Search results for: generative adversarial networks
1704 The Role of Artificial Intelligence Algorithms in Psychiatry: Advancing Diagnosis and Treatment
Authors: Netanel Stern
Abstract:
Artificial intelligence (AI) algorithms have emerged as powerful tools in the field of psychiatry, offering new possibilities for enhancing diagnosis and treatment outcomes. This article explores the utilization of AI algorithms in psychiatry, highlighting their potential to revolutionize patient care. Various AI algorithms, including machine learning, natural language processing (NLP), reinforcement learning, clustering, and Bayesian networks, are discussed in detail. Moreover, ethical considerations and future directions for research and implementation are addressed.Keywords: AI, software engineering, psychiatry, neuroimaging
Procedia PDF Downloads 1161703 Analyzing Impacts of Road Network on Vegetation Using Geographic Information System and Remote Sensing Techniques
Authors: Elizabeth Malebogo Mosepele
Abstract:
Road transport has become increasingly common in the world; people rely on road networks for transportation purpose on a daily basis. However, environmental impact of roads on surrounding landscapes extends their potential effects even further. This study investigates the impact of road network on natural vegetation. The study will provide baseline knowledge regarding roadside vegetation and would be helpful in future for conservation of biodiversity along the road verges and improvements of road verges. The general hypothesis of this study is that the amount and condition of road side vegetation could be explained by road network conditions. Remote sensing techniques were used to analyze vegetation conditions. Landsat 8 OLI image was used to assess vegetation cover condition. NDVI image was generated and used as a base from which land cover classes were extracted, comprising four categories viz. healthy vegetation, degraded vegetation, bare surface, and water. The classification of the image was achieved using the supervised classification technique. Road networks were digitized from Google Earth. For observed data, transect based quadrats of 50*50 m were conducted next to road segments for vegetation assessment. Vegetation condition was related to road network, with the multinomial logistic regression confirming a significant relationship between vegetation condition and road network. The null hypothesis formulated was that 'there is no variation in vegetation condition as we move away from the road.' Analysis of vegetation condition revealed degraded vegetation within close proximity of a road segment and healthy vegetation as the distance increase away from the road. The Chi Squared value was compared with critical value of 3.84, at the significance level of 0.05 to determine the significance of relationship. Given that the Chi squared value was 395, 5004, the null hypothesis was therefore rejected; there is significant variation in vegetation the distance increases away from the road. The conclusion is that the road network plays an important role in the condition of vegetation.Keywords: Chi squared, geographic information system, multinomial logistic regression, remote sensing, road side vegetation
Procedia PDF Downloads 4321702 American Sign Language Recognition System
Authors: Rishabh Nagpal, Riya Uchagaonkar, Venkata Naga Narasimha Ashish Mernedi, Ahmed Hambaba
Abstract:
The rapid evolution of technology in the communication sector continually seeks to bridge the gap between different communities, notably between the deaf community and the hearing world. This project develops a comprehensive American Sign Language (ASL) recognition system, leveraging the advanced capabilities of convolutional neural networks (CNNs) and vision transformers (ViTs) to interpret and translate ASL in real-time. The primary objective of this system is to provide an effective communication tool that enables seamless interaction through accurate sign language interpretation. The architecture of the proposed system integrates dual networks -VGG16 for precise spatial feature extraction and vision transformers for contextual understanding of the sign language gestures. The system processes live input, extracting critical features through these sophisticated neural network models, and combines them to enhance gesture recognition accuracy. This integration facilitates a robust understanding of ASL by capturing detailed nuances and broader gesture dynamics. The system is evaluated through a series of tests that measure its efficiency and accuracy in real-world scenarios. Results indicate a high level of precision in recognizing diverse ASL signs, substantiating the potential of this technology in practical applications. Challenges such as enhancing the system’s ability to operate in varied environmental conditions and further expanding the dataset for training were identified and discussed. Future work will refine the model’s adaptability and incorporate haptic feedback to enhance the interactivity and richness of the user experience. This project demonstrates the feasibility of an advanced ASL recognition system and lays the groundwork for future innovations in assistive communication technologies.Keywords: sign language, computer vision, vision transformer, VGG16, CNN
Procedia PDF Downloads 431701 Forecasting Thermal Energy Demand in District Heating and Cooling Systems Using Long Short-Term Memory Neural Networks
Authors: Kostas Kouvaris, Anastasia Eleftheriou, Georgios A. Sarantitis, Apostolos Chondronasios
Abstract:
To achieve the objective of almost zero carbon energy solutions by 2050, the EU needs to accelerate the development of integrated, highly efficient and environmentally friendly solutions. In this direction, district heating and cooling (DHC) emerges as a viable and more efficient alternative to conventional, decentralized heating and cooling systems, enabling a combination of more efficient renewable and competitive energy supplies. In this paper, we develop a forecasting tool for near real-time local weather and thermal energy demand predictions for an entire DHC network. In this fashion, we are able to extend the functionality and to improve the energy efficiency of the DHC network by predicting and adjusting the heat load that is distributed from the heat generation plant to the connected buildings by the heat pipe network. Two case-studies are considered; one for Vransko, Slovenia and one for Montpellier, France. The data consists of i) local weather data, such as humidity, temperature, and precipitation, ii) weather forecast data, such as the outdoor temperature and iii) DHC operational parameters, such as the mass flow rate, supply and return temperature. The external temperature is found to be the most important energy-related variable for space conditioning, and thus it is used as an external parameter for the energy demand models. For the development of the forecasting tool, we use state-of-the-art deep neural networks and more specifically, recurrent networks with long-short-term memory cells, which are able to capture complex non-linear relations among temporal variables. Firstly, we develop models to forecast outdoor temperatures for the next 24 hours using local weather data for each case-study. Subsequently, we develop models to forecast thermal demand for the same period, taking under consideration past energy demand values as well as the predicted temperature values from the weather forecasting models. The contributions to the scientific and industrial community are three-fold, and the empirical results are highly encouraging. First, we are able to predict future thermal demand levels for the two locations under consideration with minimal errors. Second, we examine the impact of the outdoor temperature on the predictive ability of the models and how the accuracy of the energy demand forecasts decreases with the forecast horizon. Third, we extend the relevant literature with a new dataset of thermal demand and examine the performance and applicability of machine learning techniques to solve real-world problems. Overall, the solution proposed in this paper is in accordance with EU targets, providing an automated smart energy management system, decreasing human errors and reducing excessive energy production.Keywords: machine learning, LSTMs, district heating and cooling system, thermal demand
