Search results for: geographic data streams
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 25871

Search results for: geographic data streams

24611 A Dynamic Ensemble Learning Approach for Online Anomaly Detection in Alibaba Datacenters

Authors: Wanyi Zhu, Xia Ming, Huafeng Wang, Junda Chen, Lu Liu, Jiangwei Jiang, Guohua Liu

Abstract:

Anomaly detection is a first and imperative step needed to respond to unexpected problems and to assure high performance and security in large data center management. This paper presents an online anomaly detection system through an innovative approach of ensemble machine learning and adaptive differentiation algorithms, and applies them to performance data collected from a continuous monitoring system for multi-tier web applications running in Alibaba data centers. We evaluate the effectiveness and efficiency of this algorithm with production traffic data and compare with the traditional anomaly detection approaches such as a static threshold and other deviation-based detection techniques. The experiment results show that our algorithm correctly identifies the unexpected performance variances of any running application, with an acceptable false positive rate. This proposed approach has already been deployed in real-time production environments to enhance the efficiency and stability in daily data center operations.

Keywords: Alibaba data centers, anomaly detection, big data computation, dynamic ensemble learning

Procedia PDF Downloads 205
24610 Unsupervised Text Mining Approach to Early Warning System

Authors: Ichihan Tai, Bill Olson, Paul Blessner

Abstract:

Traditional early warning systems that alarm against crisis are generally based on structured or numerical data; therefore, a system that can make predictions based on unstructured textual data, an uncorrelated data source, is a great complement to the traditional early warning systems. The Chicago Board Options Exchange (CBOE) Volatility Index (VIX), commonly referred to as the fear index, measures the cost of insurance against market crash, and spikes in the event of crisis. In this study, news data is consumed for prediction of whether there will be a market-wide crisis by predicting the movement of the fear index, and the historical references to similar events are presented in an unsupervised manner. Topic modeling-based prediction and representation are made based on daily news data between 1990 and 2015 from The Wall Street Journal against VIX index data from CBOE.

Keywords: early warning system, knowledge management, market prediction, topic modeling.

Procedia PDF Downloads 343
24609 The Role of Synthetic Data in Aerial Object Detection

Authors: Ava Dodd, Jonathan Adams

Abstract:

The purpose of this study is to explore the characteristics of developing a machine learning application using synthetic data. The study is structured to develop the application for the purpose of deploying the computer vision model. The findings discuss the realities of attempting to develop a computer vision model for practical purpose, and detail the processes, tools, and techniques that were used to meet accuracy requirements. The research reveals that synthetic data represents another variable that can be adjusted to improve the performance of a computer vision model. Further, a suite of tools and tuning recommendations are provided.

Keywords: computer vision, machine learning, synthetic data, YOLOv4

Procedia PDF Downloads 229
24608 Perception-Oriented Model Driven Development for Designing Data Acquisition Process in Wireless Sensor Networks

Authors: K. Indra Gandhi

Abstract:

Wireless Sensor Networks (WSNs) have always been characterized for application-specific sensing, relaying and collection of information for further analysis. However, software development was not considered as a separate entity in this process of data collection which has posed severe limitations on the software development for WSN. Software development for WSN is a complex process since the components involved are data-driven, network-driven and application-driven in nature. This implies that there is a tremendous need for the separation of concern from the software development perspective. A layered approach for developing data acquisition design based on Model Driven Development (MDD) has been proposed as the sensed data collection process itself varies depending upon the application taken into consideration. This work focuses on the layered view of the data acquisition process so as to ease the software point of development. A metamodel has been proposed that enables reusability and realization of the software development as an adaptable component for WSN systems. Further, observing users perception indicates that proposed model helps in improving the programmer's productivity by realizing the collaborative system involved.

Keywords: data acquisition, model-driven development, separation of concern, wireless sensor networks

Procedia PDF Downloads 439
24607 Comparative Analysis of Data Gathering Protocols with Multiple Mobile Elements for Wireless Sensor Network

Authors: Bhat Geetalaxmi Jairam, D. V. Ashoka

Abstract:

Wireless Sensor Networks are used in many applications to collect sensed data from different sources. Sensed data has to be delivered through sensors wireless interface using multi-hop communication towards the sink. The data collection in wireless sensor networks consumes energy. Energy consumption is the major constraints in WSN .Reducing the energy consumption while increasing the amount of generated data is a great challenge. In this paper, we have implemented two data gathering protocols with multiple mobile sinks/elements to collect data from sensor nodes. First, is Energy-Efficient Data Gathering with Tour Length-Constrained Mobile Elements in Wireless Sensor Networks (EEDG), in which mobile sinks uses vehicle routing protocol to collect data. Second is An Intelligent Agent-based Routing Structure for Mobile Sinks in WSNs (IAR), in which mobile sinks uses prim’s algorithm to collect data. Authors have implemented concepts which are common to both protocols like deployment of mobile sinks, generating visiting schedule, collecting data from the cluster member. Authors have compared the performance of both protocols by taking statistics based on performance parameters like Delay, Packet Drop, Packet Delivery Ratio, Energy Available, Control Overhead. Authors have concluded this paper by proving EEDG is more efficient than IAR protocol but with few limitations which include unaddressed issues likes Redundancy removal, Idle listening, Mobile Sink’s pause/wait state at the node. In future work, we plan to concentrate more on these limitations to avail a new energy efficient protocol which will help in improving the life time of the WSN.

