Search results for: biological data mining
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 27329

Search results for: biological data mining

26069 Transcriptomine: The Nuclear Receptor Signaling Transcriptome Database

Authors: Scott A. Ochsner, Christopher M. Watkins, Apollo McOwiti, David L. Steffen Lauren B. Becnel, Neil J. McKenna

Abstract:

Understanding signaling by nuclear receptors (NRs) requires an appreciation of their cognate ligand- and tissue-specific transcriptomes. While target gene regulation data are abundant in this field, they reside in hundreds of discrete publications in formats refractory to routine query and analysis and, accordingly, their full value to the NR signaling community has not been realized. One of the mandates of the Nuclear Receptor Signaling Atlas (NURSA) is to facilitate access of the community to existing public datasets. Pursuant to this mandate we are developing a freely-accessible community web resource, Transcriptomine, to bring together the sum total of available expression array and RNA-Seq data points generated by the field in a single location. Transcriptomine currently contains over 25,000,000 gene fold change datapoints from over 1200 contrasts relevant to over 100 NRs, ligands and coregulators in over 200 tissues and cell lines. Transcriptomine is designed to accommodate a spectrum of end users ranging from the bench researcher to those with advanced bioinformatic training. Visualization tools allow users to build custom charts to compare and contrast patterns of gene regulation across different tissues and in response to different ligands. Our resource affords an entirely new paradigm for leveraging gene expression data in the NR signaling field, empowering users to query gene fold changes across diverse regulatory molecules, tissues and cell lines, target genes, biological functions and disease associations, and that would otherwise be prohibitive in terms of time and effort. Transcriptomine will be regularly updated with gene lists from future genome-wide expression array and expression-sequencing datasets in the NR signaling field.

Keywords: target gene database, informatics, gene expression, transcriptomics

Procedia PDF Downloads 273
26068 Steps towards the Development of National Health Data Standards in Developing Countries

Authors: Abdullah I. Alkraiji, Thomas W. Jackson, Ian Murray

Abstract:

The proliferation of health data standards today is somewhat overlapping and conflicting, resulting in market confusion and leading to increasing proprietary interests. The government role and support in standardization for health data are thought to be crucial in order to establish credible standards for the next decade, to maximize interoperability across the health sector, and to decrease the risks associated with the implementation of non-standard systems. The normative literature missed out the exploration of the different steps required to be undertaken by the government towards the development of national health data standards. Based on the lessons learned from a qualitative study investigating the different issues to the adoption of health data standards in the major tertiary hospitals in Saudi Arabia and the opinions and feedback from different experts in the areas of data exchange and standards and medical informatics in Saudi Arabia and UK, a list of steps required towards the development of national health data standards was constructed. Main steps are the existence of: a national formal reference for health data standards, an agreed national strategic direction for medical data exchange, a national medical information management plan and a national accreditation body, and more important is the change management at the national and organizational level. The outcome of this study can be used by academics and practitioners to develop the planning of health data standards, and in particular those in developing countries.

Keywords: interoperabilty, medical data exchange, health data standards, case study, Saudi Arabia

Procedia PDF Downloads 338
26067 Benefits of Environmental Aids to Chronobiology Management and Its Impact on Depressive Mood in an Operational Setting

Authors: M. Trousselard, D. Steiler, C. Drogou, P. van-Beers, G. Lamour, S. N. Crosnier, O. Bouilland, P. Dubost, M. Chennaoui, D. Léger

Abstract:

According to published data, undersea navigation for long periods (nuclear-powered ballistic missile submarine, SSBN) constitutes an extreme environment in which crews are subjected to multiple stresses, including the absence of natural light, illuminance below 1,000 lux, and watch schedules that do not respect natural chronobiological rhythms, for a period of 60-80 days. These stresses seem clearly detrimental to the submariners’ sleep, with consequences for their affective (seasonal affective disorder-like) and cognitive functioning. In the long term, there are abundant publications regarding the consequences of sleep disruption for the occurrence of organic cardiovascular, metabolic, immunological or malignant diseases. It seems essential to propose countermeasures for the duration of the patrol in order to reduce the negative physiological effects on the sleep and mood of submariners. Light therapy, the preferred treatment for dysfunctions of the internal biological clock and the resulting seasonal depression, cannot be used without data to assist knowledge of submariners’ chronobiology (melatonin secretion curve) during patrols, given the unusual characteristics of their working environment. These data are not available in the literature. The aim of this project was to assess, in the course of two studies, the benefits of two environmental techniques for managing chronobiological stress: techniques for optimizing potential (TOP; study 1)3, an existing programme to help in the psychophysiological regulation of stress and sleep in the armed forces, and dawn and dusk simulators (DDS, study 2). For each experiment, psychological, physiological (sleep) or biological (melatonin secretion) data were collected on D20 and D50 of patrol. In the first experiment, we studied sleep and depressive distress in 19 submariners in an operational setting on board an SSBM during a first patrol, and assessed the impact of TOP on the quality of sleep and depressive distress in these same submariners over the course of a second patrol. The submariners were trained in TOP between the two patrols for a 2-month period, at a rate of 1 h of training per week, and assigned daily informal exercises. Results show moderate disruptions in sleep pattern and duration associated with the intensity of depressive distress. The use of TOP during the following patrol improved sleep and depressive mood only in submariners who regularly practiced the techniques. In light of these limited benefits, we assessed, in a second experiment, the benefits of DDS on chronobiology (daily secretion of melatonin) and depressive distress. Ninety submariners were randomly allocated to two groups, group 1 using DDS daily, and group 2 constituting the control group. Although the placebo effect was not controlled, results showed a beneficial effect on chronobiology and depressive mood for submariners with a morning chronotype. Conclusions: These findings demonstrate the difficulty of practicing the tools of psychophysiological management in real life. They raise the question of the subjects’ autonomy with respect to using aids that involve regular practice. It seems important to study autonomy in future studies, as a cognitive resource resulting from the interaction between internal positive resources and “coping” resources, to gain a better understanding of compliance problems.