Procedia PDF Downloads 1421700 Resale Housing Development Board Price Prediction Considering Covid-19 through Sentiment Analysis
Authors: Srinaath Anbu Durai, Wang Zhaoxia
Abstract:
Twitter sentiment has been used as a predictor to predict price values or trends in both the stock market and housing market. The pioneering works in this stream of research drew upon works in behavioural economics to show that sentiment or emotions impact economic decisions. Latest works in this stream focus on the algorithm used as opposed to the data used. A literature review of works in this stream through the lens of data used shows that there is a paucity of work that considers the impact of sentiments caused due to an external factor on either the stock or the housing market. This is despite an abundance of works in behavioural economics that show that sentiment or emotions caused due to an external factor impact economic decisions. To address this gap, this research studies the impact of Twitter sentiment pertaining to the Covid-19 pandemic on resale Housing Development Board (HDB) apartment prices in Singapore. It leverages SNSCRAPE to collect tweets pertaining to Covid-19 for sentiment analysis, lexicon based tools VADER and TextBlob are used for sentiment analysis, Granger Causality is used to examine the relationship between Covid-19 cases and the sentiment score, and neural networks are leveraged as prediction models. Twitter sentiment pertaining to Covid-19 as a predictor of HDB price in Singapore is studied in comparison with the traditional predictors of housing prices i.e., the structural and neighbourhood characteristics. The results indicate that using Twitter sentiment pertaining to Covid19 leads to better prediction than using only the traditional predictors and performs better as a predictor compared to two of the traditional predictors. Hence, Twitter sentiment pertaining to an external factor should be considered as important as traditional predictors. This paper demonstrates the real world economic applications of sentiment analysis of Twitter data.Keywords: sentiment analysis, Covid-19, housing price prediction, tweets, social media, Singapore HDB, behavioral economics, neural networks
Procedia PDF Downloads 1171699 Housing Precarity and Pathways: Lived Experiences Among Bangladeshi Migrants in Dublin
Authors: Mohammad Altaf Hossain
Abstract:
A growing body of literature in urban studies has presented that urban precarity has been a lived experience for low-income groups of people in the cities of the Global South. It does not necessarily mean that cities in the Global North, where advanced capitalist economies exist, avoided the adverse realities of urban precarity. As a multifaceted condition, it creates other associated precariousness in lives -for example, economic deprivation, mental stress, and housing precarity. The interrelations between urbanity and precarity have been ubiquitous regardless of the developed and developing countries. People, mainly manual labourers with low incomes, go through uncertainties in every aspect of life. By analysing qualitative data and embracing structure-agency interaction, this paper intends to present how Bangladeshi migrants experience housing precarity in Dublin. Continued population growth and political economy factors such as labour market inequality, financialisation of the private rental sector, and the impact of cuts to government funding for social housing provision are combined to produce a housing supply crisis, affordability, and access in the city. As a result, low-income people practice informality in securing jobs and housing. The macro-structural components of this analysis include the Irish housing policy, the European labour market, the immigration policy, and the financialised housing market. The micro-structural components of South Asian communities’ experiences include social networks and social class. Access to social networks and practices of informality play a significant role in enabling them to negotiate urban precarity, including housing crises and income insecurity. In some cases, the collective agency of ethnic diaspora communities plays a vital role in negotiating with structural constraints.Keywords: housing precarity, housing pathways, migration, agency, Dublin
Procedia PDF Downloads 261698 Efficient Backup Protection for Hybrid WDM/TDM GPON System
Authors: Elmahdi Mohammadine, Ahouzi Esmail, Najid Abdellah
Abstract:
This contribution aims to present a new protected hybrid WDM/TDM PON architecture using Wavelength Selective Switches and Optical Line Protection devices. The objective from using these technologies is to improve flexibility and enhance the protection of GPON networks.Keywords: Wavlenght Division Multiplexed Passive Optical Network (WDM-PON), Time Division Multiplexed PON (TDM-PON), architecture, Protection, Wavelength Selective Switches (WSS), Optical Line Protection (OLP)
Procedia PDF Downloads 5431697 Protection Plan of Medium Voltage Distribution Network in Tunisia
Abstract:
The distribution networks are often exposed to harmful incidents which can halt the electricity supply of the customer. In this context, we studied a real case of a critical zone of the Tunisian network which is currently characterized by the dysfunction of its plan of protection. In this paper, we were interested in the harmonization of the protection plan settings in order to ensure a perfect selectivity and a better continuity of service on the whole of the network.Keywords: distribution network Gabes-Tunisia, continuity of service, protection plan settings, selectivity
Procedia PDF Downloads 5101696 Older Consumer’s Willingness to Trust Social Media Advertising: An Australian Case
Authors: Simon J. Wilde, David M. Herold, Michael J. Bryant
Abstract:
Social media networks have become the hotbed for advertising activities, due mainly to their increasing consumer/user base, and secondly, owing to the ability of marketers to accurately measure ad exposure and consumer-based insights on such networks. More than half of the world’s population (4.8 billion) now uses social media (60%), with 150 million new users having come online within the last 12 months (to June 2022). As the use of social media networks by users grows, key business strategies used for interacting with these potential customers have matured, especially social media advertising. Unlike other traditional media outlets, social media advertising is highly interactive and digital channel-specific. Social media advertisements are clearly targetable, providing marketers with an extremely powerful marketing tool. Yet despite the measurable benefits afforded to businesses engaged in social media advertising, recent controversies (such as the relationship between Facebook and Cambridge Analytica in 2018) have only heightened the role trust and privacy play within these social media networks. The purpose of this exploratory paper is to investigate the extent to which social media users trust social media advertising. Understanding this relationship will fundamentally assist marketers in better understanding social media interactions and their implications for society. Using a web-based quantitative survey instrument, survey participants were recruited via a reputable online panel survey site. Respondents to the survey represented social media users from all states and territories within Australia. Completed responses were received from a total of 258 social media users. Survey respondents represented all core age demographic groupings, including Gen Z/Millennials (18-45 years = 60.5% of respondents) and Gen X/Boomers (46-66+ years = 39.5% of respondents). An adapted ADTRUST scale, using a 20 item 7-point Likert scale, measured trust in social media advertising. The ADTRUST scale has been shown to be a valid measure of trust in advertising within traditional different media, such as broadcast media and print media, and more recently, the Internet (as a broader platform). The adapted scale was validated through exploratory factor analysis (EFA), resulting in a three-factor solution. These three factors were named reliability, usefulness and affect, and the willingness to rely on. Factor scores (weighted measures) were then calculated for these factors. Factor scores are estimates of the scores survey participants would have received on each of the factors had they been measured