Keywords: aggregation, consumption, data gathering, efficiency

Procedia PDF Downloads 502
24606 A Description Analysis of Mortality Rate of Human Infection with Avian Influenza A(H7N9) Virus in China

Authors: Lei Zhou, Chao Li, Ruiqi Ren, Dan Li, Yali Wang, Daxin Ni, Zijian Feng, Qun Li

Abstract:

Background: Since the first human infection with avian influenza A(H7N9) case was reported in China on 31 March 2013, five epidemics have been observed in China through February 2013 and September 2017. Though the overall mortality rate of H7N9 has remained as high as around 40% throughout the five epidemics, the specific mortality rate in Mainland China varied by provinces. We conducted a descriptive analysis of mortality rates of H7N9 cases to explore the various severity features of the disease and then to provide clues of further analyses of potential factors associated with the severity of the disease. Methods: The data for analysis originated from the National Notifiable Infectious Disease Report and Surveillance System (NNIDRSS). The surveillance system and identification procedure for H7N9 infection have not changed in China since 2013. The definition of a confirmed H7N9 case is as same as previous reports. Mortality rates of H7N9 cases are described and compared by time and location of reporting, age and sex, and genetic features of H7N9 virus strains. Results: The overall mortality rate, the male and female specific overall rates of H7N9 is 39.6% (608/1533), 40.3% (432/1072) and 38.2% (176/461), respectively. There was no significant difference between the mortality rates of male and female. The age-specific mortality rates are significantly varied by age groups (χ²=38.16, p < 0.001). The mortality of H7N9 cases in the age group between 20 and 60 (33.17%) and age group of over 60 (51.16%) is much higher than that in the age group of under 20 (5.00%). Considering the time of reporting, the mortality rates of cases which were reported in the first (40.57%) and fourth (42.51%) quarters of each year are significantly higher than the mortality of cases which were reported in the second (36.02%) and third (27.27%) quarters (χ²=75.18, p < 0.001). The geographic specific mortality rates vary too. The mortality rates of H7N9 cases reported from the Northeast China (66.67%) and Westeast China (56.52%) are significantly higher than that of H7N9 cases reported from the remained area of mainland China. The mortality rate of H7N9 cases reported from the Central China is the lowest (34.38%). The mortality rates of H7N9 cases reported from rural (37.76%) and urban (38.96%) areas are similar. The mortality rate of H7N9 cases infected with the highly pathogenic avian influenza A(H7N9) virus (48.15%) is higher than the rate of H7N9 cases infected with the low pathogenic avian influenza A(H7N9) virus (37.57%), but the difference is not statistically significant. Preliminary analyses showed that age and some clinical complications such as respiratory failure, heart failure, and septic shock could be potential risk factors associated with the death of H7N9 cases. Conclusions: The mortality rates of H7N9 cases varied by age, sex, time of reporting and geographical location in mainland China. Further in-depth analyses and field investigations of the factors associated with the severity of H7N9 cases need to be considered.

Keywords: H7N9 virus, Avian Influenza, mortality, China

Procedia PDF Downloads 251
24605 Detection of Oral Mucosal Lesions in Cutaneous Psoriatic Patients

Authors: Rania A. R. Soudan, Easter Joury

Abstract:

Introduction: Psoriasis is a common chronic dermatologic disease. It may affect the mucous membranes. The presence of oral mucosal lesions has been a subject of controversy. The aim: To determine possible association between oral mucosal lesions and psoriasis, and to correlate the same with different types of psoriasis and severity of the disease. Materials and Methods: The oral mucosa was clinically examined in 100 randomly selected Syrian psoriatic patients presented to the Dermatological Diseases Hospital in Damascus University, Syria (February 2009 - December 2010), and in 100 matched controls. PASI index was used to evaluate the disease severity. Chi-square and Student t-test were used to compare differences between groups. Results: Oral mucosal lesions were observed in 72% of the psoriasis cases, while 46% of the control group’s subjects had oral lesions. Fissured tongue, geographic tongue, and red lesions were detected in 36%, 25%, and 7% of the examined psoriatics, respectively. These lesions were significantly more frequent in the psoriatics than in the controls. A correlation was found between furred tongue and the age of the psoriasis patients. However, an association was observed for fissured tongue, furred tongue with the severity of the disease, and for fissured tongue, white lesions, cheilitis with nail involvement. However, no correlation with the psoriasis types was recorded. Conclusion: Some oral mucosal lesions were associated with psoriasis, so these lesions may be considered as oral manifestations of this disease, and should be taken into account in new studies as possible predictors or markers of this dermatitis. Further studies are recommended to confirm these oral manifestations.

Keywords: psoriasis, tongue, mucosa, lesions

Procedia PDF Downloads 296
24604 Prevalence of Intestinal Parasite among Patients Attending Two Medical Centers in Jos

Authors: G. I. Ozumba, V. A. Pam, V. A. Adejoh, S. A. Odey

Abstract:

Intestinal parasitic infections are the most common parasitic infections of the man commonly resulting in morbidity and mortality in infected individuals. Two hundred (200) patients from two medical centers were randomly examined for intestinal parasites using normal saline wet mount and formol-ether concentration methods. One hundred patients each were examined from Plateau State Specialist Hospital (PSSH) and Vom Christian Hospital (VCH) respectively. Of the 100 patients examined at PSSH, (22.0%) tested positive for intestinal parasites, while only (6.0%) was reported for VCH. Ascaris lumbricoides and Taenia spp. were significantly (P value=0.0002726) the most prevalent intestinal parasites in PSSH with (31.8%) respectively. Balantidium coli and Entamoeba histolytica were the least prevalent at (4.5%) respectively. Hookworm (50.0%) was significantly (P<0.0001) the most prevalent intestinal parasite in VCH, followed by A. lumbricoides (33.3%), while Taenia spp. (16.7%) was the least. Female subjects 12(54.5%) were more infected than their male 10(45.4%) counterparts in PSSH. The difference (P value=0.3633) in the infection between female and male subjects at PSSH was not significant. Female subjects were significantly (P value=0.0008586) more infected 4(66.7%) than male subjects 2(33.3%) at VCH. The prevalence of intestinal parasite in relation to age in PSSH shows a significantly (P-value = 0.02573) high level among age group 11-20years 9(36.0%). On the contrary, the high prevalence of intestinal parasites among age groups 31-40 years 2(9.1%) at VCH was not significant (P value=0.1595). The result in relation to a water source in patients attending PSSH shows that the boreholes sources (66.7%) had a significantly (P<0.0001) high prevalence of intestinal parasites, while the least prevalence was observed in tap source (7.9%). Results from VCH shows that streams/rivers (16.7%) revealed high prevalence, while the tap source was least parasitized (10.0%). There was no significant difference (P value=0.436) in the prevalence of parasites in relation to the water source at VCH. This prevalence is directly related to the sanitary condition, socio-economic status, educational level, the age and hygienic habits of the patients. Thus, necessary sanitary policies, awareness, screening and de-worming exercises and occasional check of intestinal parasites are recommended.