Keywords: chronobiology, light therapy, seasonal affective disorder, sleep, stress, stress management, submarine

Procedia PDF Downloads 456
26066 A Proposal for U-City (Smart City) Service Method Using Real-Time Digital Map

Authors: SangWon Han, MuWook Pyeon, Sujung Moon, DaeKyo Seo

Abstract:

Recently, technologies based on three-dimensional (3D) space information are being developed and quality of life is improving as a result. Research on real-time digital map (RDM) is being conducted now to provide 3D space information. RDM is a service that creates and supplies 3D space information in real time based on location/shape detection. Research subjects on RDM include the construction of 3D space information with matching image data, complementing the weaknesses of image acquisition using multi-source data, and data collection methods using big data. Using RDM will be effective for space analysis using 3D space information in a U-City and for other space information utilization technologies.

Keywords: RDM, multi-source data, big data, U-City

Procedia PDF Downloads 433
26065 An Evolutionary Approach for Automated Optimization and Design of Vivaldi Antennas

Authors: Sahithi Yarlagadda

Abstract:

The design of antenna is constrained by mathematical and geometrical parameters. Though there are diverse antenna structures with wide range of feeds yet, there are many geometries to be tried, which cannot be customized into predefined computational methods. The antenna design and optimization qualify to apply evolutionary algorithmic approach since the antenna parameters weights dependent on geometric characteristics directly. The evolutionary algorithm can be explained simply for a given quality function to be maximized. We can randomly create a set of candidate solutions, elements of the function's domain, and apply the quality function as an abstract fitness measure. Based on this fitness, some of the better candidates are chosen to seed the next generation by applying recombination and permutation to them. In conventional approach, the quality function is unaltered for any iteration. But the antenna parameters and geometries are wide to fit into single function. So, the weight coefficients are obtained for all possible antenna electrical parameters and geometries; the variation is learnt by mining the data obtained for an optimized algorithm. The weight and covariant coefficients of corresponding parameters are logged for learning and future use as datasets. This paper drafts an approach to obtain the requirements to study and methodize the evolutionary approach to automated antenna design for our past work on Vivaldi antenna as test candidate. The antenna parameters like gain, directivity, etc. are directly caged by geometries, materials, and dimensions. The design equations are to be noted here and valuated for all possible conditions to get maxima and minima for given frequency band. The boundary conditions are thus obtained prior to implementation, easing the optimization. The implementation mainly aimed to study the practical computational, processing, and design complexities that incur while simulations. HFSS is chosen for simulations and results. MATLAB is used to generate the computations, combinations, and data logging. MATLAB is also used to apply machine learning algorithms and plotting the data to design the algorithm. The number of combinations is to be tested manually, so HFSS API is used to call HFSS functions from MATLAB itself. MATLAB parallel processing tool box is used to run multiple simulations in parallel. The aim is to develop an add-in to antenna design software like HFSS, CSTor, a standalone application to optimize pre-identified common parameters of wide range of antennas available. In this paper, we have used MATLAB to calculate Vivaldi antenna parameters like slot line characteristic impedance, impedance of stripline, slot line width, flare aperture size, dielectric and K means, and Hamming window are applied to obtain the best test parameters. HFSS API is used to calculate the radiation, bandwidth, directivity, and efficiency, and data is logged for applying the Evolutionary genetic algorithm in MATLAB. The paper demonstrates the computational weights and Machine Learning approach for automated antenna optimizing for Vivaldi antenna.