directly, with the following results recorded (Reliability = 4.68/7; Usefulness and Affect = 4.53/7; and Willingness to Rely On = 3.94/7). Further statistical analysis (independent samples t-test) determined the difference in factor scores between the factors when age (Gen Z/Millennials vs. Gen X/Boomers) was utilised as the independent, categorical variable. The results showed the difference in mean scores across all three factors to be statistically significant (p<0.05) for these two core age groupings: Gen Z/Millennials Reliability = 4.90/7 vs Gen X/Boomers Reliability = 4.34/7; Gen Z/Millennials Usefulness and Affect = 4.85/7 vs Gen X/Boomers Usefulness and Affect = 4.05/7; and Gen Z/Millennials Willingness to Rely On = 4.53/7 vs Gen X/Boomers Willingness to Rely On = 3.03/7. The results clearly indicate that older social media users lack trust in the quality of information conveyed in social media ads, when compared to younger, more social media-savvy consumers. This is especially evident with respect to Factor 3 (Willingness to Rely On), whose underlying variables reflect one’s behavioural intent to act based on the information conveyed in advertising. These findings can be useful to marketers, advertisers, and brand managers in that the results highlight a critical need to design ‘authentic’ advertisements on social media sites to better connect with these older users, in an attempt to foster positive behavioural responses from within this large demographic group – whose engagement with social media sites continues to increase year on year.Keywords: social media advertising, trust, older consumers, online
Procedia PDF Downloads 821695 A Socio-Spatial Analysis of Financialization and the Formation of Oligopolies in Brazilian Basic Education
Authors: Gleyce Assis Da Silva Barbosa
Abstract:
In recent years, we have witnessed a vertiginous growth of large education companies. Daughters of national and world capital, these companies expand both through consolidated physical networks in the form of branches spread across the territory and through institutional networks such as business networks through mergers, acquisitions, creation of new companies and influence. They do this by incorporating small, medium and large schools and universities, teaching systems and other products and services. They are also able to weave their webs directly or indirectly in philanthropic circles, limited partnerships, family businesses and even in public education through various mechanisms of outsourcing, privatization and commercialization of products for the sector. Although the growth of these groups in basic education seems to us a recent phenomenon in peripheral countries such as Brazil, its diffusion is closely linked to higher education conglomerates and other sectors of the economy forming oligopolies, which began to expand in the 1990s with strong state support and through political reforms that redefined its role, transforming it into a fundamental agent in the formation of guidelines to boost the incorporation of neoliberal logic. This expansion occurred through the objectification of education, commodifying it and transforming students into consumer clients. Financial power combined with the neo-liberalization of state public policies allowed the profusion of social exclusion, the increase of individuals without access to basic services, deindustrialization, automation, capital volatility and the indetermination of the economy; in addition, this process causes capital to be valued and devalued at rates never seen before, which together generates various impacts such as the precariousness of work. Understanding the connection between these processes, which engender the economy, allows us to see their consequences in labor relations and in the territory. In this sense, it is necessary to analyze the geographic-economic context and the role of the facilitating agents of this process, which can give us clues about the ongoing transformations and the directions of education in the national and even international scenario since this process is linked to the multiple scales of financial globalization. Therefore, the present research has the general objective of analyzing the socio-spatial impacts of financialization and the formation of oligopolies in Brazilian basic education. For this, the survey of laws, data, and public policies on the subject in question was used as a methodology. As a methodology, the work was based on some data from these companies available on websites for investors. Survey of information from global and national companies that operate in Brazilian basic education. In addition to mapping the expansion of educational oligopolies using public data on the location of schools. With this, the research intends to provide information about the ongoing commodification process in the country. Discuss the consequences of the oligopolization of education, considering the impacts that financialization can bring to teaching work.Keywords: financialization, oligopolies, education, Brazil
Procedia PDF Downloads 641694 A Feminist/Queer Global Bioethics’Perspective on Reproduction: Abortion, MAR and Surrogacy
Authors: Tamara Roma, Emma Capulli
Abstract:
Pregnancy and fertility, in other words, reproduction, has become, in the last half of the century, increasingly and globally controlled, medicalized, and regulated. The reflection proposed starts from the consequences of the inscription of reproduction into the neoliberal economic paradigm. The new biotechnologies developments have raised a new patriarchal justification for State’s control of uterus bodies and a new construction of knowledge about reproductive health. Moral discussion and juridification remove reproduction and non-reproduction from their personal and intimate context and frame them under words like “duties”, “rights”, “family planning”, “demography”, and “population policy”, reinvent them as “States business” and ultimately help to re/confirm a specific construct of fertility, motherhood, and family. Moreover, the interaction between the neoliberal economy and medical biotechnologies brought about a new formulation of the connection between feminine generative potential and value production. The widespread and contemporary debates on Medically Assisted Reproduction (MAR), surrogacy and abortion suggest the need for a “feminist/queer global bioethical discourse” capable of inserting itself into the official bioethical debate characterized by the traditional dichotomy of laic bioethics/Catholic bioethics. The contribution moves from a feminist bioethics perspective on reproductive technologies to introduce a feminist/queer global bioethics point of view on reproductive health. The comparison between reproduction and non-reproduction debates is useful to analyze and demonstrate how restrictive legislations, dichotomic bioethical discussion and medical control confirm and strengthens gender injustice in reproductive life. In fact, MAR, surrogacy, and abortion restrictions stem from a shared social and legal paradigm that depends on traditional gender roles revealing how the stratification of reproduction is based on multiple discrimination along the lines of gender, race, and class. In conclusion, the perspective of feminist/queer global bioethics tries to read the concept of universal reproductive justice, introducing an original point of view on reproductive health access.Keywords: queer bioethics, reproductive health, reproductive justice, reproductive technologies
Procedia PDF Downloads 1251693 Evaluation of the Effectiveness of Barriers for the Control of Rats in Rice Plantation Field
Authors: Melina, Jumardi Jumardi, Erwin Erwin, Sri Nuraminah, Andi Nasruddin
Abstract:
