Search results for: partial evaporating
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1286

Search results for: partial evaporating

26 A Case Study of a Rehabilitated Child by Joint Efforts of Parents and Community

Authors: Fouzia Arif, Arif S. Mohammad, Hifsa Altaf, Lubna Raees

Abstract:

Introduction: The term "disability", refers to any condition that impedes the completion of daily tasks using traditional methods. In developing countries like Pakistan, disable population is usually excluded from the mainstream. In squatter settlements the situation is more critical. Sultanabad is one of the squatter settlements of Karachi. Purpose of case study is to improve the health of disabled children’s, and create awareness among the parents and community. Through a household visit, Shiraz, a young disabled boy of 15.5 years old was identified. Her mother articulated that her son was living normally and happily with his parents two years back. When he was 13 years old and student of class 8th, both his legs were traumatized in a Railway Train Accident while playing cricket. He got both femoral shaft fractured severely. He was taken to Jinnah Post Graduate Medical Centre (JPMC) where his left leg was amputated at above knee level and right leg was opened & fixed by reduction internally, luckily bone healed moderately with the passage of time. Methods: In Squatter settlements of Karachi Sultanabad, a survey was conducted in two sectors. Disability screening questionnaire was developed, collaboration with community through household visits, outreach sessions 23cases of disabled were identified who were socialized through sports, Musical program and get-together was organized with stockholder for creating awareness among community and parent’s. Collaboration was established with different NGOs, Government, stakeholders and community support for establishment of Physiotherapy Center. During home visit it was identified that Shiraz was on bed since last 1 year, his family could not afforded cost of physiotherapist and medical consultation due to poverty. Parents counseling was done mentioning that Shiraz needed to take treatment. After motivation his parents agreed for treatment. He was consulted by an orthopedic surgeon in AKUH, Who referred to DMC University of Health Science for rehabilitation service. There he was assessed and referred for Community Based Physiotherapy Centre Sultanabad. Physiotherapist visited home along with Coordinator for Special children and assessed him regularly, planned Physiotherapy treatment for abdominal, high muscles strutting exercise foot muscles strengthening exercise, knee mobilization weight bearing from partial to full weight gradually, also strengthen exercise were given for residual limb as the boy was dependent on it. He was also provided by an artificial leg and training was done. Result: Shiraz is now fully mobile, he can walk independently even out of home, functional ability progress improved and dependency factors reduced. It was difficult but not impossible. We all have sympathy but if we have empathy then we can rehabilitate the community in a better way. His parents are very happy and also the community is surprised to see him in such better condition. Conclusion: Combined efforts of physiotherapist, Coordinator of special children, community and parents made a drastic change in Shiraz’s case by continuously motivating him for better outcome. He is going to school regularly without support. Since he belongs to a poor family he faces financial constraints for education and clinical follow ups regularly.

Keywords: femoral shaft fracture, trauma, orthopedic surgeon, physiotherapy treatment

Procedia PDF Downloads 243
25 Study of Operating Conditions Impact on Physicochemical and Functional Properties of Dairy Powder Produced by Spray-drying

Authors: Adeline Meriaux, Claire Gaiani, Jennifer Burgain, Frantz Fournier, Lionel Muniglia, Jérémy Petit

Abstract:

Spray-drying process is widely used for the production of dairy powders for food and pharmaceuticals industries. It involves the atomization of a liquid feed into fine droplets, which are subsequently dried through contact with a hot air flow. The resulting powders permit transportation cost reduction and shelf life increase but can also exhibit various interesting functionalities (flowability, solubility, protein modification or acid gelation), depending on operating conditions and milk composition. Indeed, particles porosity, surface composition, lactose crystallization, protein denaturation, protein association or crust formation may change. Links between spray-drying conditions and physicochemical and functional properties of powders were investigated by a design of experiment methodology and analyzed by principal component analysis. Quadratic models were developed, and multicriteria optimization was carried out by the use of genetic algorithm. At the time of abstract submission, verification spray-drying trials are ongoing. To perform experiments, milk from dairy farm was collected, skimmed, froze and spray-dried at different air pressure (between 1 and 3 bars) and outlet temperature (between 75 and 95 °C). Dry matter, minerals content and proteins content were determined by standard method. Solubility index, absorption index and hygroscopicity were determined by method found in literature. Particle size distribution were obtained by laser diffraction granulometry. Location of the powder color in the Cielab color space and water activity were characterized by a colorimeter and an aw-value meter, respectively. Flow properties were characterized with FT4 powder rheometer; in particular, compressibility and shearing test were performed. Air pressure and outlet temperature are key factors that directly impact the drying kinetics and powder characteristics during spray-drying process. It was shown that the air pressure affects the particle size distribution by impacting the size of droplet exiting the nozzle. Moreover, small particles lead to more cohesive powder and less saturated color of powders. Higher outlet temperature results in lower moisture level particles which are less sticky and can explain a spray-drying yield increase and the higher cohesiveness; it also leads to particle with low water activity because of the intense evaporation rate. However, it induces a high hygroscopicity, thus, powders tend to get wet rapidly if they are not well stored. On the other hand, high temperature provokes a decrease of native serum proteins, which is positively correlated to gelation properties (gel point and firmness). Partial denaturation of serum proteins can improve functional properties of powder. The control of air pressure and outlet temperature during the spray-drying process significantly affects the physicochemical and functional properties of powder. This study permitted to better understand the links between physicochemical and functional properties of powder to identify correlations between air pressure and outlet temperature. Therefore, mathematical models have been developed, and the use of genetic algorithm will allow the optimization of powder functionalities.

Keywords: dairy powders, spray-drying, powders functionalities, design of experiment

Procedia PDF Downloads 65
24 Enhancing the Implementation Strategy of Simultaneous Operations (SIMOPS) for the Major Turnaround at Pertamina Plaju Refinery

Authors: Fahrur Rozi, Daniswara Krisna Prabatha, Latief Zulfikar Chusaini

Abstract:

Amidst the backdrop of Pertamina Plaju Refinery, which stands as the oldest and historically less technologically advanced among Pertamina's refineries, lies a unique challenge. Originally integrating facilities established by Shell in 1904 and Stanvac (originally Standard Oil) in 1926, the primary challenge at Plaju Refinery does not solely revolve around complexity; instead, it lies in ensuring reliability, considering its operational history of over a century. After centuries of existence, Plaju Refinery has never undergone a comprehensive major turnaround encompassing all its units. The usual practice involves partial turnarounds that are sequentially conducted across its primary, secondary, and tertiary units (utilities and offsite). However, a significant shift is on the horizon. In the Q-IV of 2023, the refinery embarks on its first-ever major turnaround since its establishment. This decision was driven by the alignment of maintenance timelines across various units. Plaju Refinery's major turnaround was scheduled for October-November 2023, spanning 45 calendar days, with the objective of enhancing the operational reliability of all refinery units. The extensive job list for this turnaround encompasses 1583 tasks across 18 units/areas, involving approximately 9000 contracted workers. In this context, the Strategy of Simultaneous Operations (SIMOPS) execution emerges as a pivotal tool to optimize time efficiency and ensure safety. A Hazard Effect Management Process (HEMP) has been employed to assess the risk ratings of each task within the turnaround. Out of the tasks assessed, 22 are deemed high-risk and necessitate mitigation. The SIMOPS approach serves as a preventive measure against potential incidents. It is noteworthy that every turnaround period at Pertamina Plaju Refinery involves SIMOPS-related tasks. In this context, enhancing the implementation strategy of "Simultaneous Operations (SIMOPS)" becomes imperative to minimize the occurrence of incidents. At least four improvements have been introduced in the enhancement process for the major turnaround at Refinery Plaju. The first improvement involves conducting systematic risk assessment and potential hazard mitigation studies for SIMOPS tasks before task execution, as opposed to the previous on-site approach. The second improvement includes the completion of SIMOPS Job Mitigation and Work Matrices Sheets, which was often neglected in the past. The third improvement emphasizes comprehensive awareness to workers/contractors regarding potential hazards and mitigation strategies for SIMOPS tasks before and during the major turnaround. The final improvement is the introduction of a daily program for inspecting and observing work in progress for SIMOPS tasks. Prior to these improvements, there was no established program for monitoring ongoing activities related to SIMOPS tasks during the turnaround. This study elucidates the steps taken to enhance SIMOPS within Pertamina, drawing from the experiences of Plaju Refinery as a guide. A real actual case study will be provided from our experience in the operational unit. In conclusion, these efforts are essential for the success of the first-ever major turnaround at Plaju Refinery, with the SIMOPS strategy serving as a central component. Based on these experiences, enhancements have been made to Pertamina's official Internal Guidelines for Executing SIMOPS Risk Mitigation, benefiting all Pertamina units.

