiO2 synthesis that uses abundant elemental sulfur as S source and moderate temperatures. The resulting nano-sized S-TiO2 has been successfully employed as visible light photocatalyst in methylene blue dye removal from aqueous media.

Keywords: ecofriendly, nanomaterials, methylene blue, photocatalysts

Procedia PDF Downloads 349
529 Comparison of Support Vector Machines and Artificial Neural Network Classifiers in Characterizing Threatened Tree Species Using Eight Bands of WorldView-2 Imagery in Dukuduku Landscape, South Africa

Authors: Galal Omer, Onisimo Mutanga, Elfatih M. Abdel-Rahman, Elhadi Adam

Abstract:

Threatened tree species (TTS) play a significant role in ecosystem functioning and services, land use dynamics, and other socio-economic aspects. Such aspects include ecological, economic, livelihood, security-based, and well-being benefits. The development of techniques for mapping and monitoring TTS is thus critical for understanding the functioning of ecosystems. The advent of advanced imaging systems and supervised learning algorithms has provided an opportunity to classify TTS over fragmenting landscape. Recently, vegetation maps have been produced using advanced imaging systems such as WorldView-2 (WV-2) and robust classification algorithms such as support vectors machines (SVM) and artificial neural network (ANN). However, delineation of TTS in a fragmenting landscape using high resolution imagery has widely remained elusive due to the complexity of the species structure and their distribution. Therefore, the objective of the current study was to examine the utility of the advanced WV-2 data for mapping TTS in the fragmenting Dukuduku indigenous forest of South Africa using SVM and ANN classification algorithms. The results showed the robustness of the two machine learning algorithms with an overall accuracy (OA) of 77.00% (total disagreement = 23.00%) for SVM and 75.00% (total disagreement = 25.00%) for ANN using all eight bands of WV-2 (8B). This study concludes that SVM and ANN classification algorithms with WV-2 8B have the potential to classify TTS in the Dukuduku indigenous forest. This study offers relatively accurate information that is important for forest managers to make informed decisions regarding management and conservation protocols of TTS.

Keywords: artificial neural network, threatened tree species, indigenous forest, support vector machines

Procedia PDF Downloads 515
528 Free Radical Scavenging Activity and Total Phenolic Assessment of Drug Repurposed Medicinal Plant Metabolites: Promising Tools against Post COVID-19 Syndromes and Non-Communicable Diseases in Botswana

Authors: D. Motlhanka, M. Mine, T. Bagaketse, T. Ngakane

Abstract:

There is a plethora of evidence from numerous sources that highlights the triumph of naturally derived medicinal plant metabolites with antioxidant capability for repurposed therapeutics. As post-COVID-19 syndromes and non-communicable diseases are on the rise, there is an urgent need to come up with new therapeutic strategies to address the problem. Non-communicable diseases and Post COVID-19 syndromes are classified as socio-economic diseases and are ranked high among threats to health security due to the economic burden they pose to any government budget commitment. Research has shown a strong link between accumulation of free radicals and oxidative stress critical for pathogenesis of non-communicable diseases and COVID-19 syndromes. Botswana has embarked on a robust programme derived from ethno-pharmacognosy and drug repurposing to address these threats to health security. In the current approach, a number of medicinally active plant-derived polyphenolics are repurposed and combined into new medicinal tools to target diabetes, Hypertension, Prostate Cancer and oxidative stress induced Post COVID 19 syndromes such as “brain fog”. All four formulants demonstrated Free Radical scavenging capacities above 95% at 200µg/ml using the diphenylpicryalhydrazyl free radical scavenging assay and the total phenolic contents between 6899-15000GAE(g/L) using the folin-ciocalteau assay respectively. These repurposed medicinal tools offer new hope and potential in the fight against emerging health threats driven by hyper-inflammation and free radical-induced oxidative stress.