The rice field rat (Rattus argentiventer Robinson and Kloss) is a pest causing the greatest yield loss of rice plants, especially in lowland agroecosystems with intensive cropping patterns (2-3 plantings per year). Field mice damage rice plants at all stages of growth, from seedling to harvest, even in storage warehouses. Severe damage with yield loss of up to 100% occurs if rats attack rice at the generative stage because the plants are no longer able to recover by forming new tillers. Farmers mainly use rodenticides in the form of poisoned baits or as fumigants, which are applied to rat burrow holes. This practice is generally less effective because mice are able to avoid the poison or become resistant after several exposures to it. In addition, excessive use of rodenticides can have negative impacts on the environment and non-target organisms. For this reason, this research was conducted to evaluate the effectiveness of fences as an environmentally friendly mechanical control method in reducing rice yield losses due to rat attacks. This study used a factorial randomized block design. The first factor was the fence material, namely galvanized zinc plate and plastic. The second factor was the height of the fence, namely 25, 50, 75, and 100 cm from the ground level. Each treatment combination was repeated five times. Data shows that zinc fences with a height of 75 and 100 cm are able to provide full protection to plants from rat infestations throughout the planting season. However, zinc fences with a height of 25 and 50 cm failed to prevent rat attacks. Plastic fences with a height of 25 and 50 cm failed to prevent rat attacks during the planting season, whereas 75 and 100 cm were able to prevent rat attacks until all the crops outside of the fence had been eaten by rats. The rat managed to get into the fence by biting the plastic fence close to the ground. Thus, the research results show that fences made of zinc plate with a height of at least 75 cm from the ground surface are effective in preventing plant damage caused by rats. To our knowledge, this research is the first to quantify the effectiveness of fences as a control of field rodents.Keywords: rice field rat, Rattus argentiventer, fence, rice
Procedia PDF Downloads 411692 Cloud Computing Architecture Based on SOA
Authors: Negin Mohammadrezaee Larki
Abstract:
Cloud Computing is a popular solution that has been used in recent years to cooperate and collaborate among distributed applications over networks. Moving successfully into cloud computing requires an architecture that will support the new cloud capabilities. Many business leaders and analysts agree that moving to cloud requires having a solid, service-oriented architecture to provide the infrastructure needed for successful cloud implementation.Keywords: Service Oriented Architecture (SOA), Service Oriented Cloud Computing Architecture (SOCCA), cloud computing, cloud computing architecture
Procedia PDF Downloads 3881691 Use of Artificial Neural Networks to Estimate Evapotranspiration for Efficient Irrigation Management
Authors: Adriana Postal, Silvio C. Sampaio, Marcio A. Villas Boas, Josué P. Castro
Abstract:
This study deals with the estimation of reference evapotranspiration (ET₀) in an agricultural context, focusing on efficient irrigation management to meet the growing interest in the sustainable management of water resources. Given the importance of water in agriculture and its scarcity in many regions, efficient use of this resource is essential to ensure food security and environmental sustainability. The methodology used involved the application of artificial intelligence techniques, specifically Multilayer Perceptron (MLP) Artificial Neural Networks (ANNs), to predict ET₀ in the state of Paraná, Brazil. The models were trained and validated with meteorological data from the Brazilian National Institute of Meteorology (INMET), together with data obtained from a producer's weather station in the western region of Paraná. Two optimizers (SGD and Adam) and different meteorological variables, such as temperature, humidity, solar radiation, and wind speed, were explored as inputs to the models. Nineteen configurations with different input variables were tested; amidst them, configuration 9, with 8 input variables, was identified as the most efficient of all. Configuration 10, with 4 input variables, was considered the most effective, considering the smallest number of variables. The main conclusions of this study show that MLP ANNs are capable of accurately estimating ET₀, providing a valuable tool for irrigation management in agriculture. Both configurations (9 and 10) showed promising performance in predicting ET₀. The validation of the models with cultivator data underlined the practical relevance of these tools and confirmed their generalization ability for different field conditions. The results of the statistical metrics, including Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and Coefficient of Determination (R²), showed excellent agreement between the model predictions and the observed data, with MAE as low as 0.01 mm/day and 0.03 mm/day, respectively. In addition, the models achieved an R² between 0.99 and 1, indicating a satisfactory fit to the real data. This agreement was also confirmed by the Kolmogorov-Smirnov test, which evaluates the agreement of the predictions with the statistical behavior of the real data and yields values between 0.02 and 0.04 for the producer data. In addition, the results of this study suggest that the developed technique can be applied to other locations by using specific data from these sites to further improve ET₀ predictions and thus contribute to sustainable irrigation management in different agricultural regions. The study has some limitations, such as the use of a single ANN architecture and two optimizers, the validation with data from only one producer, and the possible underestimation of the influence of seasonality and local climate variability. An irrigation management application using the most efficient models from this study is already under development. Future research can explore different ANN architectures and optimization techniques, validate models with data from multiple producers and regions, and investigate the model's response to different seasonal and climatic conditions.Keywords: agricultural technology, neural networks in agriculture, water efficiency, water use optimization
Procedia PDF Downloads 501690 BFDD-S: Big Data Framework to Detect and Mitigate DDoS Attack in SDN Network
Authors: Amirreza Fazely Hamedani, Muzzamil Aziz, Philipp Wieder, Ramin Yahyapour
Abstract:
Software-defined networking in recent years came into the sight of so many network designers as a successor to the traditional networking. Unlike traditional networks where control and data planes engage together within a single device in the network infrastructure such as switches and routers, the two planes are kept separated in software-defined networks (SDNs). All critical decisions about packet routing are made on the network controller, and the data level devices forward the packets based on these decisions. This type of network is vulnerable to DDoS attacks, degrading the overall functioning and performance of the network by continuously injecting the fake flows into it. This increases substantial burden on the controller side, and the result ultimately leads to the inaccessibility of the controller and the lack of network service to the legitimate users. Thus, the protection of this novel network architecture against denial of service attacks is essential. In the world of cybersecurity, attacks and new threats emerge every day. It is essential to have tools capable of managing and analyzing all this new information to detect possible attacks in real-time. These tools should provide a comprehensive solution to automatically detect, predict and prevent abnormalities in the network. Big data encompasses a wide range of studies, but it mainly refers to the massive amounts of structured and unstructured data that organizations deal with on a regular basis. On the other hand, it regards not only the volume of the data; but also that how data-driven information can be used to enhance decision-making processes, security, and the overall efficiency of a business. This paper presents an intelligent big data framework as a solution to handle illegitimate traffic burden on the SDN network created by the numerous DDoS attacks. The framework entails an efficient defence and monitoring mechanism against DDoS attacks by employing the state of the art machine learning techniques.Keywords: apache spark, apache kafka, big data, DDoS attack, machine learning, SDN network
Procedia PDF Downloads 1691689 Refugee Job Seeking Opportunities: It's Not What You Know, It's Who You Know
Authors: Kimberley Kershaw, Denis Hyams-Ssekasi
Abstract:
Although there is a wealth of information about refugees and Asylum seekers, Refugee job opportunities continue to be one of the most hotly contested areas and less researched within the social sciences. Refugees are a vital asset in the society due to their experiences, skills, and competences. However, society perceives them differently, and as such, their prior lived experiences are often underutilised. This research study gleans from the work conducted during the Refugee Employment Support Clinic delivered for 12 weeks within a University setting in the North West of England. The study is conducted using three perspectives, refugees, students, and researchers, allowing for identification of the challenges encountered by the refugees concerning job opportunities. Through the utilisation of the qualitative research method, the study has found that refugees experience a wide range of issues unrelated to their skills, prior experience, and education but rather due to the red tapes connected to their legal identity labelling. Refugees struggle to build reliable employment networks that appreciate and acknowledge their capabilities and talents, impacting their ability to navigate the labour market and classism. Notably, refugees are misunderstood within their new societies, and little care is taken to understand the unique struggles they face with respect to securing paid work in their industry or field of work due to their lack of experience in the UK. Unlike other European countries, it is evident that the UK has no strategic approach to enhancing the chances of paid or voluntary work for refugees. A clinic like this provided lenses for comprehending how refugees can be better supported with employment related opportunities. By creating a safe and conducive platform for honest and open discussion about employment and through collaborative approaches with local community agencies, doors were opened for social and professional networks to be built. The study concluded that there is a need for local communities and education establishments to be more aware of the prevailing challenges and in a position to support at all stages of their asylum claim in order for the perceptions of distrust and uncertainty around refugees to be minimised.Keywords: refugees, employment, community, classism, education
Procedia PDF Downloads 961688 Design and Integration of an Energy Harvesting Vibration Absorber for Rotating System
Authors: F. Infante, W. Kaal, S. Perfetto, S. Herold
Abstract:
In the last decade the demand of wireless sensors and low-power electric devices for condition monitoring in mechanical structures has been strongly increased. Networks of wireless sensors can potentially be applied in a huge variety of applications. Due to the reduction of both size and power consumption of the electric components and the increasing complexity of mechanical systems, the interest of creating dense nodes sensor networks has become very salient. Nevertheless, with the development of large sensor networks with numerous nodes, the critical problem of powering them is drawing more and more attention. Batteries are not a valid alternative for consideration regarding lifetime, size and effort in replacing them. Between possible alternative solutions for durable power sources useable in mechanical components, vibrations represent a suitable source for the amount of power required to feed a wireless sensor network. For this purpose, energy harvesting from structural vibrations has received much attention in the past few years. Suitable vibrations can be found in numerous mechanical environments including automotive moving structures, household applications, but also civil engineering structures like buildings and bridges. Similarly, a dynamic vibration absorber (DVA) is one of the most used devices to mitigate unwanted vibration of structures. This device is used to transfer the primary structural vibration to the auxiliary system. Thus, the related energy is effectively localized in the secondary less sensitive structure. Then, the additional benefit of harvesting part of the energy can be obtained by implementing dedicated components. This paper describes the design process of an energy harvesting tuned vibration absorber (EHTVA) for rotating systems using piezoelectric elements. The energy of the vibration is converted into electricity rather than dissipated. The device proposed is indeed designed to mitigate torsional vibrations as with a conventional rotational TVA, while harvesting energy as a power source for immediate use or storage. The resultant rotational multi degree of freedom (MDOF) system is initially reduced in an equivalent single degree of freedom (SDOF) system. The Den Hartog’s theory is used for evaluating the optimal mechanical parameters of the initial DVA for the SDOF systems defined. The performance of the TVA is operationally assessed and the vibration reduction at the original resonance frequency is measured. Then, the design is modified for the integration of active piezoelectric patches without detuning the TVA. In order to estimate the real power generated, a complex storage circuit is implemented. A DC-DC step-down converter is connected to the device through a rectifier to return a fixed output voltage. Introducing a big capacitor, the energy stored is measured at different frequencies. Finally, the electromechanical prototype is tested and validated achieving simultaneously reduction and harvesting functions.Keywords: energy harvesting, piezoelectricity, torsional vibration, vibration absorber
Procedia PDF Downloads 1471687 Safety Validation of Black-Box Autonomous Systems: A Multi-Fidelity Reinforcement Learning Approach
Authors: Jared Beard, Ali Baheri
Abstract:
As autonomous systems become more prominent in society, ensuring their safe application becomes increasingly important. This is clearly demonstrated with autonomous cars traveling through a crowded city or robots traversing a warehouse with heavy equipment. Human environments can be complex, having high dimensional state and action spaces. This gives rise to two problems. One being that analytic solutions may not be possible. The other is that in simulation based approaches, searching the entirety of the problem space could be computationally intractable, ruling out formal methods. To overcome this, approximate solutions may seek to find failures or estimate their likelihood of occurrence. One such approach is adaptive stress testing (AST) which uses reinforcement learning to induce failures in the system. The premise of which is that a learned model can be used to help find new failure scenarios, making better use of simulations. In spite of these failures AST fails to find particularly sparse failures and can be inclined to find similar solutions to those found previously. To help overcome this, multi-fidelity learning can be used to alleviate this overuse of information. That is, information in lower fidelity can simulations can be used to build up samples less expensively, and more effectively cover the solution space to find a broader set of failures. Recent work in multi-fidelity learning has passed information bidirectionally using “knows what it knows” (KWIK) reinforcement learners to minimize the number of samples in high fidelity simulators (thereby reducing computation time and load). The contribution of this work, then, is development of the bidirectional multi-fidelity AST framework. Such an algorithm, uses multi-fidelity KWIK learners in an adversarial context to find failure modes. Thus far, a KWIK learner has been used to train an adversary in a grid world to prevent an agent from reaching its goal; thus demonstrating the utility of KWIK learners in an AST framework. The next step is implementation of the bidirectional multi-fidelity AST framework described. Testing will be conducted in a grid world containing an agent attempting to reach a goal position and adversary tasked with intercepting the agent as demonstrated previously. Fidelities will be modified by adjusting the size of a time-step, with higher-fidelity effectively allowing for more responsive closed loop feedback. Results will compare the single KWIK AST learner with the multi-fidelity algorithm with respect to number of samples, distinct failure modes found, and relative effect of learning after a number of trials.Keywords: multi-fidelity reinforcement learning, multi-fidelity simulation, safety validation, falsification
Procedia PDF Downloads 1571686 Value Co-Creation Model for Relationships Management
Authors: Kolesnik Nadezda A.