Keywords: intestinal parasites, Jos, patients, prevalence

Procedia PDF Downloads 159
24603 Factors Affecting Reproductive Behaviour of Married Women in Sudan: Acase of Shendi Town

Authors: Mohamed Hamed

Abstract:

Population studies, essentially deals with the size, growth, and distribution of the population in a given area. Size, growth, and distribution are determined by three major factors, which are reproduction, mortality, and migration. Of these factors, reproduction is a potent socio-demographic force in vital process of population growth. It is a major component of population growth, and has crucial role in population dynamic, because it measures the rate at which a population increased. In fact the most striking feature of human reproduction is its variation. Its levels are vary widely among nations, countries, geographic regions, ethnic. The variations of reproductive behaviour among married women have been empirically documented in a large numbers of countries. For instance, many researchers in developing and developed countries investigated the differential of reproductive behaviour among married women. Most of these studies found that reproductive behaviour is strongly influenced by the socioeconomic and biological factors.Such as education, income, employment of women, marriage pattern, age at marriage, contraceptive use, education, and employment. However, the above socioeconomic and biological factors are determined by cultural factors surrounded by married women. So, this study is going to find out the effect of culture on reproductive behaviour among married women in Sudan, a case of Shendi town.

Keywords: fertilty pattern, sudan, shendi town, factors affecting reproductive behaviour, married women

Procedia PDF Downloads 305
24602 Status and Results from EXO-200

Authors: Ryan Maclellan

Abstract:

EXO-200 has provided one of the most sensitive searches for neutrinoless double-beta decay utilizing 175 kg of enriched liquid xenon in an ultra-low background time projection chamber. This detector has demonstrated excellent energy resolution and background rejection capabilities. Using the first two years of data, EXO-200 has set a limit of 1.1x10^25 years at 90% C.L. on the neutrinoless double-beta decay half-life of Xe-136. The experiment has experienced a brief hiatus in data taking during a temporary shutdown of its host facility: the Waste Isolation Pilot Plant. EXO-200 expects to resume data taking in earnest this fall with upgraded detector electronics. Results from the analysis of EXO-200 data and an update on the current status of EXO-200 will be presented.

Keywords: double-beta, Majorana, neutrino, neutrinoless

Procedia PDF Downloads 417
24601 Remaining Useful Life (RUL) Assessment Using Progressive Bearing Degradation Data and ANN Model

Authors: Amit R. Bhende, G. K. Awari

Abstract:

Remaining useful life (RUL) prediction is one of key technologies to realize prognostics and health management that is being widely applied in many industrial systems to ensure high system availability over their life cycles. The present work proposes a data-driven method of RUL prediction based on multiple health state assessment for rolling element bearings. Bearing degradation data at three different conditions from run to failure is used. A RUL prediction model is separately built in each condition. Feed forward back propagation neural network models are developed for prediction modeling.

Keywords: bearing degradation data, remaining useful life (RUL), back propagation, prognosis

Procedia PDF Downloads 442
24600 Spatio-Temporal Data Mining with Association Rules for Lake Van

Authors: Tolga Aydin, M. Fatih Alaeddinoğlu

Abstract:

People, throughout the history, have made estimates and inferences about the future by using their past experiences. Developing information technologies and the improvements in the database management systems make it possible to extract useful information from knowledge in hand for the strategic decisions. Therefore, different methods have been developed. Data mining by association rules learning is one of such methods. Apriori algorithm, one of the well-known association rules learning algorithms, is not commonly used in spatio-temporal data sets. However, it is possible to embed time and space features into the data sets and make Apriori algorithm a suitable data mining technique for learning spatio-temporal association rules. Lake Van, the largest lake of Turkey, is a closed basin. This feature causes the volume of the lake to increase or decrease as a result of change in water amount it holds. In this study, evaporation, humidity, lake altitude, amount of rainfall and temperature parameters recorded in Lake Van region throughout the years are used by the Apriori algorithm and a spatio-temporal data mining application is developed to identify overflows and newly-formed soil regions (underflows) occurring in the coastal parts of Lake Van. Identifying possible reasons of overflows and underflows may be used to alert the experts to take precautions and make the necessary investments.