Keywords: process safety management, turn around, oil refinery, risk assessment

Procedia PDF Downloads 74
23 Research Cooperation between of Ukraine in Terms of Food Chain Safety Control in the Frame of MICRORISK Project

Authors: Kinga Wieczorek, Elzbieta Kukier, Remigiusz Pomykala, Beata Lachtara, Renata Szewczyk, Krzysztof Kwiatek, Jacek Osek

Abstract:

The MICRORISK project (Research cooperation in assessment of microbiological hazard and risk in the food chain) was funded by the European Commission under the FP7 PEOPLE 2012 IRSES call within the International Research Staff Exchange Scheme of Marie Curie Action and realized during years from 2014 to 2015. The main aim of the project was to establish a cooperation between the European Union (EU) and the third State in the area important from the public health point of view. The following organizations have been engaged in the activity: National Veterinary Research Institute (NVRI) in Pulawy, Poland (coordinator), French Agency for Food, Environmental and Occupational Health & Safety (ANSES) in Maisons Alfort, France, National Scientific Center Institute of Experimental and Clinical Veterinary Medicine (NSC IECVM), Kharkov and State Scientific and Research Institute of Laboratory Diagnostics and Veterinary and Sanitary Expertise (SSRILDVSE) Kijev Ukraine. The results of the project showed that Ukraine used microbiological criteria in accordance with Commission Regulation (EC) No 2073/2005 of 15 November 2005 on microbiological criteria for foodstuffs. Compliance concerns both the criteria applicable at the stage of food safety (retail trade), as well as evaluation criteria and process hygiene in food production. In this case, the Ukrainian legislation also provides application of the criteria that do not have counterparts in the food law of the European Union, and are based on the provisions of Ukrainian law. Partial coherence of the Ukrainian and EU legal requirements in terms of microbiological criteria for food and feed concerns microbiological parameters such as total plate count, coliforms, coagulase-positive Staphylococcus spp., including S. aureus. Analysis of laboratory methods used for microbiological hazards control in food production chain has shown that most methods used in the EU are well-known by Ukrainian partners, and many of them are routinely applied as the only standards in the laboratory practice or simultaneously used with Ukrainian methods. The area without any legislation, where the EU regulation and analytical methods should be implemented is the area of Shiga toxin producing E. coli, including E. coli O157 and staphylococcal enterotoxin detection. During the project, the analysis of the existing Ukrainian and EU data concerning the prevalence of the most important food-borne pathogens on different stages of food production chain was performed. Particularly, prevalence of Salmonella spp., Campylobacter spp., L. monocytogenes as well as clostridia was examined. The analysis showed that poultry meat still appears to be the most important food-borne source of Campylobacter and Salmonella in the UE. On the other hand, L. monocytogenes were seldom detected above the legal safety limit (100 cfu/g) among the EU countries. Moreover, the analysis revealed the lack of comprehensive data regarding the prevalence of the most important food-borne pathogens in Ukraine. The results of the MICRORISK project are networking activities among researches originations participating in the tasks will help with a better recognition of each other regarding very important, from the public health point of view areas such as microbiological hazards in the food production chain and finally will help to improve food quality and safety for consumers.

Keywords: cooperation, European Union, food chain safety, food law, microbiological risk, Microrisk, Poland, Ukraine

Procedia PDF Downloads 375
22 Hydrogen Production Using an Anion-Exchange Membrane Water Electrolyzer: Mathematical and Bond Graph Modeling

Authors: Hugo Daneluzzo, Christelle Rabbat, Alan Jean-Marie

Abstract:

Water electrolysis is one of the most advanced technologies for producing hydrogen and can be easily combined with electricity from different sources. Under the influence of electric current, water molecules can be split into oxygen and hydrogen. The production of hydrogen by water electrolysis favors the integration of renewable energy sources into the energy mix by compensating for their intermittence through the storage of the energy produced when production exceeds demand and its release during off-peak production periods. Among the various electrolysis technologies, anion exchange membrane (AEM) electrolyser cells are emerging as a reliable technology for water electrolysis. Modeling and simulation are effective tools to save time, money, and effort during the optimization of operating conditions and the investigation of the design. The modeling and simulation become even more important when dealing with multiphysics dynamic systems. One of those systems is the AEM electrolysis cell involving complex physico-chemical reactions. Once developed, models may be utilized to comprehend the mechanisms to control and detect flaws in the systems. Several modeling methods have been initiated by scientists. These methods can be separated into two main approaches, namely equation-based modeling and graph-based modeling. The former approach is less user-friendly and difficult to update as it is based on ordinary or partial differential equations to represent the systems. However, the latter approach is more user-friendly and allows a clear representation of physical phenomena. In this case, the system is depicted by connecting subsystems, so-called blocks, through ports based on their physical interactions, hence being suitable for multiphysics systems. Among the graphical modelling methods, the bond graph is receiving increasing attention as being domain-independent and relying on the energy exchange between the components of the system. At present, few studies have investigated the modelling of AEM systems. A mathematical model and a bond graph model were used in previous studies to model the electrolysis cell performance. In this study, experimental data from literature were simulated using OpenModelica using bond graphs and mathematical approaches. The polarization curves at different operating conditions obtained by both approaches were compared with experimental ones. It was stated that both models predicted satisfactorily the polarization curves with error margins lower than 2% for equation-based models and lower than 5% for the bond graph model. The activation polarization of hydrogen evolution reactions (HER) and oxygen evolution reactions (OER) were behind the voltage loss in the AEM electrolyzer, whereas ion conduction through the membrane resulted in the ohmic loss. Therefore, highly active electro-catalysts are required for both HER and OER while high-conductivity AEMs are needed for effectively lowering the ohmic losses. The bond graph simulation of the polarisation curve for operating conditions at various temperatures has illustrated that voltage increases with temperature owing to the technology of the membrane. Simulation of the polarisation curve can be tested virtually, hence resulting in reduced cost and time involved due to experimental testing and improved design optimization. Further improvements can be made by implementing the bond graph model in a real power-to-gas-to-power scenario.

Keywords: hydrogen production, anion-exchange membrane, electrolyzer, mathematical modeling, multiphysics modeling

Procedia PDF Downloads 91
21 A Study on the Relation among Primary Care Professionals Serving Disadvantaged Community, Socioeconomic Status, and Adverse Health Outcome

Authors: Chau-Kuang Chen, Juanita Buford, Colette Davis, Raisha Allen, John Hughes, James Tyus, Dexter Samuels

Abstract:

During the post-Civil War era, the city of Nashville, Tennessee, had the highest mortality rate in the country. The elevated death and disease among ex-slaves were attributable to the unavailability of healthcare. To address the paucity of healthcare services, the College, an institution with the mission of educating minority professionals and serving the under served population, was established in 1876. This study was designed to assess if the College has accomplished its mission of serving under served communities and contributed to the elimination of health disparities in the United States. The study objective was to quantify the impact of socioeconomic status and adverse health outcomes on primary care professionals serving disadvantaged communities, which, in turn, was significantly associated with a health professional shortage score partly designated by the U.S. Department of Health and Human Services. Various statistical methods were used to analyze the alumni data in years 1975 – 2013. K-means cluster analysis was utilized to identify individual medical and dental graduates into the cluster groups of the practice communities (Disadvantaged or Non-disadvantaged Communities). Discriminant analysis was implemented to verify the classification accuracy of cluster analysis. The independent t test was performed to detect the significant mean differences for clustering and criterion variables between Disadvantaged and Non-disadvantaged Communities, which confirms the “content” validity of cluster analysis model. Chi-square test was used to assess if the proportion of cluster groups (Disadvantaged vs Non-disadvantaged Communities) were consistent with that of practicing specialties (primary care vs. non-primary care). Finally, the partial least squares (PLS) path model was constructed to explore the “construct” validity of analytics model by providing the magnitude effects of socioeconomic status and adverse health outcome on primary care professionals serving disadvantaged community. The social ecological theory along with statistical models mentioned was used to establish the relationship between medical and dental graduates (primary care professionals serving disadvantaged communities) and their social environments (socioeconomic status, adverse health outcome, health professional shortage score). Based on social ecological framework, it was hypothesized that the impact of socioeconomic status and adverse health outcomes on primary care professionals serving disadvantaged communities could be quantified. Also, primary care professionals serving disadvantaged communities related to a health professional shortage score can be measured. Adverse health outcome (adult obesity rate, age-adjusted premature mortality rate, and percent of people diagnosed with diabetes) could be affected by the latent variable, namely socioeconomic status (unemployment rate, poverty rate, percent of children who were in free lunch programs, and percent of uninsured adults). The study results indicated that approximately 83% (3,192/3,864) of the College’s medical and dental graduates from 1975 to 2013 were practicing in disadvantaged communities. In addition, the PLS path modeling demonstrated that primary care professionals serving disadvantaged community was significantly associated with socioeconomic status and adverse health outcome (p < .001). In summary, the majority of medical and dental graduates from the College provide primary care services to disadvantaged communities with low socioeconomic status and high adverse health outcomes, which demonstrate that the College has fulfilled its mission.

Keywords: disadvantaged community, K-means cluster analysis, PLS path modeling, primary care

Procedia PDF Downloads 550
20 Integrated Mathematical Modeling and Advance Visualization of Magnetic Nanoparticle for Drug Delivery, Drug Release and Effects to Cancer Cell Treatment

Authors: Norma Binti Alias, Che Rahim Che The, Norfarizan Mohd Said, Sakinah Abdul Hanan, Akhtar Ali

Abstract:

This paper discusses on the transportation of magnetic drug targeting through blood within vessels, tissues and cells. There are three integrated mathematical models to be discussed and analyze the concentration of drug and blood flow through magnetic nanoparticles. The cell therapy brought advancement in the field of nanotechnology to fight against the tumors. The systematic therapeutic effect of Single Cells can reduce the growth of cancer tissue. The process of this nanoscale phenomena system is able to measure and to model, by identifying some parameters and applying fundamental principles of mathematical modeling and simulation. The mathematical modeling of single cell growth depends on three types of cell densities such as proliferative, quiescent and necrotic cells. The aim of this paper is to enhance the simulation of three types of models. The first model represents the transport of drugs by coupled partial differential equations (PDEs) with 3D parabolic type in a cylindrical coordinate system. This model is integrated by Non-Newtonian flow equations, leading to blood liquid flow as the medium for transportation system and the magnetic force on the magnetic nanoparticles. The interaction between the magnetic force on drug with magnetic properties produces induced currents and the applied magnetic field yields forces with tend to move slowly the movement of blood and bring the drug to the cancer cells. The devices of nanoscale allow the drug to discharge the blood vessels and even spread out through the tissue and access to the cancer cells. The second model is the transport of drug nanoparticles from the vascular system to a single cell. The treatment of the vascular system encounters some parameter identification such as magnetic nanoparticle targeted delivery, blood flow, momentum transport, density and viscosity for drug and blood medium, intensity of magnetic fields and the radius of the capillary. Based on two discretization techniques, finite difference method (FDM) and finite element method (FEM), the set of integrated models are transformed into a series of grid points to get a large system of equations. The third model is a single cell density model involving the three sets of first order PDEs equations for proliferating, quiescent and necrotic cells change over time and space in Cartesian coordinate which regulates under different rates of nutrients consumptions. The model presents the proliferative and quiescent cell growth depends on some parameter changes and the necrotic cells emerged as the tumor core. Some numerical schemes for solving the system of equations are compared and analyzed. Simulation and computation of the discretized model are supported by Matlab and C programming languages on a single processing unit. Some numerical results and analysis of the algorithms are presented in terms of informative presentation of tables, multiple graph and multidimensional visualization. As a conclusion, the integrated of three types mathematical modeling and the comparison of numerical performance indicates that the superior tool and analysis for solving the complete set of magnetic drug delivery system which give significant effects on the growth of the targeted cancer cell.