Keywords: machine learning, Vivaldi, evolutionary algorithm, genetic algorithm

Procedia PDF Downloads 110
26064 Identifying Model to Predict Deterioration of Water Mains Using Robust Analysis

Authors: Go Bong Choi, Shin Je Lee, Sung Jin Yoo, Gibaek Lee, Jong Min Lee

Abstract:

In South Korea, it is difficult to obtain data for statistical pipe assessment. In this paper, to address these issues, we find that various statistical model presented before is how data mixed with noise and are whether apply in South Korea. Three major type of model is studied and if data is presented in the paper, we add noise to data, which affects how model response changes. Moreover, we generate data from model in paper and analyse effect of noise. From this we can find robustness and applicability in Korea of each model.

Keywords: proportional hazard model, survival model, water main deterioration, ecological sciences

Procedia PDF Downloads 743
26063 Automated Testing to Detect Instance Data Loss in Android Applications

Authors: Anusha Konduru, Zhiyong Shan, Preethi Santhanam, Vinod Namboodiri, Rajiv Bagai

Abstract:

Mobile applications are increasing in a significant amount, each to address the requirements of many users. However, the quick developments and enhancements are resulting in many underlying defects. Android apps create and handle a large variety of 'instance' data that has to persist across runs, such as the current navigation route, workout results, antivirus settings, or game state. Due to the nature of Android, an app can be paused, sent into the background, or killed at any time. If the instance data is not saved and restored between runs, in addition to data loss, partially-saved or corrupted data can crash the app upon resume or restart. However, it is difficult for the programmer to manually test this issue for all the activities. This results in the issue of data loss that the data entered by the user are not saved when there is any interruption. This issue can degrade user experience because the user needs to reenter the information each time there is an interruption. Automated testing to detect such data loss is important to improve the user experience. This research proposes a tool, DroidDL, a data loss detector for Android, which detects the instance data loss from a given android application. We have tested 395 applications and found 12 applications with the issue of data loss. This approach is proved highly accurate and reliable to find the apps with this defect, which can be used by android developers to avoid such errors.

Keywords: Android, automated testing, activity, data loss

Procedia PDF Downloads 237
26062 Mathematical Modeling of Bi-Substrate Enzymatic Reactions in the Presence of Different Types of Inhibitors

Authors: Rafayel Azizyan, Valeri Arakelyan, Aram Gevorgyan, Varduhi Balayan, Emil Gevorgyan

Abstract:

Currently, mathematical and computer modeling are widely used in different biological studies to predict or assess behavior of such complex systems as biological ones. This study deals with mathematical and computer modeling of bi-substrate enzymatic reactions, which play an important role in different biochemical pathways. The main objective of this study is to represent the results from in silico investigation of bi-substrate enzymatic reactions in the presence of uncompetitive inhibitors, as well as to describe in details the inhibition effects. Four models of uncompetitive inhibition were designed using different software packages. Particularly, uncompetitive inhibitor to the first [ES1] and the second ([ES1S2]; [FS2]) enzyme-substrate complexes have been studied. The simulation, using the same kinetic parameters for all models allowed investigating the behavior of reactions as well as determined some interesting aspects concerning influence of different cases of uncompetitive inhibition. Besides that shown, that uncompetitive inhibitors exhibit specific selectivity depending on mechanism of bi-substrate enzymatic reaction.

Keywords: mathematical modeling, bi-substrate enzymatic reactions, reversible inhibition

Procedia PDF Downloads 347
26061 Big Data: Appearance and Disappearance

Authors: James Moir

Abstract:

The mainstay of Big Data is prediction in that it allows practitioners, researchers, and policy analysts to predict trends based upon the analysis of large and varied sources of data. These can range from changing social and political opinions, patterns in crimes, and consumer behaviour. Big Data has therefore shifted the criterion of success in science from causal explanations to predictive modelling and simulation. The 19th-century science sought to capture phenomena and seek to show the appearance of it through causal mechanisms while 20th-century science attempted to save the appearance and relinquish causal explanations. Now 21st-century science in the form of Big Data is concerned with the prediction of appearances and nothing more. However, this pulls social science back in the direction of a more rule- or law-governed reality model of science and away from a consideration of the internal nature of rules in relation to various practices. In effect Big Data offers us no more than a world of surface appearance and in doing so it makes disappear any context-specific conceptual sensitivity.