Keywords: drug repurposed plant polyphenolics, free radical damage, non-communicable diseases, post COVID 19 syndromes

Procedia PDF Downloads 129
527 Alternating Expectation-Maximization Algorithm for a Bilinear Model in Isoform Quantification from RNA-Seq Data

Authors: Wenjiang Deng, Tian Mou, Yudi Pawitan, Trung Nghia Vu

Abstract:

Estimation of isoform-level gene expression from RNA-seq data depends on simplifying assumptions, such as uniform reads distribution, that are easily violated in real data. Such violations typically lead to biased estimates. Most existing methods provide a bias correction step(s), which is based on biological considerations, such as GC content–and applied in single samples separately. The main problem is that not all biases are known. For example, new technologies such as single-cell RNA-seq (scRNA-seq) may introduce new sources of bias not seen in bulk-cell data. This study introduces a method called XAEM based on a more flexible and robust statistical model. Existing methods are essentially based on a linear model Xβ, where the design matrix X is known and derived based on the simplifying assumptions. In contrast, XAEM considers Xβ as a bilinear model with both X and β unknown. Joint estimation of X and β is made possible by simultaneous analysis of multi-sample RNA-seq data. Compared to existing methods, XAEM automatically performs empirical correction of potentially unknown biases. XAEM implements an alternating expectation-maximization (AEM) algorithm, alternating between estimation of X and β. For speed XAEM utilizes quasi-mapping for read alignment, thus leading to a fast algorithm. Overall XAEM performs favorably compared to other recent advanced methods. For simulated datasets, XAEM obtains higher accuracy for multiple-isoform genes, particularly for paralogs. In a differential-expression analysis of a real scRNA-seq dataset, XAEM achieves substantially greater rediscovery rates in an independent validation set.

Keywords: alternating EM algorithm, bias correction, bilinear model, gene expression, RNA-seq

Procedia PDF Downloads 143
526 Meet Automotive Software Safety and Security Standards Expectations More Quickly

Authors: Jean-François Pouilly

Abstract:

This study addresses the growing complexity of embedded systems and the critical need for secure, reliable software. Traditional cybersecurity testing methods, often conducted late in the development cycle, struggle to keep pace. This talk explores how formal methods, integrated with advanced analysis tools, empower C/C++ developers to 1) Proactively address vulnerabilities and bugs, which includes formal methods and abstract interpretation techniques to identify potential weaknesses early in the development process, reducing the reliance on penetration and fuzz testing in later stages. 2) Streamline development by focusing on bugs that matter, with close to no false positives and catching flaws earlier, the need for rework and retesting is minimized, leading to faster development cycles, improved efficiency and cost savings. 3) Enhance software dependability which includes combining static analysis using abstract interpretation with full context sensitivity, with hardware memory awareness allows for a more comprehensive understanding of potential vulnerabilities, leading to more dependable and secure software. This approach aligns with industry best practices (ISO2626 or ISO 21434) and empowers C/C++ developers to deliver robust, secure embedded systems that meet the demands of today's and tomorrow's applications. We will illustrate this approach with the TrustInSoft analyzer to show how it accelerates verification for complex cases, reduces user fatigue, and improves developer efficiency, cost-effectiveness, and software cybersecurity. In summary, integrating formal methods and sound Analyzers enhances software reliability and cybersecurity, streamlining development in an increasingly complex environment.

Keywords: safety, cybersecurity, ISO26262, ISO24434, formal methods

Procedia PDF Downloads 22
525 Sustainable Intensification of Agriculture in Victoria’s Food Bowl: Optimizing Productivity with the use of Decision-Support Tools

Authors: M. Johnson, R. Faggian, V. Sposito

Abstract:

A participatory and engaged approach is key in connecting agricultural managers to sustainable agricultural systems to support and optimize production in Victoria’s food bowl. A sustainable intensification (SI) approach is well documented globally, but participation rates amongst Victorian farmers is fragmentary, and key outcomes and implementation strategies are poorly understood. Improvement in decision-support management tools and a greater understanding of the productivity gains available upon implementation of SI is necessary. This paper reviews the current understanding and uptake of SI practices amongst farmers in one of Victoria’s premier food producing regions, the Goulburn Broken; and it spatially analyses the potential for this region to adapt to climate change and optimize food production. A Geographical Information Systems (GIS) approach is taken to develop an interactive decision-support tool that can be accessible to on-ground agricultural managers. The tool encompasses multiple criteria analysis (MCA) that identifies factors during the construction phase of the tool, using expert witnesses and regional knowledge, framed within an Analytical Hierarchy Process. Given the complexities of the interrelations between each of the key outcomes, this participatory approach, in which local realities and factors inform the key outcomes and help to strategies for a particular region, results in a robust strategy for sustainably intensifying production in key food producing regions. The creation of an interactive, locally embedded, decision-support management and education tool can help to close the gap between farmer knowledge and production, increase on-farm adoption of sustainable farming strategies and techniques, and optimize farm productivity.

Keywords: agriculture, decision-support management tool, Geographic Information System, GIS, sustainable intensification

Procedia PDF Downloads 166
524 Derivatives Balance Method for Linear and Nonlinear Control Systems

Authors: Musaab Mohammed Ahmed Ali, Vladimir Vodichev

Abstract:

work deals with an universal control technique or single controller for linear and nonlinear stabilization and tracing control systems. These systems may be structured as SISO and MIMO. Parameters of controlled plants can vary over a wide range. Introduced a novel control systems design method, construction of stable platform orbits using derivative balance, solved transfer function stability preservation problem of linear system under partial substitution of a rational function. Universal controller is proposed as a polar system with the multiple orbits to simplify design procedure, where each orbit represent single order of controller transfer function. Designed controller consist of proportional, integral, derivative terms and multiple feedback and feedforward loops. The controller parameters synthesis method is presented. In generally, controller parameters depend on new polynomial equation where all parameters have a relationship with each other and have fixed values without requirements of retuning. The simulation results show that the proposed universal controller can stabilize infinity number of linear and nonlinear plants and shaping desired previously ordered performance. It has been proven that sensor errors and poor performance will be completely compensated and cannot affect system performance. Disturbances and noises effect on the controller loop will be fully rejected. Technical and economic effect of using proposed controller has been investigated and compared to adaptive, predictive, and robust controllers. The economic analysis shows the advantage of single controller with fixed parameters to drive infinity numbers of plants compared to above mentioned control techniques.

Keywords: derivative balance, fixed parameters, stable platform, universal control

Procedia PDF Downloads 136
523 A Multi-Output Network with U-Net Enhanced Class Activation Map and Robust Classification Performance for Medical Imaging Analysis

Authors: Jaiden Xuan Schraut, Leon Liu, Yiqiao Yin

Abstract:

Computer vision in medical diagnosis has achieved a high level of success in diagnosing diseases with high accuracy. However, conventional classifiers that produce an image to-label result provides insufficient information for medical professionals to judge and raise concerns over the trust and reliability of a model with results that cannot be explained. In order to gain local insight into cancerous regions, separate tasks such as imaging segmentation need to be implemented to aid the doctors in treating patients, which doubles the training time and costs which renders the diagnosis system inefficient and difficult to be accepted by the public. To tackle this issue and drive AI-first medical solutions further, this paper proposes a multi-output network that follows a U-Net architecture for image segmentation output and features an additional convolutional neural networks (CNN) module for auxiliary classification output. Class activation maps are a method of providing insight into a convolutional neural network’s feature maps that leads to its classification but in the case of lung diseases, the region of interest is enhanced by U-net-assisted Class Activation Map (CAM) visualization. Therefore, our proposed model combines image segmentation models and classifiers to crop out only the lung region of a chest X-ray’s class activation map to provide a visualization that improves the explainability and is able to generate classification results simultaneously which builds trust for AI-led diagnosis systems. The proposed U-Net model achieves 97.61% accuracy and a dice coefficient of 0.97 on testing data from the COVID-QU-Ex Dataset which includes both diseased and healthy lungs.