Keywords: apriori algorithm, association rules, data mining, spatio-temporal data

Procedia PDF Downloads 377
24599 Building Data Infrastructure for Public Use and Informed Decision Making in Developing Countries-Nigeria

Authors: Busayo Fashoto, Abdulhakeem Shaibu, Justice Agbadu, Samuel Aiyeoribe

Abstract:

Data has gone from just rows and columns to being an infrastructure itself. The traditional medium of data infrastructure has been managed by individuals in different industries and saved on personal work tools; one of such is the laptop. This hinders data sharing and Sustainable Development Goal (SDG) 9 for infrastructure sustainability across all countries and regions. However, there has been a constant demand for data across different agencies and ministries by investors and decision-makers. The rapid development and adoption of open-source technologies that promote the collection and processing of data in new ways and in ever-increasing volumes are creating new data infrastructure in sectors such as lands and health, among others. This paper examines the process of developing data infrastructure and, by extension, a data portal to provide baseline data for sustainable development and decision making in Nigeria. This paper employs the FAIR principle (Findable, Accessible, Interoperable, and Reusable) of data management using open-source technology tools to develop data portals for public use. eHealth Africa, an organization that uses technology to drive public health interventions in Nigeria, developed a data portal which is a typical data infrastructure that serves as a repository for various datasets on administrative boundaries, points of interest, settlements, social infrastructure, amenities, and others. This portal makes it possible for users to have access to datasets of interest at any point in time at no cost. A skeletal infrastructure of this data portal encompasses the use of open-source technology such as Postgres database, GeoServer, GeoNetwork, and CKan. These tools made the infrastructure sustainable, thus promoting the achievement of SDG 9 (Industries, Innovation, and Infrastructure). As of 6th August 2021, a wider cross-section of 8192 users had been created, 2262 datasets had been downloaded, and 817 maps had been created from the platform. This paper shows the use of rapid development and adoption of technologies that facilitates data collection, processing, and publishing in new ways and in ever-increasing volumes. In addition, the paper is explicit on new data infrastructure in sectors such as health, social amenities, and agriculture. Furthermore, this paper reveals the importance of cross-sectional data infrastructures for planning and decision making, which in turn can form a central data repository for sustainable development across developing countries.

Keywords: data portal, data infrastructure, open source, sustainability

Procedia PDF Downloads 103
24598 Hydrological Revival Possibilities for River Assi: A Tributary of the River Ganga in the Middle Ganga Basin

Authors: Anurag Mishra, Prabhat Kumar Singh, Anurag Ohri, Shishir Gaur

Abstract:

Streams and rivulets are crucial in maintaining river networks and their hydrology, influencing downstream ecosystems, and connecting different watersheds of urban and rural areas. The river Assi, an urban river, once a lifeline for the locals, has degraded over time. Evidence, such as the presence of paleochannels and patterns of water bodies and settlements, suggests that the river Assi was initially an alluvial stream or rivulet that originated near Rishi Durvasha Ashram near Prayagraj, flowing approximately 120 km before joining the river Ganga at Assi ghat in Varanasi. Presently, a major challenge is that nearly 90% of its original channel has been silted and disappeared, with only the last 8 km retaining some semblance of a river. It is possible that initially, the river Assi branched off from the river Ganga and functioned as a Yazoo stream. In this study, paleochannels of the river Assi were identified using Landsat 5 imageries and SRTM DEM. The study employed the Normalized Difference Vegetation Seasonality Index (NDVSI) and Principal Component Analysis (PCA) of the Normalized Difference Vegetation Index (NDVI) to detect these paleochannels. The average elevation of the sub-basin at the Durvasha Rishi Ashram of river Assi is 96 meters, while it reduces to 80 meters near its confluence with the Ganga in Varanasi, resulting in a 16-meter elevation drop along its course. There are 81 subbasins covering an area of 83,241 square kilometers. It is possible that due to the increased resistance in the flow of river Assi near urban areas of Varanasi, a new channel, Morwa, has originated at an elevation of 87 meters, meeting river Varuna at an elevation of 79 meters. The difference in elevation is 8 meters. Furthermore, the study explored the possibility of restoring the paleochannel of the river Assi and nearby ponds and water bodies to improve the river's base flow and overall hydrological conditions.

Keywords: River Assi, small river restoration, paleochannel identification, remote sensing, GIS

Procedia PDF Downloads 76
24597 The Evolutionary Characteristics and Mechanisms and of Multi-scale Intercity Innovation Enclave Networks in China’s Yangtze River Delta Region

Authors: Yuhua Yang, Yingcheng Li

Abstract:

As a new form of intercity economic cooperation, innovation enclaves have received much attention from governments and scholars in China, which are of great significance in promoting the flow of innovation elements and advancing regional integration. Utilizing inter-city linkages of innovation enclaves within and beyond the Yangtze River Delta Region, we construct multi-scalar innovation enclave networks in 2018 and 2022, and analyze the evolutionary characteristics and underlying mechanisms of the networks. Overall, we find that: (1) The intercity innovation enclave networks have the characteristics of preferential connection and are gradually forming a clear multi-scale and hierarchical structure, with Shanghai, Hangzhou and Nanjing as the core and other cities as the general nodes; (2) The intercity innovation enclave networks exhibit local clustering dominated by geographical proximity connections, and are becoming more noticeable in the effect of distance decay and functionally polycentric as the spatial scale decreases; (3) The intercity innovation enclave networks are influenced by both functional distance and multidimensional proximity. While the innovation potential differences caused by urban attributes internally drive the formation of innovation enclave cooperation, geographic proximity, technological proximity and institutional proximity externally affect the selection of cooperation partners.

Keywords: economic enclave, intercity cooperation, proximity, yangtze river delta region

Procedia PDF Downloads 30
24596 Process Data-Driven Representation of Abnormalities for Efficient Process Control

Authors: Hyun-Woo Cho

Abstract:

Unexpected operational events or abnormalities of industrial processes have a serious impact on the quality of final product of interest. In terms of statistical process control, fault detection and diagnosis of processes is one of the essential tasks needed to run the process safely. In this work, nonlinear representation of process measurement data is presented and evaluated using a simulation process. The effect of using different representation methods on the diagnosis performance is tested in terms of computational efficiency and data handling. The results have shown that the nonlinear representation technique produced more reliable diagnosis results and outperforms linear methods. The use of data filtering step improved computational speed and diagnosis performance for test data sets. The presented scheme is different from existing ones in that it attempts to extract the fault pattern in the reduced space, not in the original process variable space. Thus this scheme helps to reduce the sensitivity of empirical models to noise.