Abstract:
The research aims to elaborate inter-organizational network relationships management model to maximize value co-creation. We propose a network management framework that requires evaluation of network partners with respect to their position and role in network; and elaboration of appropriate relationship development strategy with partners in network. Empirical research and approval is based on the case study method, including structured in-depth interviews with the companies from b2b market.Keywords: inter-organizational networks, value co-creation, model, B2B market
Procedia PDF Downloads 4561685 Challenges in E-Government: Conceptual Views and Solutions
Authors: Rasim Alguliev, Farhad Yusifov
Abstract:
Considering the international experience, conceptual and architectural principles of forming of electron government are researched and some suggestions were made. The assessment of monitoring of forming processes of electron government, intellectual analysis of web-resources, provision of information security, electron democracy problems were researched, conceptual approaches were suggested. By taking into consideration main principles of electron government theory, important research directions were specified.Keywords: electron government, public administration, information security, web-analytics, social networks, data mining
Procedia PDF Downloads 4741684 New Machine Learning Optimization Approach Based on Input Variables Disposition Applied for Time Series Prediction
Authors: Hervice Roméo Fogno Fotsoa, Germaine Djuidje Kenmoe, Claude Vidal Aloyem Kazé
Abstract:
One of the main applications of machine learning is the prediction of time series. But a more accurate prediction requires a more optimal model of machine learning. Several optimization techniques have been developed, but without considering the input variables disposition of the system. Thus, this work aims to present a new machine learning architecture optimization technique based on their optimal input variables disposition. The validations are done on the prediction of wind time series, using data collected in Cameroon. The number of possible dispositions with four input variables is determined, i.e., twenty-four. Each of the dispositions is used to perform the prediction, with the main criteria being the training and prediction performances. The results obtained from a static architecture and a dynamic architecture of neural networks have shown that these performances are a function of the input variable's disposition, and this is in a different way from the architectures. This analysis revealed that it is necessary to take into account the input variable's disposition for the development of a more optimal neural network model. Thus, a new neural network training algorithm is proposed by introducing the search for the optimal input variables disposition in the traditional back-propagation algorithm. The results of the application of this new optimization approach on the two single neural network architectures are compared with the previously obtained results step by step. Moreover, this proposed approach is validated in a collaborative optimization method with a single objective optimization technique, i.e., genetic algorithm back-propagation neural networks. From these comparisons, it is concluded that each proposed model outperforms its traditional model in terms of training and prediction performance of time series. Thus the proposed optimization approach can be useful in improving the accuracy of time series forecasts. This proves that the proposed optimization approach can be useful in improving the accuracy of time series prediction based on machine learning.Keywords: input variable disposition, machine learning, optimization, performance, time series prediction
Procedia PDF Downloads 1091683 A Novel Probablistic Strategy for Modeling Photovoltaic Based Distributed Generators
Authors: Engy A. Mohamed, Y. G. Hegazy
Abstract:
This paper presents a novel algorithm for modeling photovoltaic based distributed generators for the purpose of optimal planning of distribution networks. The proposed algorithm utilizes sequential Monte Carlo method in order to accurately consider the stochastic nature of photovoltaic based distributed generators. The proposed algorithm is implemented in MATLAB environment and the results obtained are presented and discussed.Keywords: comulative distribution function, distributed generation, Monte Carlo
Procedia PDF Downloads 5851682 Subjectivities of the Inhabitants and Trajectories of Family Life in Vulnerable Groups
Authors: Mora Kestelman
Abstract:
This paper analyzes various family groups of vulnerable populations as regards their family, educational, labor trajectory and sociability from a relational and historical approach based on archive research and fieldwork. Therefrom, their position and life projects are reconsidered as regards the planning and design of the habitat in which they are immersed. It concludes that a critical review of objectivity and subjectivity emphasizes the nonrational, often unconscious, forces that drive human and non-human relationships to configure identities, which, thus, permanently become constituent to the subjects.Keywords: social psychology, urban planning, self concept, social networks, identity theory
Procedia PDF Downloads 781681 Healthcare-SignNet: Advanced Video Classification for Medical Sign Language Recognition Using CNN and RNN Models
Authors: Chithra A. V., Somoshree Datta, Sandeep Nithyanandan
Abstract:
Sign Language Recognition (SLR) is the process of interpreting and translating sign language into spoken or written language using technological systems. It involves recognizing hand gestures, facial expressions, and body movements that makeup sign language communication. The primary goal of SLR is to facilitate communication between hearing- and speech-impaired communities and those who do not understand sign language. Due to the increased awareness and greater recognition of the rights and needs of the hearing- and speech-impaired community, sign language recognition has gained significant importance over the past 10 years. Technological advancements in the fields of Artificial Intelligence and Machine Learning have made it more practical and feasible to create accurate SLR systems. This paper presents a distinct approach to SLR by framing it as a video classification problem using Deep Learning (DL), whereby a combination of Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) has been used. This research targets the integration of sign language recognition into healthcare settings, aiming to improve communication between medical professionals and patients with hearing impairments. The spatial features from each video frame are extracted using a CNN, which captures essential elements such as hand shapes, movements, and facial expressions. These features are then fed into an RNN network that learns the temporal dependencies and patterns inherent in sign language sequences. The INCLUDE dataset has been enhanced with more videos from the healthcare domain and the model is evaluated on the same. Our model achieves 91% accuracy, representing state-of-the-art performance in this domain. The results highlight the effectiveness of treating SLR as a video classification task with the CNN-RNN architecture. This approach not only improves recognition accuracy but also offers a scalable solution for real-time SLR applications, significantly advancing the field of accessible communication technologies.Keywords: sign language recognition, deep learning, convolution neural network, recurrent neural network
Procedia PDF Downloads 281680 Optimum Dimensions of Hydraulic Structures Foundation and Protections Using Coupled Genetic Algorithm with Artificial Neural Network Model