Keywords: mathematical modeling, visualization, PDE models, magnetic nanoparticle drug delivery model, drug release model, single cell effects, avascular tumor growth, numerical analysis

Procedia PDF Downloads 428
19 Agenesis of the Corpus Callosum: The Role of Neuropsychological Assessment with Implications to Psychosocial Rehabilitation

Authors: Ron Dick, P. S. D. V. Prasadarao, Glenn Coltman

Abstract:

Agenesis of the corpus callosum (ACC) is a failure to develop corpus callosum - the large bundle of fibers of the brain that connects the two cerebral hemispheres. It can occur as a partial or complete absence of the corpus callosum. In the general population, its estimated prevalence rate is 1 in 4000 and a wide range of genetic, infectious, vascular, and toxic causes have been attributed to this heterogeneous condition. The diagnosis of ACC is often achieved by neuroimaging procedures. Though persons with ACC can perform normally on intelligence tests they generally present with a range of neuropsychological and social deficits. The deficit profile is characterized by poor coordination of motor movements, slow reaction time, processing speed and, poor memory. Socially, they present with deficits in communication, language processing, the theory of mind, and interpersonal relationships. The present paper illustrates the role of neuropsychological assessment with implications to psychosocial management in a case of agenesis of the corpus callosum. Method: A 27-year old left handed Caucasian male with a history of ACC was self-referred for a neuropsychological assessment to assist him in his employment options. Parents noted significant difficulties with coordination and balance at an early age of 2-3 years and he was diagnosed with dyspraxia at the age of 14 years. History also indicated visual impairment, hypotonia, poor muscle coordination, and delayed development of motor milestones. MRI scan indicated agenesis of the corpus callosum with ventricular morphology, widely spaced parallel lateral ventricles and mild dilatation of the posterior horns; it also showed colpocephaly—a disproportionate enlargement of the occipital horns of the lateral ventricles which might be affecting his motor abilities and visual defects. The MRI scan ruled out other structural abnormalities or neonatal brain injury. At the time of assessment, the subject presented with such problems as poor coordination, slowed processing speed, poor organizational skills and time management, and difficulty with social cues and facial expressions. A comprehensive neuropsychological assessment was planned and conducted to assist in identifying the current neuropsychological profile to facilitate the formulation of a psychosocial and occupational rehabilitation programme. Results: General intellectual functioning was within the average range and his performance on memory-related tasks was adequate. Significant visuospatial and visuoconstructional deficits were evident across tests; constructional difficulties were seen in tasks such as copying a complex figure, building a tower and manipulating blocks. Poor visual scanning ability and visual motor speed were evident. Socially, the subject reported heightened social anxiety, difficulty in responding to cues in the social environment, and difficulty in developing intimate relationships. Conclusion: Persons with ACC are known to present with specific cognitive deficits and problems in social situations. Findings from the current neuropsychological assessment indicated significant visuospatial difficulties, poor visual scanning and problems in social interactions. His general intellectual functioning was within the average range. Based on the findings from the comprehensive neuropsychological assessment, a structured psychosocial rehabilitation programme was developed and recommended.

Keywords: agenesis, callosum, corpus, neuropsychology, psychosocial, rehabilitation

Procedia PDF Downloads 276
18 Quantitative Texture Analysis of Shoulder Sonography for Rotator Cuff Lesion Classification

Authors: Chung-Ming Lo, Chung-Chien Lee

Abstract:

In many countries, the lifetime prevalence of shoulder pain is up to 70%. In America, the health care system spends 7 billion per year about the healthy issues of shoulder pain. With respect to the origin, up to 70% of shoulder pain is attributed to rotator cuff lesions This study proposed a computer-aided diagnosis (CAD) system to assist radiologists classifying rotator cuff lesions with less operator dependence. Quantitative features were extracted from the shoulder ultrasound images acquired using an ALOKA alpha-6 US scanner (Hitachi-Aloka Medical, Tokyo, Japan) with linear array probe (scan width: 36mm) ranging from 5 to 13 MHz. During examination, the postures of the examined patients are standard sitting position and are followed by the regular routine. After acquisition, the shoulder US images were drawn out from the scanner and stored as 8-bit images with pixel value ranging from 0 to 255. Upon the sonographic appearance, the boundary of each lesion was delineated by a physician to indicate the specific pattern for analysis. The three lesion categories for classification were composed of 20 cases of tendon inflammation, 18 cases of calcific tendonitis, and 18 cases of supraspinatus tear. For each lesion, second-order statistics were quantified in the feature extraction. The second-order statistics were the texture features describing the correlations between adjacent pixels in a lesion. Because echogenicity patterns were expressed via grey-scale. The grey-scale co-occurrence matrixes with four angles of adjacent pixels were used. The texture metrics included the mean and standard deviation of energy, entropy, correlation, inverse different moment, inertia, cluster shade, cluster prominence, and Haralick correlation. Then, the quantitative features were combined in a multinomial logistic regression classifier to generate a prediction model of rotator cuff lesions. Multinomial logistic regression classifier is widely used in the classification of more than two categories such as the three lesion types used in this study. In the classifier, backward elimination was used to select a feature subset which is the most relevant. They were selected from the trained classifier with the lowest error rate. Leave-one-out cross-validation was used to evaluate the performance of the classifier. Each case was left out of the total cases and used to test the trained result by the remaining cases. According to the physician’s assessment, the performance of the proposed CAD system was shown by the accuracy. As a result, the proposed system achieved an accuracy of 86%. A CAD system based on the statistical texture features to interpret echogenicity values in shoulder musculoskeletal ultrasound was established to generate a prediction model for rotator cuff lesions. Clinically, it is difficult to distinguish some kinds of rotator cuff lesions, especially partial-thickness tear of rotator cuff. The shoulder orthopaedic surgeon and musculoskeletal radiologist reported greater diagnostic test accuracy than general radiologist or ultrasonographers based on the available literature. Consequently, the proposed CAD system which was developed according to the experiment of the shoulder orthopaedic surgeon can provide reliable suggestions to general radiologists or ultrasonographers. More quantitative features related to the specific patterns of different lesion types would be investigated in the further study to improve the prediction.

Keywords: shoulder ultrasound, rotator cuff lesions, texture, computer-aided diagnosis

Procedia PDF Downloads 284
17 Clinico-pathological Study of Xeroderma Pigmentosa: A Case Series of Eight Cases

Authors: Kakali Roy, Sahana P. Raju, Subhra Dhar, Sandipan Dhar

Abstract:

Introduction: Xeroderma pigmentosa (XP) is a rare inherited (autosomal recessive) disease resulting from impairment in DNA repair that involves recognition and repair of ultraviolet radiation (UVR) induced DNA damage in the nucleotide excision repair pathway. Which results in increased photosensitivity, UVR induced damage to skin and eye, increased susceptibility of skin and ocular cancer, and progressive neurodegeneration in some patients. XP is present worldwide, with higher incidence in areas having frequent consanguinity. Being extremely rare, there is limited literature on XP and associated complications. Here, the clinico-pathological experience (spectrum of clinical presentation, histopathological findings of malignant skin lesions, and progression) of managing 8 cases of XP is presented. Methodology: A retrospective study was conducted in a pediatric tertiary care hospital in eastern India during a ten-year period from 2013 to 2022. A clinical diagnosis was made based on severe sun burn or premature photo-aging and/or onset of cutaneous malignancies at early age (1st decade) in background of consanguinity and autosomal recessive inheritance pattern in family. Results: The mean age of presentation was 1.2 years (range of 7month-3years), while three children presented during their infancy. Male to female ratio was 5:3, and all were born of consanguineous marriage. They presented with dermatological manifestations (100%) followed by ophthalmic (75%) and/or neurological symptoms (25%). Patients had normal skin at birth but soon developed extreme sensitivity to UVR in the form of exaggerated sun tanning, burning, and blistering on minimal sun exposure, followed by abnormal skin pigmentation like freckles and lentiginosis. Subsequently, over time there was progressive xerosis, atrophy, wrinkling, and poikiloderma. Six patients had varied degree of ocular involvement, while three of them had severe manifestation, including madarosis, tylosis, ectropion, Lagopthalmos, Pthysis bulbi, clouding and scarring of the cornea with complete or partial loss of vision, and ophthalmic malignancies. 50% (n=4) cases had skin and ocular pre-malignant (actinic keratosis) and malignant lesions, including melanoma and non melanoma skin cancer (NMSC) like squamous cell carcinoma (SCC) and basal cell carcinoma (BCC) in their early childhood. One patient had simultaneous occurrence of multiple malignancies together (SCC, BCC, and melanoma). Subnormal intelligence was noticed as neurological feature, and none had sensory neural hearing loss, microcephaly, neuroregression, or neurdeficit. All the patients had been being managed by a multidisciplinary team of pediatricians, dermatologists, ophthalmologists, neurologists and psychiatrists. Conclusion: Although till date there is no complete cure for XP and the disease is ultimately fatal. But increased awareness, early diagnosis followed by persistent vigorous protection from UVR, and regular screening for early detection of malignancies along with psychological support can drastically improve patients’ quality of life and life expectancy. Further research is required on formulating optimal management of XP, specifically the role and possibilities of gene therapy in XP.