Keywords: multi-output network model, U-net, class activation map, image classification, medical imaging analysis

Procedia PDF Downloads 205
522 A Replicon-Baculovirus Model for Efficient Packaging of Hepatitis E Virus RNA and Production of Infectious Virions

Authors: Mohammad K. Parvez, Mohammed S. Al-Dosari

Abstract:

Hepatitis E virus (HEV) is an emerging RNA virus that causes acute and chronic liver disease with a global mortality rate of about 2%. Despite milestone developments in understanding of HEV biology, there is still lack of a robust culture system or animal model. Therefore, in a novel approach, two recombinant-baculoviruses (vBac-ORF2 and vBac-ORF3) that could overexpress HEV ORF2 (structural/capsid) and ORF3 (nonstructural/regulatory) proteins, respectively were constructed. The established HEV-SAR55 (genotype 1) replicon that contained GFP gene, in place of ORF2/ORF3 sequences was in vitro transcribed, and GFP production in RNA transfected S10-3 cells was scored by FACS. Enhanced infectivity, if any, of nascent virions produced by exogenously-supplied ORF2 and viral RNA by co-expression of ORF3 was tested on naïve HepG2 cells. Co-transduction with vBac-ORF2/vBac-ORF3 (108 pfu/microL) produced high amounts of native ORF2/ORF3 in approximately 60% of S10-3 cells, determined by immunofluorescence microscopy and Western analysis. FACS analysis showed about 9% GFP positivity of S10-3 cells on day6 post-transfection (i.e, day5 post-transduction). Further, FACS scoring indicated that lysates from S10-3 cultures receiving the RNA plus vBac-ORF2 were capable of producing HEV particles with about 4% infectivity in HepG2 cells. However, lysates of cultures co-transduced with vBac-ORF3, were found to further enhance virion infectivity by approximately 17%. This supported a previously proposed role of ORF3 as a minor-structural protein in HEV virion assembly and infectivity. In conclusion, the present model for efficient genomic RNA packaging and production of infectious virions could be a valuable tool to study various aspects of HEV molecular biology, in vitro.

Keywords: chronic liver disease, hepatitis E virus, ORF2, ORF3, replicon

Procedia PDF Downloads 256
521 Software Development to Empowering Digital Libraries with Effortless Digital Cataloging and Access

Authors: Abdul Basit Kiani

Abstract:

The software for the digital library system is a cutting-edge solution designed to revolutionize the way libraries manage and provide access to their vast collections of digital content. This advanced software leverages the power of technology to offer a seamless and user-friendly experience for both library staff and patrons. By implementing this software, libraries can efficiently organize, store, and retrieve digital resources, including e-books, audiobooks, journals, articles, and multimedia content. Its intuitive interface allows library staff to effortlessly manage cataloging, metadata extraction, and content enrichment, ensuring accurate and comprehensive access to digital materials. For patrons, the software offers a personalized and immersive digital library experience. They can easily browse the digital catalog, search for specific items, and explore related content through intelligent recommendation algorithms. The software also facilitates seamless borrowing, lending, and preservation of digital items, enabling users to access their favorite resources anytime, anywhere, on multiple devices. With robust security features, the software ensures the protection of intellectual property rights and enforces access controls to safeguard sensitive content. Integration with external authentication systems and user management tools streamlines the library's administration processes, while advanced analytics provide valuable insights into patron behavior and content usage. Overall, this software for the digital library system empowers libraries to embrace the digital era, offering enhanced access, convenience, and discoverability of their vast collections. It paves the way for a more inclusive and engaging library experience, catering to the evolving needs of tech-savvy patrons.