Authors: Dheyaa W. Abbood, Rafa H. AL-Suhaili, May S. Saleh
Abstract:
A model using the artificial neural networks and genetic algorithm technique is developed for obtaining optimum dimensions of the foundation length and protections of small hydraulic structures. The procedure involves optimizing an objective function comprising a weighted summation of the state variables. The decision variables considered in the optimization are the upstream and downstream cutoffs length sand their angles of inclination, the foundation length, and the length of the downstream soil protection. These were obtained for a given maximum difference in head, depth of impervious layer and degree of anisotropy.The optimization carried out subjected to constraints that ensure a safe structure against the uplift pressure force and sufficient protection length at the downstream side of the structure to overcome an excessive exit gradient. The Geo-studios oft ware, was used to analyze 1200 different cases. For each case the length of protection and volume of structure required to satisfy the safety factors mentioned previously were estimated. An ANN model was developed and verified using these cases input-output sets as its data base. A MatLAB code was written to perform a genetic algorithm optimization modeling coupled with this ANN model using a formulated optimization model. A sensitivity analysis was done for selecting the cross-over probability, the mutation probability and level ,the number of population, the position of the crossover and the weights distribution for all the terms of the objective function. Results indicate that the most factor that affects the optimum solution is the number of population required. The minimum value that gives stable global optimum solution of this parameters is (30000) while other variables have little effect on the optimum solution.Keywords: inclined cutoff, optimization, genetic algorithm, artificial neural networks, geo-studio, uplift pressure, exit gradient, factor of safety
Procedia PDF Downloads 3241679 Regional Problems of Electronic Governance in Autonomous Republic of Adjara
Authors: Manvelidze irakli, Iashvili Genadi
Abstract:
Research has shown that public institutions in Autonomous Republic of Ajara try their best to make their official electronic data (web-pages, social websites) more informative and improve them. Part of public institutions offer interesting electronic services and initiatives to the public although they are seldom used in communication process. The statistical analysis of the use of web-pages and social websites of public institutions for example their facebook page show lack of activity. The reason could be the fact that public institutions give people less possibility of interaction in official web-pages. Second reason could be the fact that these web-pages are less known to the public and the third reason could be the fact that heads of these institutions lack awareness about the necessity of strengthening citizens’ involvement. In order to increase people’s involvement in this process it is necessary to have at least 23 e-services in one web-page. The research has shown that 11 of the 16 public institutions have only 5 services which are contact, social networks and hotline. Besides introducing innovative services government institutions should evaluate them and make them popular and easily accessible for the public. It would be easy to solve this problem if public institutions had concrete strategic plan of public relations which involved matters connected with maximum usage of electronic services while interaction with citizens. For this moment only one governmental body has a functioning action plan of public relations. As a result of the research organizational, social, methodological and technical problems have been revealed. It should be considered that there are many feedback possibilities like forum, RSS, blogs, wiki, twitter, social networks, etc. usage of only one or three of such instruments indicate that there is no strategy of regional electronic governance. It is necessary to develop more mechanisms of feedback which will increase electronic interaction, discussions and it is necessary to introduce the service of online petitions. It is important to reduce the so-called “digital inequality” and increase internet access for the public. State actions should decrease such problems. In the end if such shortcomings will be improved the role of electronic interactions in democratic processes will increase.Keywords: e-Government, electronic services, information technology, regional government, regional government
Procedia PDF Downloads 3101678 Relationship of Entrepreneurial Ecosystem Factors and Entrepreneurial Cognition: An Exploratory Study Applied to Regional and Metropolitan Ecosystems in New South Wales, Australia
Authors: Sumedha Weerasekara, Morgan Miles, Mark Morrison, Branka Krivokapic-Skoko
Abstract:
This paper is aimed at exploring the interrelationships among entrepreneurial ecosystem factors and entrepreneurial cognition in regional and metropolitan ecosystems. Entrepreneurial ecosystem factors examined include: culture, infrastructure, access to finance, informal networks, support services, access to universities, and the depth and breadth of the talent pool. Using a multivariate approach we explore the impact of these ecosystem factors or elements on entrepreneurial cognition. In doing so, the existing body of knowledge from the literature on entrepreneurial ecosystem and cognition have been blended to explore the relationship between entrepreneurial ecosystem factors and cognition in a way not hitherto investigated. The concept of the entrepreneurial ecosystem has received increased attention as governments, universities and communities have started to recognize the potential of integrated policies, structures, programs and processes that foster entrepreneurship activities by supporting innovation, productivity and employment growth. The notion of entrepreneurial ecosystems has evolved and grown with the advancement of theoretical research and empirical studies. Importance of incorporating external factors like culture, political environment, and the economic environment within a single framework will enhance the capacity of examining the whole systems functionality to better understand the interaction of the entrepreneurial actors and factors within a single framework. The literature on clusters underplays the role of entrepreneurs and entrepreneurial management in creating and co-creating organizations, markets, and supporting ecosystems. Entrepreneurs are only one actor following a limited set of roles and dependent upon many other factors to thrive. As a consequence, entrepreneurs and relevant authorities should be aware of the other actors and factors with which they engage and rely, and make strategic choices to achieve both self and also collective objectives. The study uses stratified random sampling method to collect survey data from 12 different regions in regional and metropolitan regions of NSW, Australia. A questionnaire was administered online among 512 Small and medium enterprise owners operating their business in selected 12 regions in NSW, Australia. Data were analyzed using descriptive analyzing techniques and partial least squares - structural equation modeling. The findings show that even though there is a significant relationship between each and every entrepreneurial ecosystem factors, there is a weak relationship between most entrepreneurial ecosystem factors and entrepreneurial cognition. In the metropolitan context, the availability of finance and informal networks have the largest impact on entrepreneurial cognition while culture, infrastructure, and support services having the smallest impact and the talent pool and universities having a moderate impact on entrepreneurial cognition. Interestingly, in a regional context, culture, availability of finance, and the talent pool have the highest impact on entrepreneurial cognition, while informal networks having the smallest impact and the remaining factors – infrastructure, universities, and support services have a moderate impact on entrepreneurial cognition. These findings suggest the need for a location-specific strategy for supporting the development of entrepreneurial cognition.Keywords: academic achievement, colour response card, feedback