Keywords: childhood malignancies, dermato-pathological findings, eastern India, Xeroderma pigmentosa

Procedia PDF Downloads 76
16 Obesity and Lifestyle of Students in Roumanian Southeastern Region

Authors: Mariana Stuparu-Cretu, Doina-Carina Voinescu, Rodica-Mihaela Dinica, Daniela Borda, Camelia Vizireanu, Gabriela Iordachescu, Camelia Busila

Abstract:

Obesity is involved in the etiology or acceleration of progression of important non-communicable diseases, such as: metabolic, cardiovascular, rheumatological, oncological and depression. It is a need to prevent the obesity occurrence, like a key link in disease management. From this point of view, the best approach is to early educate youngsters upon the need for a healthy nutrition lifestyle associated with constant physical activities. The objective of the study was to assess correlations between weight condition, physical activities and food preferences of students from South East Romania. Questionnaires were applied on high school students in Galati: 1006 girls and 880 boys, aged between 14 and 19 years (being approved by Local School Inspectorate and the Ethics Committee of the 'Dunarea de Jos' University of Galati). The collected answers have been statistically processed by using the multivariate regression method (PLS2) by Unscramble X program (Camo, Norway). Multiple variables such as age group, body mass index, nutritional habits and physical activities were separately analysed, depending on gender and general mathematical models were proposed to explain the obesity trend at an early age. The study results show that overweight and obesity are present in less than a fifth of the adolescents who were surveyed. With a very small variation and a strong correlation of over 86% for 99% of the cases, a general preference for sweet foods, nocturnal eating associated with computer work and a reduced period of physical activity is noticed for girls. In addition, the overweight girls consume sweet juices and alcohol, although a percentage of them also practice the gym. There is also a percentage of the normoponderal girls that consume high caloric foods which predispose this group to turn into overweight cases in time. Within the studied group, statistics for the boys show a positive correlation of almost 87% for over 96% of cases. They prefer high calories foods, fast food, and sweet juices, and perform medium physical activities. Both overweight and underweight boys are more sedentary. Over 15% of girls and over a quarter of boys consume alcohol. All these bad eating habits seem to increase with age, for both sexes. To conclude, obesity and overweight assessed in adolescents in S-E Romania reveal nonsignificant percentage differences between boys and girls. However, young people in this area of the country are sedentary in general; a significant percentage prefers sweets / sweet juices / fast-food and practice computer nourishing. The authors consider that at this age, it is very useful to adapt nutritional education by new methods of food processing and market supply. This would require an early understanding of the difference among foods and nutrients and the benefits of physical activities integrated into the healthy current lifestyle, as a measure for preventing and managing non-communicable chronic diseases related to nutritional errors and sedentarism. Acknowledgment— This study has been partial founded by the Francophone University Agency, Project Réseau régional dans le domaine de la santé, la nutrition et la sécurité alimentaire (SaIN), no.21899/ 06.09.2017.

Keywords: adolescents, body mass index, nutritional habits, obesity, physical activity

Procedia PDF Downloads 258
15 Application of Electrical Resistivity Surveys on Constraining Causes of Highway Pavement Failure along Ajaokuta-Anyigba Road, North Central Nigeria

Authors: Moroof, O. Oloruntola, Sunday Oladele, Daniel, O. Obasaju, Victor, O Ojekunle, Olateju, O. Bayewu, Ganiyu, O. Mosuro

Abstract:

Integrated geophysical methods involving Vertical Electrical Sounding (VES) and 2D resistivity survey were deployed to gain an insight into the influence of the two varying rock types (mica-schist and granite gneiss) underlying the road alignment to the incessant highway failure along Ajaokuta-Anyigba, North-central Nigeria. The highway serves as a link-road for the single largest cement factory in Africa (Dangote Cement Factory) and two major ceramic industries to the capital (Abuja) via Lokoja. 2D Electrical Resistivity survey (Dipole-Dipole Array) and Vertical Electrical Sounding (VES) (Schlumberger array) were employed. Twenty-two (22) 2D profiles were occupied, twenty (20) conducted about 1 m away from the unstable section underlain by mica-schist with profile length each of approximately 100 m. Two (2) profiles were conducted about 1 m away from the stable section with a profile length of 100 m each due to barriers caused by the drainage system and outcropping granite gneiss at the flanks of the road. A spacing of 2 m was used for good image resolution of the near-surface. On each 2D profile, a range of 1-3 VES was conducted; thus, forty-eight (48) soundings were acquired. Partial curve matching and WinResist software were used to obtain the apparent and true resistivity values of the 1D survey, while DiprofWin software was used for processing the 2-D survey. Two exposed lithologic sections caused by abandoned river channels adjacent to two profiles as well as the knowledge of the geology of the area helped to constrain the VES and 2D processing and interpretation. Generally, the resistivity values obtained reflect the parent rock type, degree of weathering, moisture content and competency of the tested area. Resistivity values < 100; 100 – 950; 1000 – 2000 and > 2500 ohms-m were interpreted as clay, weathered layer, partly weathered layer and fresh basement respectively. The VES results and 2-D resistivity structures along the unstable segment showed similar lithologic characteristics and sequences dominated by clayey substratum for depths range of 0 – 42.2 m. The clayey substratum is a product of intensive weathering of the parent rock (mica-schist) and constitutes weak foundation soils, causing highway failure. This failure is further exacerbated by several heavy-duty trucks which ply the section round the clock due to proximity to two major ceramic industries in the state and lack of drainage system. The two profiles on the stable section show 2D structures that are remarkably different from those of the unstable section with very thin topsoils, higher resistivity weathered substratum (indicating the presence of coarse fragments from the parent rock) and shallow depth to the basement (1.0 – 7. 1 m). Also, the presence of drainage and lower volume of heavy-duty trucks are contributors to the pavement stability of this section of the highway. The resistivity surveys effectively delineated two contrasting soil profiles of the subbase/subgrade that reflect variation in the mineralogy of underlying parent rocks.

Keywords: clay, geophysical methods, pavement, resistivity

Procedia PDF Downloads 167
14 Potential Benefits and Adaptation of Climate Smart Practices by Small Farmers Under Three-Crop Rice Production System in Vietnam

Authors: Azeem Tariq, Stephane De Tourdonnet, Lars Stoumann Jensen, Reiner Wassmann, Bjoern Ole Sander, Quynh Duong Vu, Trinh Van Mai, Andreas De Neergaard

Abstract:

Rice growing area is increasing to meet the food demand of increasing population. Mostly, rice is growing on lowland, small landholder fields in most part of the world, which is one of the major sources of greenhouse gases (GHG) emissions from agriculture fields. The strategies such as, altering water and residues (carbon) management practices are assumed to be essential to mitigate the GHG emissions from flooded rice system. The actual implementation and potential of these measures on small farmer fields is still challenging. A field study was conducted on red river delta in Northern Vietnam to identify the potential challenges and barriers to the small rice farmers for implementation of climate smart rice practices. The objective of this study was to develop and access the feasibility of climate smart rice prototypes under actual farmer conditions. Field and scientific oriented framework was used to meet our objective. The methodological framework composed of six steps: i) identification of stakeholders and possible options, ii) assessment of barrios, drawbacks/advantages of new technologies, iii) prototype design, iv) assessment of mitigation potential of each prototype, v) scenario building and vi) scenario assessment. A farm survey was conducted to identify the existing farm practices and major constraints of small rice farmers. We proposed the two water (pre transplant+midseason drainage and early+midseason drainage) and one straw (full residue incorporation) management option keeping in views the farmers constraints and barriers for implementation. To test new typologies with existing prototypes (midseason drainage, partial residue incorporation) at farmer local conditions, a participatory field experiment was conducted for two consecutive rice seasons at farmer fields. Following the results of each season a workshop was conducted with stakeholders (farmers, village leaders, cooperatives, irrigation staff, extensionists, agricultural officers) at local and district level to get feedbacks on new tested prototypes and to develop possible scenarios for climate smart rice production practices. The farm analysis survey showed that non-availability of cheap labor and lacks of alternatives for straw management influence the small farmers to burn the residues in the fields except to use for composting or other purposes. Our field results revealed that application of early season drainage significantly mitigates (40-60%) the methane emissions from residue incorporation. Early season drainage was more efficient and easy to control under cooperate manage system than individually managed water system, and it leads to both economic (9-11% high rice yield, low cost of production, reduced nutrient loses) and environmental (mitigate methane emissions) benefits. The participatory field study allows the assessment of adaptation potential and possible benefits of climate smart practices on small farmer fields. If farmers have no other residue management option, full residue incorporation with early plus midseason drainage is adaptable and beneficial (both environmentally and economically) management option for small rice farmers.

Keywords: adaptation, climate smart agriculture, constrainsts, smallholders

Procedia PDF Downloads 266
13 Structured Cross System Planning and Control in Modular Production Systems by Using Agent-Based Control Loops

Authors: Simon Komesker, Achim Wagner, Martin Ruskowski

Abstract:

In times of volatile markets with fluctuating demand and the uncertainty of global supply chains, flexible production systems are the key to an efficient implementation of a desired production program. In this publication, the authors present a holistic information concept taking into account various influencing factors for operating towards the global optimum. Therefore, a strategy for the implementation of multi-level planning for a flexible, reconfigurable production system with an alternative production concept in the automotive industry is developed. The main contribution of this work is a system structure mixing central and decentral planning and control evaluated in a simulation framework. The information system structure in current production systems in the automotive industry is rigidly hierarchically organized in monolithic systems. The production program is created rule-based with the premise of achieving uniform cycle time. This program then provides the information basis for execution in subsystems at the station and process execution level. In today's era of mixed-(car-)model factories, complex conditions and conflicts arise in achieving logistics, quality, and production goals. There is no provision for feedback loops of results from the process execution level (resources) and process supporting (quality and logistics) systems and reconsideration in the planning systems. To enable a robust production flow, the complexity of production system control is artificially reduced by the line structure and results, for example in material-intensive processes (buffers and safety stocks - two container principle also for different variants). The limited degrees of freedom of line production have produced the principle of progress figure control, which results in one-time sequencing, sequential order release, and relatively inflexible capacity control. As a result, modularly structured production systems such as modular production according to known approaches with more degrees of freedom are currently difficult to represent in terms of information technology. The remedy is an information concept that supports cross-system and cross-level information processing for centralized and decentralized decision-making. Through an architecture of hierarchically organized but decoupled subsystems, the paradigm of hybrid control is used, and a holonic manufacturing system is offered, which enables flexible information provisioning and processing support. In this way, the influences from quality, logistics, and production processes can be linked holistically with the advantages of mixed centralized and decentralized planning and control. Modular production systems also require modularly networked information systems with semi-autonomous optimization for a robust production flow. Dynamic prioritization of different key figures between subsystems should lead the production system to an overall optimum. The tasks and goals of quality, logistics, process, resource, and product areas in a cyber-physical production system are designed as an interconnected multi-agent-system. The result is an alternative system structure that executes centralized process planning and decentralized processing. An agent-based manufacturing control is used to enable different flexibility and reconfigurability states and manufacturing strategies in order to find optimal partial solutions of subsystems, that lead to a near global optimum for hybrid planning. This allows a robust near to plan execution with integrated quality control and intralogistics.