Keywords: software development, empowering digital libraries, digital cataloging and access, management system

Procedia PDF Downloads 83
520 Saving Energy through Scalable Architecture

Authors: John Lamb, Robert Epstein, Vasundhara L. Bhupathi, Sanjeev Kumar Marimekala

Abstract:

In this paper, we focus on the importance of scalable architecture for data centers and buildings in general to help an enterprise achieve environmental sustainability. The scalable architecture helps in many ways, such as adaptability to the business and user requirements, promotes high availability and disaster recovery solutions that are cost effective and low maintenance. The scalable architecture also plays a vital role in three core areas of sustainability: economy, environment, and social, which are also known as the 3 pillars of a sustainability model. If the architecture is scalable, it has many advantages. A few examples are that scalable architecture helps businesses and industries to adapt to changing technology, drive innovation, promote platform independence, and build resilience against natural disasters. Most importantly, having a scalable architecture helps industries bring in cost-effective measures for energy consumption, reduce wastage, increase productivity, and enable a robust environment. It also helps in the reduction of carbon emissions with advanced monitoring and metering capabilities. Scalable architectures help in reducing waste by optimizing the designs to utilize materials efficiently, minimize resources, decrease carbon footprints by using low-impact materials that are environmentally friendly. In this paper we also emphasize the importance of cultural shift towards the reuse and recycling of natural resources for a balanced ecosystem and maintain a circular economy. Also, since all of us are involved in the use of computers, much of the scalable architecture we have studied is related to data centers.

Keywords: scalable architectures, sustainability, application design, disruptive technology, machine learning and natural language processing, AI, social media platform, cloud computing, advanced networking and storage devices, advanced monitoring and metering infrastructure, climate change

Procedia PDF Downloads 109
519 Revisiting Ryan v Lennon to Make the Case against Judicial Supremacy

Authors: Tom Hickey

Abstract:

It is difficult to conceive of a case that might more starkly bring the arguments concerning judicial review to the fore than State (Ryan) v Lennon. Small wonder that it has attracted so much scholarly attention, although the fact that almost all of it has been in an Irish setting is perhaps surprising, given the illustrative value of the case in respect of a philosophical quandary that continues to command attention in all developed constitutional democracies. Should judges have power to invalidate legislation? This article revisits Ryan v Lennon with an eye on the importance of the idea of “democracy” in the case. It assesses the meaning of democracy: what its purpose might be and what practical implications might follow, specifically in respect of judicial review. Based on this assessment, it argues for a particular institutional model for the vindication of constitutional rights. In the context of calls for the drafting of a new constitution for Ireland, however forlorn these calls might be for the moment, it makes a broad and general case for the abandonment of judicial supremacy and for the taking up of a model in which judges have a constrained rights reviewing role that informs a more robust role that legislators would play, thereby enhancing the quality of the control that citizens have over their own laws. The article is in three parts. Part I assesses the exercise of judicial power over legislation in Ireland, with the primary emphasis on Ryan v Lennon. It considers the role played by the idea of democracy in that case and relates it to certain apparently intractable dilemmas that emerged in later Irish constitutional jurisprudence. Part II considers the concept of democracy more generally, with an eye on overall implications for judicial power. It argues for an account of democracy based on the idea of equally shared popular control over government. Part III assesses how this understanding might inform a new constitutional arrangement in the Irish setting for the vindication of fundamental rights.

Keywords: constitutional rights, democracy as popular control, Ireland, judicial power, republican theory, Ryan v Lennon

Procedia PDF Downloads 558
518 Guidelines for the Sustainable Development of Agriphotovoltaics in Orchard Cultivation: An Approach for Their Harmonious Application in the Natural, Landscape and Socio-Cultural Context of South Tyrol

Authors: Fabrizio Albion

Abstract:

In response to the escalating recognition of the need to combat climate change, renewable energy sources (RES), particularly solar energy, have witnessed exponential growth. The intricate nature of agriphotovoltaics, which combines agriculture and solar energy production, demands rapid legislative and technological development, facing various challenges and multifaceted design. This complexity is also represented by its application for orchard cultivation (APVO), which, in the first part of this research, was studied in its environmental, economic, and sociocultural aspects. Insights from literature, case studies, and consultations with experts contributed valuable perspectives, forming a robust foundation for understanding and integrating APVO into rural environments, including those in the South Tyrolean context. For its harmonious integration into the sensitive Alpine landscape, the second part was then dedicated to the development of guidelines, from the identification of the requirements to be defined as APVO to its design flexibilities for being integrated into the context. As a basis for further considerations, the drafting of these guidelines was preceded by a program of interviews conducted to investigate the social perceptions of farmers, citizens and tourists on the potential integration of APVO in the fruit-growing valleys of the province. Conclusive results from the data collected in the first phase are, however, still pending. Due to ongoing experiments and data collection, the current results, although being generally positive, cannot guarantee a definitive exclusion of potential negative impacts on the crop. The guidelines developed should, therefore, be understood as an initial exploration, providing a basis for future updates, also in synergy with the evolution of existing local projects.

Keywords: agriphotovoltaics, Alpin agricultural landscapes, landscape impact assessment, renewable energy

Procedia PDF Downloads 20
517 Balanced Scorecard (BSC) Project : A Methodological Proposal for Decision Support in a Corporate Scenario

Authors: David de Oliveira Costa, Miguel Ângelo Lellis Moreira, Carlos Francisco Simões Gomes, Daniel Augusto de Moura Pereira, Marcos dos Santos

Abstract:

Strategic management is a fundamental process for global companies that intend to remain competitive in an increasingly dynamic and complex market. To do so, it is necessary to maintain alignment with their principles and values. The Balanced Scorecard (BSC) proposes to ensure that the overall business performance is based on different perspectives (financial, customer, internal processes, and learning and growth). However, relying solely on the BSC may not be enough to ensure the success of strategic management. It is essential that companies also evaluate and prioritize strategic projects that need to be implemented to ensure they are aligned with the business vision and contribute to achieving established goals and objectives. In this context, the proposition involves the incorporation of the SAPEVO-M multicriteria method to indicate the degree of relevance between different perspectives. Thus, the strategic objectives linked to these perspectives have greater weight in the classification of structural projects. Additionally, it is proposed to apply the concept of the Impact & Probability Matrix (I&PM) to structure and ensure that strategic projects are evaluated according to their relevance and impact on the business. By structuring the business's strategic management in this way, alignment and prioritization of projects and actions related to strategic planning are ensured. This ensures that resources are directed towards the most relevant and impactful initiatives. Therefore, the objective of this article is to present the proposal for integrating the BSC methodology, the SAPEVO-M multicriteria method, and the prioritization matrix to establish a concrete weighting of strategic planning and obtain coherence in defining strategic projects aligned with the business vision. This ensures a robust decision-making support process.

Keywords: MCDA process, prioritization problematic, corporate strategy, multicriteria method

Procedia PDF Downloads 82
516 Computational Fluid Dynamics Simulation of a Boiler Outlet Header Constructed of Inconel Alloy 740H

Authors: Sherman Ho, Ahmed Cherif Megri

Abstract:

Headers play a critical role in conveying steam to regulate heating system temperatures. While various materials like steel grades 91 and 92 have been traditionally used for pipes, this research proposes the use of a robust and innovative material, INCONEL Alloy 740H. Boilers in power plant configurations are exposed to cycling conditions due to factors such as daily, seasonal, and yearly variations in weather. These cycling conditions can lead to the deterioration of headers, which are vital components with intricate geometries. Header failures result in substantial financial losses from repair costs and power plant shutdowns, along with significant public inconveniences such as the loss of heating and hot water. To address this issue and seek solutions, a mechanical analysis, as well as a structural analysis, are recommended. Transient analysis to predict heat transfer conditions is of paramount importance, as the direction of heat transfer within the header walls and the passing steam can vary based on the location of interest, load, and operating conditions. The geometry and material of the header are also crucial design factors, and the choice of pipe material depends on its usage. In this context, the heat transfer coefficient plays a vital role in header design and analysis. This research employs ANSYS Fluent, a numerical simulation program, to understand header behavior, predict heat transfer, and analyze mechanical phenomena within the header. Transient simulations are conducted to investigate parameters like heat transfer coefficient, pressure loss coefficients, and heat flux, with the results used to optimize header design.