Keywords: fault diagnosis, nonlinear technique, process data, reduced spaces

Procedia PDF Downloads 254
24595 Text-to-Speech in Azerbaijani Language via Transfer Learning in a Low Resource Environment

Authors: Dzhavidan Zeinalov, Bugra Sen, Firangiz Aslanova

Abstract:

Most text-to-speech models cannot operate well in low-resource languages and require a great amount of high-quality training data to be considered good enough. Yet, with the improvements made in ASR systems, it is now much easier than ever to collect data for the design of custom text-to-speech models. In this work, our work on using the ASR model to collect data to build a viable text-to-speech system for one of the leading financial institutions of Azerbaijan will be outlined. NVIDIA’s implementation of the Tacotron 2 model was utilized along with the HiFiGAN vocoder. As for the training, the model was first trained with high-quality audio data collected from the Internet, then fine-tuned on the bank’s single speaker call center data. The results were then evaluated by 50 different listeners and got a mean opinion score of 4.17, displaying that our method is indeed viable. With this, we have successfully designed the first text-to-speech model in Azerbaijani and publicly shared 12 hours of audiobook data for everyone to use.

Keywords: Azerbaijani language, HiFiGAN, Tacotron 2, text-to-speech, transfer learning, whisper

Procedia PDF Downloads 51
24594 An Empirical Evaluation of Performance of Machine Learning Techniques on Imbalanced Software Quality Data

Authors: Ruchika Malhotra, Megha Khanna

Abstract:

The development of change prediction models can help the software practitioners in planning testing and inspection resources at early phases of software development. However, a major challenge faced during the training process of any classification model is the imbalanced nature of the software quality data. A data with very few minority outcome categories leads to inefficient learning process and a classification model developed from the imbalanced data generally does not predict these minority categories correctly. Thus, for a given dataset, a minority of classes may be change prone whereas a majority of classes may be non-change prone. This study explores various alternatives for adeptly handling the imbalanced software quality data using different sampling methods and effective MetaCost learners. The study also analyzes and justifies the use of different performance metrics while dealing with the imbalanced data. In order to empirically validate different alternatives, the study uses change data from three application packages of open-source Android data set and evaluates the performance of six different machine learning techniques. The results of the study indicate extensive improvement in the performance of the classification models when using resampling method and robust performance measures.

Keywords: change proneness, empirical validation, imbalanced learning, machine learning techniques, object-oriented metrics

Procedia PDF Downloads 421
24593 Socioeconomic Values of Fertility in Islam

Authors: Mohamed Hamed Mohamed Ahmed Alameer

Abstract:

Population studies, essentially deals with the size, growth, and distribution of the population in a given area. Size, growth, and distribution are determined by three major factors, which are fertility mortality, and migration. Of these factors, fertility- as a number of live births a woman has actually had- is a potent socio-demographic force in vital process of population growth. So, fertility is a major component of population growth. It is one of the main determinants of population growth and has crucial role in population dynamic, because it measures the rate at which a population increased. In fact the levels of fertility are vary widely among nations, countries, geographic regions, ethnic, socio- economic groups, and religious groups. Fertility differential by religion have been empirically documented in a large numbers of countries. For instance, many researchers in developing and developed countries investigated the differential of fertility among Muslims and Non- Muslims. Most of them have found that fertility of Muslims is higher than fertility of non Muslims. And Muslims have a tendency for large families comparing to non- Muslims population. On the basis of this; Islam by it itself could play an important role in shaping attitudes and values of fertility, such as: sustainability of human kind, developmental reasons, religious Motivations, socioeconomic Motivations, and Psychological Motivation. Therefore, this paper investigates socio-economic values of fertility in Islam and compare it to Malthusian and neo Malthusian functionalists and conflict perspectives.

Keywords: islam, fertility, socioeconomic values, social sciences

Procedia PDF Downloads 479
24592 Variance-Aware Routing and Authentication Scheme for Harvesting Data in Cloud-Centric Wireless Sensor Networks

Authors: Olakanmi Oladayo Olufemi, Bamifewe Olusegun James, Badmus Yaya Opeyemi, Adegoke Kayode

Abstract:

The wireless sensor network (WSN) has made a significant contribution to the emergence of various intelligent services or cloud-based applications. Most of the time, these data are stored on a cloud platform for efficient management and sharing among different services or users. However, the sensitivity of the data makes them prone to various confidentiality and performance-related attacks during and after harvesting. Various security schemes have been developed to ensure the integrity and confidentiality of the WSNs' data. However, their specificity towards particular attacks and the resource constraint and heterogeneity of WSNs make most of these schemes imperfect. In this paper, we propose a secure variance-aware routing and authentication scheme with two-tier verification to collect, share, and manage WSN data. The scheme is capable of classifying WSN into different subnets, detecting any attempt of wormhole and black hole attack during harvesting, and enforcing access control on the harvested data stored in the cloud. The results of the analysis showed that the proposed scheme has more security functionalities than other related schemes, solves most of the WSNs and cloud security issues, prevents wormhole and black hole attacks, identifies the attackers during data harvesting, and enforces access control on the harvested data stored in the cloud at low computational, storage, and communication overheads.