Keywords: holonic manufacturing system, modular production system, planning, and control, system structure

Procedia PDF Downloads 169
12 Modeling Competition Between Subpopulations with Variable DNA Content in Resource-Limited Microenvironments

Authors: Parag Katira, Frederika Rentzeperis, Zuzanna Nowicka, Giada Fiandaca, Thomas Veith, Jack Farinhas, Noemi Andor

Abstract:

Resource limitations shape the outcome of competitions between genetically heterogeneous pre-malignant cells. One example of such heterogeneity is in the ploidy (DNA content) of pre-malignant cells. A whole-genome duplication (WGD) transforms a diploid cell into a tetraploid one and has been detected in 28-56% of human cancers. If a tetraploid subclone expands, it consistently does so early in tumor evolution, when cell density is still low, and competition for nutrients is comparatively weak – an observation confirmed for several tumor types. WGD+ cells need more resources to synthesize increasing amounts of DNA, RNA, and proteins. To quantify resource limitations and how they relate to ploidy, we performed a PAN cancer analysis of WGD, PET/CT, and MRI scans. Segmentation of >20 different organs from >900 PET/CT scans were performed with MOOSE. We observed a strong correlation between organ-wide population-average estimates of Oxygen and the average ploidy of cancers growing in the respective organ (Pearson R = 0.66; P= 0.001). In-vitro experiments using near-diploid and near-tetraploid lineages derived from a breast cancer cell line supported the hypothesis that DNA content influences Glucose- and Oxygen-dependent proliferation-, death- and migration rates. To model how subpopulations with variable DNA content compete in the resource-limited environment of the human brain, we developed a stochastic state-space model of the brain (S3MB). The model discretizes the brain into voxels, whereby the state of each voxel is defined by 8+ variables that are updated over time: stiffness, Oxygen, phosphate, glucose, vasculature, dead cells, migrating cells and proliferating cells of various DNA content, and treat conditions such as radiotherapy and chemotherapy. Well-established Fokker-Planck partial differential equations govern the distribution of resources and cells across voxels. We applied S3MB on sequencing and imaging data obtained from a primary GBM patient. We performed whole genome sequencing (WGS) of four surgical specimens collected during the 1ˢᵗ and 2ⁿᵈ surgeries of the GBM and used HATCHET to quantify its clonal composition and how it changes between the two surgeries. HATCHET identified two aneuploid subpopulations of ploidy 1.98 and 2.29, respectively. The low-ploidy clone was dominant at the time of the first surgery and became even more dominant upon recurrence. MRI images were available before and after each surgery and registered to MNI space. The S3MB domain was initiated from 4mm³ voxels of the MNI space. T1 post and T2 flair scan acquired after the 1ˢᵗ surgery informed tumor cell densities per voxel. Magnetic Resonance Elastography scans and PET/CT scans informed stiffness and Glucose access per voxel. We performed a parameter search to recapitulate the GBM’s tumor cell density and ploidy composition before the 2ⁿᵈ surgery. Results suggest that the high-ploidy subpopulation had a higher Glucose-dependent proliferation rate (0.70 vs. 0.49), but a lower Glucose-dependent death rate (0.47 vs. 1.42). These differences resulted in spatial differences in the distribution of the two subpopulations. Our results contribute to a better understanding of how genomics and microenvironments interact to shape cell fate decisions and could help pave the way to therapeutic strategies that mimic prognostically favorable environments.

Keywords: tumor evolution, intra-tumor heterogeneity, whole-genome doubling, mathematical modeling

Procedia PDF Downloads 73
11 Electronic Raman Scattering Calibration for Quantitative Surface-Enhanced Raman Spectroscopy and Improved Biostatistical Analysis

Authors: Wonil Nam, Xiang Ren, Inyoung Kim, Masoud Agah, Wei Zhou

Abstract:

Despite its ultrasensitive detection capability, surface-enhanced Raman spectroscopy (SERS) faces challenges as a quantitative biochemical analysis tool due to the significant dependence of local field intensity in hotspots on nanoscale geometric variations of plasmonic nanostructures. Therefore, despite enormous progress in plasmonic nanoengineering of high-performance SERS devices, it is still challenging to quantitatively correlate the measured SERS signals with the actual molecule concentrations at hotspots. A significant effort has been devoted to developing SERS calibration methods by introducing internal standards. It has been achieved by placing Raman tags at plasmonic hotspots. Raman tags undergo similar SERS enhancement at the same hotspots, and ratiometric SERS signals for analytes of interest can be generated with reduced dependence on geometrical variations. However, using Raman tags still faces challenges for real-world applications, including spatial competition between the analyte and tags in hotspots, spectral interference, laser-induced degradation/desorption due to plasmon-enhanced photochemical/photothermal effects. We show that electronic Raman scattering (ERS) signals from metallic nanostructures at hotspots can serve as the internal calibration standard to enable quantitative SERS analysis and improve biostatistical analysis. We perform SERS with Au-SiO₂ multilayered metal-insulator-metal nano laminated plasmonic nanostructures. Since the ERS signal is proportional to the volume density of electron-hole occupation in hotspots, the ERS signals exponentially increase when the wavenumber is approaching the zero value. By a long-pass filter, generally used in backscattered SERS configurations, to chop the ERS background continuum, we can observe an ERS pseudo-peak, IERS. Both ERS and SERS processes experience the |E|⁴ local enhancements during the excitation and inelastic scattering transitions. We calibrated IMRS of 10 μM Rhodamine 6G in solution by IERS. The results show that ERS calibration generates a new analytical value, ISERS/IERS, insensitive to variations from different hotspots and thus can quantitatively reflect the molecular concentration information. Given the calibration capability of ERS signals, we performed label-free SERS analysis of living biological systems using four different breast normal and cancer cell lines cultured on nano-laminated SERS devices. 2D Raman mapping over 100 μm × 100 μm, containing several cells, was conducted. The SERS spectra were subsequently analyzed by multivariate analysis using partial least square discriminant analysis. Remarkably, after ERS calibration, MCF-10A and MCF-7 cells are further separated while the two triple-negative breast cancer cells (MDA-MB-231 and HCC-1806) are more overlapped, in good agreement with the well-known cancer categorization regarding the degree of malignancy. To assess the strength of ERS calibration, we further carried out a drug efficacy study using MDA-MB-231 and different concentrations of anti-cancer drug paclitaxel (PTX). After ERS calibration, we can more clearly segregate the control/low-dosage groups (0 and 1.5 nM), the middle-dosage group (5 nM), and the group treated with half-maximal inhibitory concentration (IC50, 15 nM). Therefore, we envision that ERS calibrated SERS can find crucial opportunities in label-free molecular profiling of complicated biological systems.

Keywords: cancer cell drug efficacy, plasmonics, surface-enhanced Raman spectroscopy (SERS), SERS calibration

Procedia PDF Downloads 138
10 Measurement System for Human Arm Muscle Magnetic Field and Grip Strength

Authors: Shuai Yuan, Minxia Shi, Xu Zhang, Jianzhi Yang, Kangqi Tian, Yuzheng Ma

Abstract:

The precise measurement of muscle activities is essential for understanding the function of various body movements. This work aims to develop a muscle magnetic field signal detection system based on mathematical analysis. Medical research has underscored that early detection of muscle atrophy, coupled with lifestyle adjustments such as dietary control and increased exercise, can significantly enhance muscle-related diseases. Currently, surface electromyography (sEMG) is widely employed in research as an early predictor of muscle atrophy. Nonetheless, the primary limitation of using sEMG to forecast muscle strength is its inability to directly measure the signals generated by muscles. Challenges arise from potential skin-electrode contact issues due to perspiration, leading to inaccurate signals or even signal loss. Additionally, resistance and phase are significantly impacted by adipose layers. The recent emergence of optically pumped magnetometers introduces a fresh avenue for bio-magnetic field measurement techniques. These magnetometers possess high sensitivity and obviate the need for a cryogenic environment unlike superconducting quantum interference devices (SQUIDs). They detect muscle magnetic field signals in the range of tens to thousands of femtoteslas (fT). The utilization of magnetometers for capturing muscle magnetic field signals remains unaffected by issues of perspiration and adipose layers. Since their introduction, optically pumped atomic magnetometers have found extensive application in exploring the magnetic fields of organs such as cardiac and brain magnetism. The optimal operation of these magnetometers necessitates an environment with an ultra-weak magnetic field. To achieve such an environment, researchers usually utilize a combination of active magnetic compensation technology with passive magnetic shielding technology. Passive magnetic shielding technology uses a magnetic shielding device built with high permeability materials to attenuate the external magnetic field to a few nT. Compared with more layers, the coils that can generate a reverse magnetic field to precisely compensate for the residual magnetic fields are cheaper and more flexible. To attain even lower magnetic fields, compensation coils designed by Biot-Savart law are involved to generate a counteractive magnetic field to eliminate residual magnetic fields. By solving the magnetic field expression of discrete points in the target region, the parameters that determine the current density distribution on the plane can be obtained through the conventional target field method. The current density is obtained from the partial derivative of the stream function, which can be represented by the combination of trigonometric functions. Optimization algorithms in mathematics are introduced into coil design to obtain the optimal current density distribution. A one-dimensional linear regression analysis was performed on the collected data, obtaining a coefficient of determination R2 of 0.9349 with a p-value of 0. This statistical result indicates a stable relationship between the peak-to-peak value (PPV) of the muscle magnetic field signal and the magnitude of grip strength. This system is expected to be a widely used tool for healthcare professionals to gain deeper insights into the muscle health of their patients.