Keywords: CFD, header, power plant, heat transfer coefficient, simulation using experimental data

Procedia PDF Downloads 67
515 Experimental and Simulation Analysis of an Innovative Steel Shear Wall with Semi-Rigid Beam-to-Column Connections

Authors: E. Faizan, Wahab Abdul Ghafar, Tao Zhong

Abstract:

Steel plate shear walls (SPSWs) are a robust lateral load resistance structure because of their high flexibility and efficient energy dissipation when subjected to seismic loads. This research investigates the seismic performance of an innovative infill web strip (IWS-SPSW) and a typical unstiffened steel plate shear wall (USPSW). As a result, two 1:3 scale specimens of an IWS-SPSW and USPSW with a single story and a single bay were built and subjected to a cyclic lateral loading methodology. In the prototype, the beam-to-column connections were accomplished with the assistance of semi-rigid end-plate connectors. IWS-SPSW demonstrated exceptional ductility and shear load-bearing capacity during the testing process, with no cracks or other damage occurring. In addition, the IWS-SPSW could effectively dissipate energy without causing a significant amount of beam-column connection distortion. The shear load-bearing capacity of the USPSW was exceptional. However, it exhibited low ductility, severe infill plate corner ripping, and huge infill web plate cracks. The FE models were created and then confirmed using the experimental data. It has been demonstrated that the infill web strips of an SPSW system can affect the system's high performance and total energy dissipation. In addition, a parametric analysis was carried out to evaluate the material qualities of the IWS, which can considerably improve the system's seismic performances. These properties include the steel's strength as well as its thickness.

Keywords: steel shear walls, seismic performance, failure mode, hysteresis response, nonlinear finite element analysis, parametric study

Procedia PDF Downloads 76
514 Effect of Coaching Related Incompetency to Stand Trial on Symptom Validity Test: Robustness, Sensitivity, and Specificity

Authors: Natthawut Arin

Abstract:

In forensic contexts, competency to stand trial assessments are the most common referrals. The defendants may attempt to endorse psychopathology symptoms and feign incompetent. Coaching, which can be teaching them test-taking strategies to avoid detection of psychopathological symptoms feigning. Recently, the Symptom Validity Testings (SVTs) were created to detect feigning. Moreover, the works of the literature showed that the effects of coaching on SVTs may be more robust to the effects of coaching. Thai Symptom Validity Test (SVT-Th) was designed as SVTs which demonstrated adequate psychometric properties and ability to classify between feigners and honest responders. Thus, the current study to examine the utility as the robustness of SVT-Th in the detection of feigned psychopathology. Participants consisted of 120 were recruited from undergraduate courses in psychology, randomly assigned to one of three groups. The SVT-Th was administered to those three scenario-experimental groups: (a) Uncoached group were asked to respond honestly (n=40), (b) Symptom-coached without warning group were asked to feign psychiatric symptoms to gain incompetency to stand trial (n=40), while (c) Test-coached with warning group were asked to feign psychiatric symptoms to avoid test detection but being incompetency to stand trial (n=40). Group differences were analyzed using one-way ANOVAs. The result revealed an uncoached group (M = 4.23, SD.= 5.20) had significantly lower SVT-Th mean scores than those both coached groups (M =185.00, SD.= 72.88 and M = 132.10, SD.= 54.06, respectively). Classification rates were calculated to determine the classification accuracy. Result indicated that SVT-Th had overall classification accuracy rates of 96.67% with acceptable of 95% sensitivity and 100% specificity rates. Overall, the results of the present study indicate that the SVT-Th yielded high adequate indices of accuracy and these findings suggest that the SVT-Th is robustness against coaching.

Keywords: incompetency to stand trial, coaching, robustness, classification accuracy

Procedia PDF Downloads 139