Keywords: data block, heterogeneous IoT network, data harvesting, wormhole attack, blackhole attack access control

Procedia PDF Downloads 90
24591 Quality of Age Reporting from Tanzania 2012 Census Results: An Assessment Using Whipple’s Index, Myer’s Blended Index, and Age-Sex Accuracy Index

Authors: A. Sathiya Susuman, Hamisi F. Hamisi

Abstract:

Background: Many socio-economic and demographic data are age-sex attributed. However, a variety of irregularities and misstatement are noted with respect to age-related data and less to sex data because of its biological differences between the genders. Noting the misstatement/misreporting of age data regardless of its significance importance in demographics and epidemiological studies, this study aims at assessing the quality of 2012 Tanzania Population and Housing Census Results. Methods: Data for the analysis are downloaded from Tanzania National Bureau of Statistics. Age heaping and digit preference were measured using summary indices viz., Whipple’s index, Myers’ blended index, and Age-Sex Accuracy index. Results: The recorded Whipple’s index for both sexes was 154.43; male has the lowest index of about 152.65 while female has the highest index of about 156.07. For Myers’ blended index, the preferences were at digits ‘0’ and ‘5’ while avoidance were at digits ‘1’ and ‘3’ for both sexes. Finally, Age-sex index stood at 59.8 where sex ratio score was 5.82 and age ratio scores were 20.89 and 21.4 for males and female respectively. Conclusion: The evaluation of the 2012 PHC data using the demographic techniques has qualified the data inaccurate as the results of systematic heaping and digit preferences/avoidances. Thus, innovative methods in data collection along with measuring and minimizing errors using statistical techniques should be used to ensure accuracy of age data.

Keywords: age heaping, digit preference/avoidance, summary indices, Whipple’s index, Myer’s index, age-sex accuracy index

Procedia PDF Downloads 479
24590 The Relations among Business Model, Higher Education, University and Entrepreneurship Education: An Analysis of Academic Literature of 2009-2019 Period

Authors: Elzo Alves Aranha, Marcio M. Araki

Abstract:

Business model (BM) is a term that has been receiving the attention of scholars and practitioners and has been consolidating itself as a field of study and research. Although there is no agreement in the academic literature on the definition of BM, at least there is an explicit agreement: BM defines a logical structure of how an organization creates value, capture value and delivers value for the customers and stakeholders. The lack of understanding about connections and elements among BM and higher education, university, and entrepreneurship education opens a gap in the academic literature. Thus, it is interesting to analyze how BM has been approached by the literature and applied in higher education, university, and entrepreneurship education aimed to know the main streams of research. This is because higher education institutions are characterized by innovation, leading to a greater acceptance of new and modern concepts such as BM. Our research has the main motivation to fill the gap in the academic literature, making it possible to increase the power of understanding about connections and aspects among BM and higher education, university, and entrepreneurship education. The objective of the research is to analyze the main aspects among BM and higher education, university, and entrepreneurship education in academic literature. The research followed the systematic literature review (SLR). The SLR is based on three main factors: clarity, validity, and auditability. 82 academic papers were found in the past 10 years, from 2009-2019. The search was carried out in Science Direct and Periodicos Capes databases. The main findings indicate that there are links between BM and higher education, BM and university, BM, and entrepreneurship education. The main findings are inserted within seven aspects. The findings are innovative and contribute to increase the power of understanding about the connection among BM and higher education, university, and entrepreneurship education in academic literature. The research findings addressed to the gap exposed in academic literature. The research findings have several practical implications, and we highlight only two main ones. First, researchers will be able to use the research findings to mitigate a BM research agenda involving connections between BM and higher education, BM and university, and BM and entrepreneurship education. Second, directors, deans, and university leaders will be able to carry out BM awareness programs, BM professors training programs, and makers planning for the inclusion of BM, as one of the components of the curricula of the undergraduate and graduate courses.

Keywords: business model, entrepreneurship education, higher education, university

Procedia PDF Downloads 192
24589 Clustering Locations of Textile and Garment Industries to Compare with the Future Industrial Cluster in Thailand

Authors: Kanogkan Leerojanaprapa

Abstract:

Textile and garment industry is used to a major exporting industry of Thailand. According to lacking of the nation's price-competitiveness by stopping the EU's GSP (Generalised Scheme of Preferences) and ‘Nationwide Minimum Wage Policy’ that Thailand’s employers must pay all employees at least 300 baht (about $10) a day, the supply chains of the Thai textile and garment industry is affected and need to be reformed. Therefore, either Thai textile or garment industry will be existed or not would be concerned. This is also challenged for the government to decide which industries should be promoted the future industries of Thailand. Recently Thai government launch The Cluster-based Special Economic Development Zones Policy for promoting business cluster (effect on September 16, 2015). They define a cluster as the concentration of interconnected businesses and related institutions that operate within the same geographic areas and textiles and garment is one of target industrial clusters and 9 provinces are targeted (Bangkok, Kanchanaburi, Nakhon Pathom, Ratchaburi, Samut Sakhon, Chonburi, Chachoengsao, Prachinburi, and Sa Kaeo). The cluster zone are defined to link west-east corridor connected to manufacturing source in Cambodia and Mynmar to Bangkok where are promoted to be design, sourcing, and trading hub. The Thai government will provide tax and non-tax incentives for targeted industries within the clusters and expects these businesses are scattered to where they can get the most benefit which will identify future industrial cluster. This research will show the difference between the current cluster and future cluster following the target provinces of the textile and garment. The current cluster is analysed from secondary data. The four characteristics of the numbers of plants in Spinning, weaving and finishing of textiles, Manufacture of made-up textile articles, except apparel, Manufacture of knitted and crocheted fabrics, and Manufacture of other textiles, not elsewhere classified in particular 77 provinces (in total) are clustered by K-means cluster analysis and Hierarchical Cluster Analysis. In addition, the cluster can be confirmed and showed which variables contribute the most to defined cluster solution with ANOVA test. The results of analysis can identify 22 provinces (which the textile or garment plants are located) into 3 clusters. Plants in cluster 1 tend to be large numbers of plants which is only Bangkok, Next plants in cluster 2 tend to be moderate numbers of plants which are Samut Prakan, Samut Sakhon and Nakhon Pathom. Finally plants in cluster 3 tend to be little numbers of plants which are other 18 provinces. The same methodology can be implemented in other industries for future study.