Keywords: muscle magnetic signal, magnetic shielding, compensation coils, trigonometric functions.

Procedia PDF Downloads 57
9 Implementation of Green Deal Policies and Targets in Energy System Optimization Models: The TEMOA-Europe Case

Authors: Daniele Lerede, Gianvito Colucci, Matteo Nicoli, Laura Savoldi

Abstract:

The European Green Deal is the first internationally agreed set of measures to contrast climate change and environmental degradation. Besides the main target of reducing emissions by at least 55% by 2030, it sets the target of accompanying European countries through an energy transition to make the European Union into a modern, resource-efficient, and competitive net-zero emissions economy by 2050, decoupling growth from the use of resources and ensuring a fair adaptation of all social categories to the transformation process. While the general purpose to allow the realization of the purposes of the Green Deal already dates back to 2019, strategies and policies keep being developed coping with recent circumstances and achievements. However, general long-term measures like the Circular Economy Action Plan, the proposals to shift from fossil natural gas to renewable and low-carbon gases, in particular biomethane and hydrogen, and to end the sale of gasoline and diesel cars by 2035, will all have significant effects on energy supply and demand evolution across the next decades. The interactions between energy supply and demand over long-term time frames are usually assessed via energy system models to derive useful insights for policymaking and to address technological choices and research and development. TEMOA-Europe is a newly developed energy system optimization model instance based on the minimization of the total cost of the system under analysis, adopting a technologically integrated, detailed, and explicit formulation and considering the evolution of the system in partial equilibrium in competitive markets with perfect foresight. TEMOA-Europe is developed on the TEMOA platform, an open-source modeling framework totally implemented in Python, therefore ensuring third-party verification even on large and complex models. TEMOA-Europe is based on a single-region representation of the European Union and EFTA countries on a time scale between 2005 and 2100, relying on a set of assumptions for socio-economic developments based on projections by the International Energy Outlook and a large technological dataset including 7 sectors: the upstream and power sectors for the production of all energy commodities and the end-use sectors, including industry, transport, residential, commercial and agriculture. TEMOA-Europe also includes an updated hydrogen module considering its production, storage, transportation, and utilization. Besides, it can rely on a wide set of innovative technologies, ranging from nuclear fusion and electricity plants equipped with CCS in the power sector to electrolysis-based steel production processes and steel in the industrial sector – with a techno-economic characterization based on public literature – to produce insightful energy scenarios and especially to cope with the very long analyzed time scale. The aim of this work is to examine in detail the scheme of measures and policies for the realization of the purposes of the Green Deal and to transform them into a set of constraints and new socio-economic development pathways. Based on them, TEMOA-Europe will be used to produce and comparatively analyze scenarios to assess the consequences of Green Deal-related measures on the future evolution of the energy mix over the whole energy system in an economic optimization environment.

Keywords: European Green Deal, energy system optimization modeling, scenario analysis, TEMOA-Europe

Procedia PDF Downloads 105
8 Burkholderia Cepacia ST 767 Causing a Three Years Nosocomial Outbreak in a Hemodialysis Unit

Authors: Gousilin Leandra Rocha Da Silva, Stéfani T. A. Dantas, Bruna F. Rossi, Erika R. Bonsaglia, Ivana G. Castilho, Terue Sadatsune, Ary Fernandes Júnior, Vera l. M. Rall

Abstract:

Kidney failure causes decreased diuresis and accumulation of nitrogenous substances in the body. To increase patient survival, hemodialysis is used as a partial substitute for renal function. However, contamination of the water used in this treatment, causing bacteremia in patients, is a worldwide concern. The Burkholderia cepacia complex (Bcc), a group of bacteria with more than 20 species, is frequently isolated from hemodialysis water samples and comprises opportunistic bacteria, affecting immunosuppressed patients, due to its wide variety of virulence factors, in addition to innate resistance to several antimicrobial agents, contributing to the permanence in the hospital environment and to the pathogenesis in the host. The objective of the present work was to characterize molecularly and phenotypically Bcc isolates collected from the water and dialysate of the Hemodialysis Unit and from the blood of patients at a Public Hospital in Botucatu, São Paulo, Brazil, between 2019 and 2021. We used 33 Bcc isolates, previously obtained from blood cultures from patients with bacteremia undergoing hemodialysis treatment (2019-2021) and 24 isolates obtained from water and dialysate samples in a Hemodialysis Unit (same period). The recA gene was sequenced to identify the specific species among the Bcc group. All isolates were tested for the presence of some genes that encode virulence factors such as cblA, esmR, zmpA and zmpB. Considering the epidemiology of the outbreak, the Bcc isolates were molecularly characterized by Multi Locus Sequence Type (MLST) and by pulsed-field gel electrophoresis (PFGE). The verification and quantification of biofilm in a polystyrene microplate were performed by submitting the isolates to different incubation temperatures (20°C, average water temperature and 35°C, optimal temperature for group growth). The antibiogram was performed with disc diffusion tests on agar, using discs impregnated with cefepime (30µg), ceftazidime (30µg), ciprofloxacin (5µg), gentamicin (10µg), imipenem (10µg), amikacin 30µg), sulfametazol/trimethoprim (23.75/1.25µg) and ampicillin/sulbactam (10/10µg). The presence of ZmpB was identified in all isolates, while ZmpA was observed in 96.5% of the isolates, while none of them presented the cblA and esmR genes. The antibiogram of the 33 human isolates indicated that all were resistant to gentamicin, colistin, ampicillin/sulbactam and imipenem. 16 (48.5%) isolates were resistant to amikacin and lower rates of resistance were observed for meropenem, ceftazidime, cefepime, ciprofloxacin and piperacycline/tazobactam (6.1%). All isolates were sensitive to sulfametazol/trimethoprim, levofloxacin and tigecycline. As for the water isolates, resistance was observed only to gentamicin (34.8%) and imipenem (17.4%). According to PFGE results, all isolates obtained from humans and water belonged to the same pulsotype (1), which was identified by recA sequencing as B. cepacia¸, belonging to sequence type ST-767. By observing a single pulse type over three years, one can observe the persistence of this isolate in the pipeline, contaminating patients undergoing hemodialysis, despite the routine disinfection of water with peracetic acid. This persistence is probably due to the production of biofilm, which protects bacteria from disinfectants and, making this scenario more critical, several isolates proved to be multidrug-resistant (resistance to at least three groups of antimicrobials), turning the patient care even more difficult.

Keywords: hemodialysis, burkholderia cepacia, PFGE, MLST, multi drug resistance

Procedia PDF Downloads 99
7 Removing Maturational Influences from Female Youth Swimming: The Application of Corrective Adjustment Procedures

Authors: Clorinda Hogan, Shaun Abbott, Mark Halaki, Marcela Torres Catiglioni, Goshi Yamauchi, Lachlan Mitchell, James Salter, Michael Romann, Stephen Cobley

Abstract:

Introduction: Common annual age-group competition structures unintentionally introduce participation inequalities, performance (dis)advantages and selection biases due to the effect of maturational variation between youth swimmers. On this basis, there are implications for improving performance evaluation strategies. Therefore the aim was to: (1) To determine maturity timing distributions in female youth swimming; (2) quantify the relationship between maturation status and 100-m FC performance; (3) apply Maturational-based Corrective Adjustment Procedures (Mat-CAPs) for removal of maturational status performance influences. Methods: (1) Cross-sectional analysis of 663 female (10-15 years) swimmers who underwent assessment of anthropometrics (mass, height and sitting height) and estimations of maturity timing and offset. (2) 100-m front-crawl performance (seconds) was assessed at Australian regional, state, and national-level competitions between 2016-2020. To determine the relationship between maturation status and 100-m front-crawl performance, MO was plotted against 100-m FC performance time. The expected maturity status - performance relationship for females aged 10-15 years of age was obtained through a quadratic function (y = ax2 + bx + c) from unstandardized coefficients. The regression equation was subsequently used for Mat-CAPs. (3) Participants aged 10-13 years were categorised into maturity-offset categories. Maturity offset distributions for Raw (‘All’, ‘Top 50%’ & ‘Top 25%’) and Correctively Adjusted swim times were examined. Chi-square, Cramer’s V and ORs determined the occurrence of maturation biases for each age group and selection level. Results—: (1) Maturity timing distributions illustrated overrepresentation of ‘normative’ maturing swimmers (11.82 ± 0.40 years), with a descriptive shift toward the early maturing relative to the normative population. (2) A curvilinear relationship between maturity-offset and swim performance was identified (R2 = 0.53, P < 0.001) and subsequently utilised for Mat-CAPs. (3) Raw maturity offset categories identified partial maturation status skewing towards biologically older swimmers at 10/11 and 12 years, with effect magnitudes increasing in the ‘Top 50%’ and ‘25%’ of performance times. Following Mat-CAPs application, maturity offset biases were removed in similar age groups and selection levels. When adjusting performance times for maturity offset, Mat-CAPs was successful in mitigating against maturational biases until approximately 1-year post Peak Height Velocity. The overrepresentation of ‘normative’ maturing female swimmers contrasted with the substantial overrepresentation of ‘early’ maturing male swimmers found previously in 100-m front-crawl. These findings suggest early maturational timing is not advantageous in females, but findings associated with Aim 2, highlight how advanced maturational status remained beneficial to performance. Observed differences between female and male maturational biases may relate to the differential impact of physiological development during pubertal years. Females experience greater increases of fat mass and potentially differing changes in body shape which can negatively affect swim performance. Conclusions: Transient maturation status-based participation and performance advantages were apparent within a large sample of Australian female youth 100-m FC swimmers. By removing maturity status performance biases within female youth swimming, Mat-CAPs could help improve participation experiences and the accuracy of identifying genuinely skilled female youth swimmers.