Procedia PDF Downloads 1431677 Enhancing Healthcare Delivery in Low-Income Markets: An Exploration of Wireless Sensor Network Applications
Authors: Innocent Uzougbo Onwuegbuzie
Abstract:
Healthcare delivery in low-income markets is fraught with numerous challenges, including limited access to essential medical resources, inadequate healthcare infrastructure, and a significant shortage of trained healthcare professionals. These constraints lead to suboptimal health outcomes and a higher incidence of preventable diseases. This paper explores the application of Wireless Sensor Networks (WSNs) as a transformative solution to enhance healthcare delivery in these underserved regions. WSNs, comprising spatially distributed sensor nodes that collect and transmit health-related data, present opportunities to address critical healthcare needs. Leveraging WSN technology facilitates real-time health monitoring and remote diagnostics, enabling continuous patient observation and early detection of medical issues, especially in areas with limited healthcare facilities and professionals. The implementation of WSNs can enhance the overall efficiency of healthcare systems by enabling timely interventions, reducing the strain on healthcare facilities, and optimizing resource allocation. This paper highlights the potential benefits of WSNs in low-income markets, such as cost-effectiveness, increased accessibility, and data-driven decision-making. However, deploying WSNs involves significant challenges, including technical barriers like limited internet connectivity and power supply, alongside concerns about data privacy and security. Moreover, robust infrastructure and adequate training for local healthcare providers are essential for successful implementation. It further examines future directions for WSNs, emphasizing innovation, scalable solutions, and public-private partnerships. By addressing these challenges and harnessing the potential of WSNs, it is possible to revolutionize healthcare delivery and improve health outcomes in low-income markets.Keywords: wireless sensor networks (WSNs), healthcare delivery, low-Income markets, remote patient monitoring, health data security
Procedia PDF Downloads 371676 Connotation Reform and Problem Response of Rural Social Relations under the Influence of the Earthquake: With a Review of Wenchuan Decade
Abstract:
The occurrence of Wenchuan earthquake in 2008 has led to severe damage to the rural areas of Chengdu city, such as the rupture of the social network, the stagnation of economic production and the rupture of living space. The post-disaster reconstruction has become a sustainable issue. As an important link to maintain the order of rural social development, social network should be an important content of post-disaster reconstruction. Therefore, this paper takes rural reconstruction communities in earthquake-stricken areas of Chengdu as the research object and adopts sociological research methods such as field survey, observation and interview to try to understand the transformation of rural social relations network under the influence of earthquake and its impact on rural space. It has found that rural societies under the earthquake generally experienced three phases: the break of stable social relations, the transition of temporary non-normal state, and the reorganization of social networks. The connotation of phased rural social relations also changed accordingly: turn to a new division of labor on the social orientation, turn to a capital flow and redistribution in new production mode on the capital orientation, and turn to relative decentralization after concentration on the spatial dimension. Along with such changes, rural areas have emerged some social issues such as the alienation of competition in the new industry division, the low social connection, the significant redistribution of capital, and the lack of public space. Based on a comprehensive review of these issues, this paper proposes the corresponding response mechanism. First of all, a reasonable division of labor should be established within the villages to realize diversified commodity supply. Secondly, the villages should adjust the industrial type to promote the equitable participation of capital allocation groups. Finally, external public spaces should be added to strengthen the field of social interaction within the communities.Keywords: social relations, social support networks, industrial division, capital allocation, public space
Procedia PDF Downloads 1561675 Perception and Usage of Academic Social Networks among Scientists: A Cross-Sectional Study of North Indian Universities
Authors: Anita Chhatwal
Abstract:
Purpose: The purpose of this paper is to evaluate and investigate the scope of usage of Academic Social Networking Websites (ASNs) by the Science faculty members across universities of North India, viz. Panjab University, Punjabi University and University of Delhi, Delhi. Design/Methodology/Approach: The present study is based upon the primary data collected from 81 science faculty participants from three universities of North India. Questionnaire method was used as an instrument for survey. The study is descriptive and research-based to investigate the popular ASNs amongst the participants from three sample universities and the purpose for which they use them along with the problems they encounter while using ASNs. Findings: The findings of the study revealed that majority of the participants were using ASNs for their academic needs. It was observed that majority of the participants (78%) used ASNs to access scientific papers, while 73.8% of the participants used them to share their research publications. ResearchGate (60.5%) and Google Scholar (59.7%) were the top two most preferred and widely used ASNs by the participants. The critical analysis of the data shows that laptops (86.3%) emerged as major tools for accessing ASNs. Shortage of computers was found to be the chief obstacle in accessing ASNs by the participants. Results of the study demonstrate that 56.3% of participants suggested conduct of seminars and training as the most effective method to increase the awareness of ASNs. Research Limitations/Implications: The study in hand absorbed the 81 faculty (Assistant Professors) members from 15 Science teaching departments across three sample universities of North India. The findings of this study will help the Government of India to regulate and simultaneously make effort to develop and enhance ASNs usage among faculty, researchers, and students. The present study will add to the existing library and information science literature and will be advantageous for all the information professionals as well. Originality/Value: This study is original survey based on primary data investigate the usage of ASNs by the academia. This study will be useful for research scholars, academicians and students all over the world.Keywords: academic social networks, awareness and usage, North India, scholarly communication, web 2.0
Procedia PDF Downloads 117