Keywords: ANOVA, hierarchical cluster analysis, industrial clusters, K -means cluster analysis, textile and garment industry

Procedia PDF Downloads 217
24588 Model for Introducing Products to New Customers through Decision Tree Using Algorithm C4.5 (J-48)

Authors: Komol Phaisarn, Anuphan Suttimarn, Vitchanan Keawtong, Kittisak Thongyoun, Chaiyos Jamsawang

Abstract:

This article is intended to analyze insurance information which contains information on the customer decision when purchasing life insurance pay package. The data were analyzed in order to present new customers with Life Insurance Perfect Pay package to meet new customers’ needs as much as possible. The basic data of insurance pay package were collect to get data mining; thus, reducing the scattering of information. The data were then classified in order to get decision model or decision tree using Algorithm C4.5 (J-48). In the classification, WEKA tools are used to form the model and testing datasets are used to test the decision tree for the accurate decision. The validation of this model in classifying showed that the accurate prediction was 68.43% while 31.25% were errors. The same set of data were then tested with other models, i.e. Naive Bayes and Zero R. The results showed that J-48 method could predict more accurately. So, the researcher applied the decision tree in writing the program used to introduce the product to new customers to persuade customers’ decision making in purchasing the insurance package that meets the new customers’ needs as much as possible.

Keywords: decision tree, data mining, customers, life insurance pay package

Procedia PDF Downloads 433
24587 Response Delay Model: Bridging the Gap in Urban Fire Disaster Response System

Authors: Sulaiman Yunus

Abstract:

The need for modeling response to urban fire disaster cannot be over emphasized, as recurrent fire outbreaks have gutted most cities of the world. This necessitated the need for a prompt and efficient response system in order to mitigate the impact of the disaster. Promptness, as a function of time, is seen to be the fundamental determinant for efficiency of a response system and magnitude of a fire disaster. Delay, as a result of several factors, is one of the major determinants of promptgness of a response system and also the magnitude of a fire disaster. Response Delay Model (RDM) intends to bridge the gap in urban fire disaster response system through incorporating and synchronizing the delay moments in measuring the overall efficiency of a response system and determining the magnitude of a fire disaster. The model identified two delay moments (pre-notification and Intra-reflex sequence delay) that can be elastic and collectively plays a significant role in influencing the efficiency of a response system. Due to variation in the elasticity of the delay moments, the model provides for measuring the length of delays in order to arrive at a standard average delay moment for different parts of the world, putting into consideration geographic location, level of preparedness and awareness, technological advancement, socio-economic and environmental factors. It is recommended that participatory researches should be embarked on locally and globally to determine standard average delay moments within each phase of the system so as to enable determining the efficiency of response systems and predicting fire disaster magnitudes.

Keywords: delay moment, fire disaster, reflex sequence, response, response delay moment

Procedia PDF Downloads 212
24586 The Diversity of DRB1 Locus of Exon 2 of MHC Molecule of Sudanese Indigenous Desert Sheep

Authors: Muna A. Eissawi, Safaa Abed Elfataah, Haytham Hago, Fatima E Abukunna, Ibtisam Amin Goreish, Nahid Gornas

Abstract:

The study examined and analyzed the genetic diversity of DRB1locus of exon 2 of major histocompatibility complex of Sudanese desert sheep using PCR-RFLP and DNA sequencing. Five hundred samples belonging to five ecotypes of Desert Sudanese sheep (Abrag (Ab), Ashgar (Ash), Hamari (H), Kabashi (K) and Watish (W) were included. Amplification of exon 2 of the DRB1 gene yielded (300bp) amplified product in different ecotypes. Nine different digestion patterns corresponding to Five distinct alleles were observed with Rsa1 digestion. Genotype (ag) was the most common among all ecotypes, with a percentage comprised (40.4 %). The Hardy-Weinberg equilibrium (HWE) test showed that the studied ecotypes have significantly deviated from the theoretical proportions of Rsa1 patterns; probability values of the Chi-square test for HWE for MHC-DRB1 gene in SDS were 0.00 in all ecotypes. The constructed phylogenetic tree revealed the relation of 22 Sudanese isolates with each other and showed the shared sequences with 47 published foreign sequences randomly selected from different geographic regions. The results of this study highlight the effect of heterozygosity of MHC genes of the Desert sheep of Sudan which may clarify some of genetic back ground of their disease resistance and adaptation to environment.

Keywords: desert sheep, MHC, Ovar-DRB1, polymerase chain reaction (PCR), restriction fragment length polymorphism (RFLP)

Procedia PDF Downloads 83
24585 Heritage, Cultural Events and Promises for Better Future: Media Strategies for Attracting Tourism during the Arab Spring Uprisings

Authors: Eli Avraham

Abstract:

The Arab Spring was widely covered in the global media and the number of Western tourists traveling to the area began to fall. The goal of this study was to analyze which media strategies marketers in Middle Eastern countries chose to employ in their attempts to repair the negative image of the area in the wake of the Arab Spring. Several studies were published concerning image-restoration strategies of destinations during crises around the globe; however, these strategies were not part of an overarching theory, conceptual framework or model from the fields of crisis communication and image repair. The conceptual framework used in the current study was the ‘multi-step model for altering place image’, which offers three types of strategies: source, message and audience. Three research questions were used: 1.What public relations crisis techniques and advertising campaign components were used? 2. What media policies and relationships with the international media were adopted by Arab officials? 3. Which marketing initiatives (such as cultural and sports events) were promoted? This study is based on qualitative content analysis of four types of data: 1) advertising components (slogans, visuals and text); (2) press interviews with Middle Eastern officials and marketers; (3) official media policy adopted by government decision-maker (e.g. boycotting or arresting newspeople); and (4) marketing initiatives (e.g. organizing heritage festivals and cultural events). The data was located in three channels from December 2010, when the events started, to September 31, 2013: (1) Internet and video-sharing websites: YouTube and Middle Eastern countries' national tourism board websites; (2) News reports from two international media outlets, The New York Times and Ha’aretz; these are considered quality newspapers that focus on foreign news and tend to criticize institutions; (3) Global tourism news websites: eTurbo news and ‘Cities and countries branding’. Using the ‘multi-step model for altering place image,’ the analysis reveals that Middle Eastern marketers and officials used three kinds of strategies to repair their countries' negative image: 1. Source (cooperation and media relations; complying, threatening and blocking the media; and finding alternatives to the traditional media) 2. Message (ignoring, limiting, narrowing or reducing the scale of the crisis; acknowledging the negative effect of an event’s coverage and assuring a better future; promotion of multiple facets, exhibitions and softening the ‘hard’ image; hosting spotlight sporting and cultural events; spinning liabilities into assets; geographic dissociation from the Middle East region; ridicule the existing stereotype) and 3. Audience (changing the target audience by addressing others; emphasizing similarities and relevance to specific target audience). It appears that dealing with their image problems will continue to be a challenge for officials and marketers of Middle Eastern countries until the region stabilizes and its regional conflicts are resolved.

Keywords: Arab spring, cultural events, image repair, Middle East, tourism marketing

Procedia PDF Downloads 287
24584 Exploring the Role of Data Mining in Crime Classification: A Systematic Literature Review

Authors: Faisal Muhibuddin, Ani Dijah Rahajoe

Abstract:

This in-depth exploration, through a systematic literature review, scrutinizes the nuanced role of data mining in the classification of criminal activities. The research focuses on investigating various methodological aspects and recent developments in leveraging data mining techniques to enhance the effectiveness and precision of crime categorization. Commencing with an exposition of the foundational concepts of crime classification and its evolutionary dynamics, this study details the paradigm shift from conventional methods towards approaches supported by data mining, addressing the challenges and complexities inherent in the modern crime landscape. Specifically, the research delves into various data mining techniques, including K-means clustering, Naïve Bayes, K-nearest neighbour, and clustering methods. A comprehensive review of the strengths and limitations of each technique provides insights into their respective contributions to improving crime classification models. The integration of diverse data sources takes centre stage in this research. A detailed analysis explores how the amalgamation of structured data (such as criminal records) and unstructured data (such as social media) can offer a holistic understanding of crime, enriching classification models with more profound insights. Furthermore, the study explores the temporal implications in crime classification, emphasizing the significance of considering temporal factors to comprehend long-term trends and seasonality. The availability of real-time data is also elucidated as a crucial element in enhancing responsiveness and accuracy in crime classification.

Keywords: data mining, classification algorithm, naïve bayes, k-means clustering, k-nearest neigbhor, crime, data analysis, sistematic literature review

Procedia PDF Downloads 75
24583 Digi-Buddy: A Smart Cane with Artificial Intelligence and Real-Time Assistance

Authors: Amaladhithyan Krishnamoorthy, Ruvaitha Banu

Abstract:

Vision is considered as the most important sense in humans, without which leading a normal can be often difficult. There are many existing smart canes for visually impaired with obstacle detection using ultrasonic transducer to help them navigate. Though the basic smart cane increases the safety of the users, it does not help in filling the void of visual loss. This paper introduces the concept of Digi-Buddy which is an evolved smart cane for visually impaired. The cane consists for several modules, apart from the basic obstacle detection features; the Digi-Buddy assists the user by capturing video/images and streams them to the server using a wide-angled camera, which then detects the objects using Deep Convolutional Neural Network. In addition to determining what the particular image/object is, the distance of the object is assessed by the ultrasonic transducer. The sound generation application, modelled with the help of Natural Language Processing is used to convert the processed images/object into audio. The object detected is signified by its name which is transmitted to the user with the help of Bluetooth hear phones. The object detection is extended to facial recognition which maps the faces of the person the user meets in the database of face images and alerts the user about the person. One of other crucial function consists of an automatic-intimation-alarm which is triggered when the user is in an emergency. If the user recovers within a set time, a button is provisioned in the cane to stop the alarm. Else an automatic intimation is sent to friends and family about the whereabouts of the user using GPS. In addition to safety and security by the existing smart canes, the proposed concept devices to be implemented as a prototype helping visually-impaired visualize their surroundings through audio more in an amicable way.

Keywords: artificial intelligence, facial recognition, natural language processing, internet of things

Procedia PDF Downloads 358
24582 Assessing Supply Chain Performance through Data Mining Techniques: A Case of Automotive Industry

Authors: Emin Gundogar, Burak Erkayman, Nusret Sazak

Abstract:

Providing effective management performance through the whole supply chain is critical issue and hard to applicate. The proper evaluation of integrated data may conclude with accurate information. Analysing the supply chain data through OLAP (On-Line Analytical Processing) technologies may provide multi-angle view of the work and consolidation. In this study, association rules and classification techniques are applied to measure the supply chain performance metrics of an automotive manufacturer in Turkey. Main criteria and important rules are determined. The comparison of the results of the algorithms is presented.

Keywords: supply chain performance, performance measurement, data mining, automotive

Procedia PDF Downloads 517