Keywords: athlete development, long-term sport participation, performance evaluation, talent identification, youth competition

Procedia PDF Downloads 182
6 Consumer Preferences for Low-Carbon Futures: A Structural Equation Model Based on the Domestic Hydrogen Acceptance Framework

Authors: Joel A. Gordon, Nazmiye Balta-Ozkan, Seyed Ali Nabavi

Abstract:

Hydrogen-fueled technologies are rapidly advancing as a critical component of the low-carbon energy transition. In countries historically reliant on natural gas for home heating, such as the UK, hydrogen may prove fundamental for decarbonizing the residential sector, alongside other technologies such as heat pumps and district heat networks. While the UK government is set to take a long-term policy decision on the role of domestic hydrogen by 2026, there are considerable uncertainties regarding consumer preferences for ‘hydrogen homes’ (i.e., hydrogen-fueled appliances for space heating, hot water, and cooking. In comparison to other hydrogen energy technologies, such as road transport applications, to date, few studies have engaged with the social acceptance aspects of the domestic hydrogen transition, resulting in a stark knowledge deficit and pronounced risk to policymaking efforts. In response, this study aims to safeguard against undesirable policy measures by revealing the underlying relationships between the factors of domestic hydrogen acceptance and their respective dimensions: attitudinal, socio-political, community, market, and behavioral acceptance. The study employs an online survey (n=~2100) to gauge how different UK householders perceive the proposition of switching from natural gas to hydrogen-fueled appliances. In addition to accounting for housing characteristics (i.e., housing tenure, property type and number of occupants per dwelling) and several other socio-structural variables (e.g. age, gender, and location), the study explores the impacts of consumer heterogeneity on hydrogen acceptance by recruiting respondents from across five distinct groups: (1) fuel poor householders, (2) technology engaged householders, (3) environmentally engaged householders, (4) technology and environmentally engaged householders, and (5) a baseline group (n=~700) which filters out each of the smaller targeted groups (n=~350). This research design reflects the notion that supporting a socially fair and efficient transition to hydrogen will require parallel engagement with potential early adopters and demographic groups impacted by fuel poverty while also accounting strongly for public attitudes towards net zero. Employing a second-order multigroup confirmatory factor analysis (CFA) in Mplus, the proposed hydrogen acceptance model is tested to fit the data through a partial least squares (PLS) approach. In addition to testing differences between and within groups, the findings provide policymakers with critical insights regarding the significance of knowledge and awareness, safety perceptions, perceived community impacts, cost factors, and trust in key actors and stakeholders as potential explanatory factors of hydrogen acceptance. Preliminary results suggest that knowledge and awareness of hydrogen are positively associated with support for domestic hydrogen at the household, community, and national levels. However, with the exception of technology and/or environmentally engaged citizens, much of the population remains unfamiliar with hydrogen and somewhat skeptical of its application in homes. Knowledge and awareness present as critical to facilitating positive safety perceptions, alongside higher levels of trust and more favorable expectations for community benefits, appliance performance, and potential cost savings. Based on these preliminary findings, policymakers should be put on red alert about diffusing hydrogen into the public consciousness in alignment with energy security, fuel poverty, and net-zero agendas.

Keywords: hydrogen homes, social acceptance, consumer heterogeneity, heat decarbonization

Procedia PDF Downloads 114
5 Modelling Farmer’s Perception and Intention to Join Cashew Marketing Cooperatives: An Expanded Version of the Theory of Planned Behaviour

Authors: Gospel Iyioku, Jana Mazancova, Jiri Hejkrlik

Abstract:

The “Agricultural Promotion Policy (2016–2020)” represents a strategic initiative by the Nigerian government to address domestic food shortages and the challenges in exporting products at the required quality standards. Hindered by an inefficient system for setting and enforcing food quality standards, coupled with a lack of market knowledge, the Federal Ministry of Agriculture and Rural Development (FMARD) aims to enhance support for the production and activities of key crops like cashew. By collaborating with farmers, processors, investors, and stakeholders in the cashew sector, the policy seeks to define and uphold high-quality standards across the cashew value chain. Given the challenges and opportunities faced by Nigerian cashew farmers, active participation in cashew marketing groups becomes imperative. These groups serve as essential platforms for farmers to collectively navigate market intricacies, access resources, share knowledge, improve output quality, and bolster their overall bargaining power. Through engagement in these cooperative initiatives, farmers not only boost their economic prospects but can also contribute significantly to the sustainable growth of the cashew industry, fostering resilience and community development. This study explores the perceptions and intentions of farmers regarding their involvement in cashew marketing cooperatives, utilizing an expanded version of the Theory of Planned Behaviour. Drawing insights from a diverse sample of 321 cashew farmers in Southwest Nigeria, the research sheds light on the factors influencing decision-making in cooperative participation. The demographic analysis reveals a diverse landscape, with a substantial presence of middle-aged individuals contributing significantly to the agricultural sector and cashew-related activities emerging as a primary income source for a substantial proportion (23.99%). Employing Structural Equation Modelling (SEM) with Maximum Likelihood Robust (MLR) estimation in R, the research elucidates the associations among latent variables. Despite the model’s complexity, the goodness-of-fit indices attest to the validity of the structural model, explaining approximately 40% of the variance in the intention to join cooperatives. Moral norms emerge as a pivotal construct, highlighting the profound influence of ethical considerations in decision-making processes, while perceived behavioural control presents potential challenges in active participation. Attitudes toward joining cooperatives reveal nuanced perspectives, with strong beliefs in enhanced connections with other farmers but varying perceptions on improved access to essential information. The SEM analysis establishes positive and significant effects of moral norms, perceived behavioural control, subjective norms, and attitudes on farmers’ intention to join cooperatives. The knowledge construct positively affects key factors influencing intention, emphasizing the importance of informed decision-making. A supplementary analysis using partial least squares (PLS) SEM corroborates the robustness of our findings, aligning with covariance-based SEM results. This research unveils the determinants of cooperative participation and provides valuable insights for policymakers and practitioners aiming to empower and support this vital demographic in the cashew industry.

Keywords: marketing cooperatives, theory of planned behaviour, structural equation modelling, cashew farmers

Procedia PDF Downloads 85
4 Pisolite Type Azurite/Malachite Ore in Sandstones at the Base of the Miocene in Northern Sardinia: The Authigenic Hypothesis

Authors: S. Fadda, M. Fiori, C. Matzuzzi

Abstract:

Mineralized formations in the bottom sediments of a Miocene transgression have been discovered in Sardinia. The mineral assemblage consists of copper sulphides and oxidates suggesting fluctuations of redox conditions in neutral to high-pH restricted shallow-water coastal basins. Azurite/malachite has been observed as authigenic and occurs as loose spheroidal crystalline particles associated with the transitional-littoral horizon forming the bottom of the marine transgression. Many field observations are consistent with a supergenic circulation of metals involving terrestrial groundwater-seawater mixing. Both clastic materials and metals come from Tertiary volcanic edifices while the main precipitating anions, carbonates, and sulphides species are of both continental and marine origin. Formation of Cu carbonates as a supergene secondary 'oxide' assemblage, does not agree with field evidences, petrographic observations along with textural evidences in the host-rock types. Samples were collected along the sedimentary sequence for different analyses: the majority of elements were determined by X-ray fluorescence and plasma-atomic emission spectroscopy. Mineral identification was obtained by X-ray diffractometry and scanning electron microprobe. Thin sections of the samples were examined in microscopy while porosity measurements were made using a mercury intrusion porosimeter. Cu-carbonates deposited at a temperature below 100 C° which is consistent with the clay minerals in the matrix of the host rock dominated by illite and montmorillonite. Azurite nodules grew during the early diagenetic stage through reaction of cupriferous solutions with CO₂ imported from the overlying groundwater and circulating through the sandstones during shallow burial. Decomposition of organic matter in the bottom anoxic waters released additional carbon dioxide to pore fluids for azurite stability. In this manner localized reducing environments were also generated in which Cu was fixed as Cu-sulphide and sulphosalts. Microscopic examinations of textural features of azurite nodules give evidence of primary malachite/azurite deposition rather than supergene oxidation in place of primary sulfides. Photomicrographs show nuclei of azurite and malachite surrounded by newly formed microcrystalline carbonates which constitute the matrix. The typical pleochroism of crystals can be observed also when this mineral fills microscopic fissures or cracks. Sedimentological evidence of transgression and regression indicates that the pore water would have been a variable mixture of marine water and groundwaters with a possible meteoric component in an alternatively exposed and subaqueous environment owing to water-level fluctuation. Salinity data of the pore fluids, assessed at random intervals along the mineralised strata confirmed the values between about 7000 and 30,000 ppm measured in coeval sediments at the base of Miocene falling in the range of a more or less diluted sea water. This suggests a variation in mean pore-fluids pH between 5.5 and 8.5, compatible with the oxidized and reduced mineral paragenesis described in this work. The results of stable isotopes studies reflect the marine transgressive-regressive cyclicity of events and are compatibile with carbon derivation from sea water. During the last oxidative stage of diagenesis, under surface conditions of higher activity of H₂O and O₂, CO₂ partial pressure decreased, and malachite becomes the stable Cu mineral. The potential for these small but high grade deposits does exist.

Keywords: sedimentary, Cu-carbonates, authigenic, tertiary, Sardinia

Procedia PDF Downloads 131
3 Circular Nitrogen Removal, Recovery and Reuse Technologies

Authors: Lina Wu

Abstract:

The excessive discharge of nitrogen in sewage greatly intensifies the eutrophication of water bodies and threatens water quality. Nitrogen pollution control has become a global concern. The concentration of nitrogen in water is reduced by converting ammonia nitrogen, nitrate nitrogen and nitrite nitrogen into nitrogen-containing gas through biological treatment, physicochemical treatment and oxidation technology. However, some wastewater containing high ammonia nitrogen including landfill leachate, is difficult to be treated by traditional nitrification and denitrification because of its high COD content. The core process of denitrification is that denitrifying bacteria convert nitrous acid produced by nitrification into nitrite under anaerobic conditions. Still, its low-carbon nitrogen does not meet the conditions for denitrification. Many studies have shown that the natural autotrophic anammox bacteria can combine nitrous and ammonia nitrogen without a carbon source through functional genes to achieve total nitrogen removal, which is very suitable for removing nitrogen from leachate. In addition, the process also saves a lot of aeration energy consumption than the traditional nitrogen removal process. Therefore, anammox plays an important role in nitrogen conversion and energy saving. The short-range nitrification and denitrification coupled with anaerobic ammoX ensures total nitrogen removal. It improves the removal efficiency, meeting the needs of society for an ecologically friendly and cost-effective nutrient removal treatment technology. In recent years, research has found that the symbiotic system has more water treatment advantages because this process not only helps to improve the efficiency of wastewater treatment but also allows carbon dioxide reduction and resource recovery. Microalgae use carbon dioxide dissolved in water or released through bacterial respiration to produce oxygen for bacteria through photosynthesis under light, and bacteria, in turn, provide metabolites and inorganic carbon sources for the growth of microalgae, which may lead the algal bacteria symbiotic system save most or all of the aeration energy consumption. It has become a trend to make microalgae and light-avoiding anammox bacteria play synergistic roles by adjusting the light-to-dark ratio. Microalgae in the outer layer of light particles block most of the light and provide cofactors and amino acids to promote nitrogen removal. In particular, myxoccota MYX1 can degrade extracellular proteins produced by microalgae, providing amino acids for the entire bacterial community, which helps anammox bacteria save metabolic energy and adapt to light. As a result, initiating and maintaining the process of combining dominant algae and anaerobic denitrifying bacterial communities has great potential in treating landfill leachate. Chlorella has a brilliant removal effect and can withstand extreme environments in terms of high ammonia nitrogen, high salt and low temperature. It is urgent to study whether the algal mud mixture rich in denitrifying bacteria and chlorella can greatly improve the efficiency of landfill leachate treatment under an anaerobic environment where photosynthesis is stopped. The optimal dilution concentration of simulated landfill leachate can be found by determining the treatment effect of the same batch of bacteria and algae mixtures under different initial ammonia nitrogen concentrations and making a comparison. High-throughput sequencing technology was used to analyze the changes in microbial diversity, related functional genera and functional genes under optimal conditions, providing a theoretical and practical basis for the engineering application of novel bacteria-algae symbiosis system in biogas slurry treatment and resource utilization.

Keywords: nutrient removal and recovery, leachate, anammox, Partial nitrification, Algae-bacteria interaction

Procedia PDF Downloads 40
2 Numerical Simulation of Von Karman Swirling Bioconvection Nanofluid Flow from a Deformable Rotating Disk

Authors: Ali Kadir, S. R. Mishra, M. Shamshuddin, O. Anwar Beg

Abstract:

Motivation- Rotating disk bio-reactors are fundamental to numerous medical/biochemical engineering processes including oxygen transfer, chromatography, purification and swirl-assisted pumping. The modern upsurge in biologically-enhanced engineering devices has embraced new phenomena including bioconvection of micro-organisms (photo-tactic, oxy-tactic, gyrotactic etc). The proven thermal performance superiority of nanofluids i.e. base fluids doped with engineered nanoparticles has also stimulated immense implementation in biomedical designs. Motivated by these emerging applications, we present a numerical thermofluid dynamic simulation of the transport phenomena in bioconvection nanofluid rotating disk bioreactor flow. Methodology- We study analytically and computationally the time-dependent three-dimensional viscous gyrotactic bioconvection in swirling nanofluid flow from a rotating disk configuration. The disk is also deformable i.e. able to extend (stretch) in the radial direction. Stefan blowing is included. The Buongiorno dilute nanofluid model is adopted wherein Brownian motion and thermophoresis are the dominant nanoscale effects. The primitive conservation equations for mass, radial, tangential and axial momentum, heat (energy), nanoparticle concentration and micro-organism density function are formulated in a cylindrical polar coordinate system with appropriate wall and free stream boundary conditions. A mass convective condition is also incorporated at the disk surface. Forced convection is considered i.e. buoyancy forces are neglected. This highly nonlinear, strongly coupled system of unsteady partial differential equations is normalized with the classical Von Karman and other transformations to render the boundary value problem (BVP) into an ordinary differential system which is solved with the efficient Adomian decomposition method (ADM). Validation with earlier Runge-Kutta shooting computations in the literature is also conducted. Extensive computations are presented (with the aid of MATLAB symbolic software) for radial and circumferential velocity components, temperature, nanoparticle concentration, micro-organism density number and gradients of these functions at the disk surface (radial local skin friction, local circumferential skin friction, Local Nusselt number, Local Sherwood number, motile microorganism mass transfer rate). Main Findings- Increasing radial stretching parameter decreases radial velocity and radial skin friction, reduces azimuthal velocity and skin friction, decreases local Nusselt number and motile micro-organism mass wall flux whereas it increases nano-particle local Sherwood number. Disk deceleration accelerates the radial flow, damps the azimuthal flow, decreases temperatures and thermal boundary layer thickness, depletes the nano-particle concentration magnitudes (and associated nano-particle species boundary layer thickness) and furthermore decreases the micro-organism density number and gyrotactic micro-organism species boundary layer thickness. Increasing Stefan blowing accelerates the radial flow and azimuthal (circumferential flow), elevates temperatures of the nanofluid, boosts nano-particle concentration (volume fraction) and gyrotactic micro-organism density number magnitudes whereas suction generates the reverse effects. Increasing suction effect reduces radial skin friction and azimuthal skin friction, local Nusselt number, and motile micro-organism wall mass flux whereas it enhances the nano-particle species local Sherwood number. Conclusions - Important transport characteristics are identified of relevance to real bioreactor nanotechnological systems not discussed in previous works. ADM is shown to achieve very rapid convergence and highly accurate solutions and shows excellent promise in simulating swirling multi-physical nano-bioconvection fluid dynamics problems. Furthermore, it provides an excellent complement to more general commercial computational fluid dynamics simulations.

Keywords: bio-nanofluids, rotating disk bioreactors, Von Karman swirling flow, numerical solutions

Procedia PDF Downloads 156
1 Detailed Degradation-Based Model for Solid Oxide Fuel Cells Long-Term Performance

Authors: Mina Naeini, Thomas A. Adams II

Abstract:

Solid Oxide Fuel Cells (SOFCs) feature high electrical efficiency and generate substantial amounts of waste heat that make them suitable for integrated community energy systems (ICEs). By harvesting and distributing the waste heat through hot water pipelines, SOFCs can meet thermal demand of the communities. Therefore, they can replace traditional gas boilers and reduce greenhouse gas (GHG) emissions. Despite these advantages of SOFCs over competing power generation units, this technology has not been successfully commercialized in large-scale to replace traditional generators in ICEs. One reason is that SOFC performance deteriorates over long-term operation, which makes it difficult to find the proper sizing of the cells for a particular ICE system. In order to find the optimal sizing and operating conditions of SOFCs in a community, a proper knowledge of degradation mechanisms and effects of operating conditions on SOFCs long-time performance is required. The simplified SOFC models that exist in the current literature usually do not provide realistic results since they usually underestimate rate of performance drop by making too many assumptions or generalizations. In addition, some of these models have been obtained from experimental data by curve-fitting methods. Although these models are valid for the range of operating conditions in which experiments were conducted, they cannot be generalized to other conditions and so have limited use for most ICEs. In the present study, a general, detailed degradation-based model is proposed that predicts the performance of conventional SOFCs over a long period of time at different operating conditions. Conventional SOFCs are composed of Yttria Stabilized Zirconia (YSZ) as electrolyte, Ni-cermet anodes, and LaSr₁₋ₓMnₓO₃ (LSM) cathodes. The following degradation processes are considered in this model: oxidation and coarsening of nickel particles in the Ni-cermet anodes, changes in the pore radius in anode, electrolyte, and anode electrical conductivity degradation, and sulfur poisoning of the anode compartment. This model helps decision makers discover the optimal sizing and operation of the cells for a stable, efficient performance with the fewest assumptions. It is suitable for a wide variety of applications. Sulfur contamination of the anode compartment is an important cause of performance drop in cells supplied with hydrocarbon-based fuel sources. H₂S, which is often added to hydrocarbon fuels as an odorant, can diminish catalytic behavior of Ni-based anodes by lowering their electrochemical activity and hydrocarbon conversion properties. Therefore, the existing models in the literature for H₂-supplied SOFCs cannot be applied to hydrocarbon-fueled SOFCs as they only account for the electrochemical activity reduction. A regression model is developed in the current work for sulfur contamination of the SOFCs fed with hydrocarbon fuel sources. The model is developed as a function of current density and H₂S concentration in the fuel. To the best of authors' knowledge, it is the first model that accounts for impact of current density on sulfur poisoning of cells supplied with hydrocarbon-based fuels. Proposed model has wide validity over a range of parameters and is consistent across multiple studies by different independent groups. Simulations using the degradation-based model illustrated that SOFCs voltage drops significantly in the first 1500 hours of operation. After that, cells exhibit a slower degradation rate. The present analysis allowed us to discover the reason for various degradation rate values reported in literature for conventional SOFCs. In fact, the reason why literature reports very different degradation rates, is that literature is inconsistent in definition of how degradation rate is calculated. In the literature, the degradation rate has been calculated as the slope of voltage versus time plot with the unit of voltage drop percentage per 1000 hours operation. Due to the nonlinear profile of voltage over time, degradation rate magnitude depends on the magnitude of time steps selected to calculate the curve's slope. To avoid this issue, instantaneous rate of performance drop is used in the present work. According to a sensitivity analysis, the current density has the highest impact on degradation rate compared to other operating factors, while temperature and hydrogen partial pressure affect SOFCs performance less. The findings demonstrated that a cell running at lower current density performs better in long-term in terms of total average energy delivered per year, even though initially it generates less power than if it had a higher current density. This is because of the dominant and devastating impact of large current densities on the long-term performance of SOFCs, as explained by the model.

Keywords: degradation rate, long-term performance, optimal operation, solid oxide fuel cells, SOFCs

Procedia PDF Downloads 132