Keywords: big data, appearance, disappearance, surface, epistemology

Procedia PDF Downloads 421
26060 From Data Processing to Experimental Design and Back Again: A Parameter Identification Problem Based on FRAP Images

Authors: Stepan Papacek, Jiri Jablonsky, Radek Kana, Ctirad Matonoha, Stefan Kindermann

Abstract:

FRAP (Fluorescence Recovery After Photobleaching) is a widely used measurement technique to determine the mobility of fluorescent molecules within living cells. While the experimental setup and protocol for FRAP experiments are usually fixed, data processing part is still under development. In this paper, we formulate and solve the problem of data selection which enhances the processing of FRAP images. We introduce the concept of the irrelevant data set, i.e., the data which are almost not reducing the confidence interval of the estimated parameters and thus could be neglected. Based on sensitivity analysis, we both solve the problem of the optimal data space selection and we find specific conditions for optimizing an important experimental design factor, e.g., the radius of bleach spot. Finally, a theorem announcing less precision of the integrated data approach compared to the full data case is proven; i.e., we claim that the data set represented by the FRAP recovery curve lead to a larger confidence interval compared to the spatio-temporal (full) data.

Keywords: FRAP, inverse problem, parameter identification, sensitivity analysis, optimal experimental design

Procedia PDF Downloads 278
26059 Exploring the Feasibility of Utilizing Blockchain in Cloud Computing and AI-Enabled BIM for Enhancing Data Exchange in Construction Supply Chain Management

Authors: Tran Duong Nguyen, Marwan Shagar, Qinghao Zeng, Aras Maqsoodi, Pardis Pishdad, Eunhwa Yang

Abstract:

Construction supply chain management (CSCM) involves the collaboration of many disciplines and actors, which generates vast amounts of data. However, inefficient, fragmented, and non-standardized data storage often hinders this data exchange. The industry has adopted building information modeling (BIM) -a digital representation of a facility's physical and functional characteristics to improve collaboration, enhance transmission security, and provide a common data exchange platform. Still, the volume and complexity of data require tailored information categorization, aligning with stakeholders' preferences and demands. To address this, artificial intelligence (AI) can be integrated to handle this data’s magnitude and complexities. This research aims to develop an integrated and efficient approach for data exchange in CSCM by utilizing AI. The paper covers five main objectives: (1) Investigate existing framework and BIM adoption; (2) Identify challenges in data exchange; (3) Propose an integrated framework; (4) Enhance data transmission security; and (5) Develop data exchange in CSCM. The proposed framework demonstrates how integrating BIM and other technologies, such as cloud computing, blockchain, and AI applications, can significantly improve the efficiency and accuracy of data exchange in CSCM.

Keywords: construction supply chain management, BIM, data exchange, artificial intelligence

Procedia PDF Downloads 26
26058 Best Resource Recommendation for a Stochastic Process

Authors: Likewin Thomas, M. V. Manoj Kumar, B. Annappa

Abstract:

The aim of this study was to develop an Artificial Neural Network0 s recommendation model for an online process using the complexity of load, performance, and average servicing time of the resources. Here, the proposed model investigates the resource performance using stochastic gradient decent method for learning ranking function. A probabilistic cost function is implemented to identify the optimal θ values (load) on each resource. Based on this result the recommendation of resource suitable for performing the currently executing task is made. The test result of CoSeLoG project is presented with an accuracy of 72.856%.

Keywords: ADALINE, neural network, gradient decent, process mining, resource behaviour, polynomial regression model

Procedia PDF Downloads 390
26057 Anomaly Detection Based Fuzzy K-Mode Clustering for Categorical Data

Authors: Murat Yazici

Abstract:

Anomalies are irregularities found in data that do not adhere to a well-defined standard of normal behavior. The identification of outliers or anomalies in data has been a subject of study within the statistics field since the 1800s. Over time, a variety of anomaly detection techniques have been developed in several research communities. The cluster analysis can be used to detect anomalies. It is the process of associating data with clusters that are as similar as possible while dissimilar clusters are associated with each other. Many of the traditional cluster algorithms have limitations in dealing with data sets containing categorical properties. To detect anomalies in categorical data, fuzzy clustering approach can be used with its advantages. The fuzzy k-Mode (FKM) clustering algorithm, which is one of the fuzzy clustering approaches, by extension to the k-means algorithm, is reported for clustering datasets with categorical values. It is a form of clustering: each point can be associated with more than one cluster. In this paper, anomaly detection is performed on two simulated data by using the FKM cluster algorithm. As a significance of the study, the FKM cluster algorithm allows to determine anomalies with their abnormality degree in contrast to numerous anomaly detection algorithms. According to the results, the FKM cluster algorithm illustrated good performance in the anomaly detection of data, including both one anomaly and more than one anomaly.

Keywords: fuzzy k-mode clustering, anomaly detection, noise, categorical data

Procedia PDF Downloads 54
26056 Prototype of Over Dimension Over Loading (ODOL) Freight Transportation Monitoring System Based on Arduino Mega 'Sabrang': A Case Study in Klaten, Indonesia

Authors: Chairul Fajar, Muhammad Nur Hidayat, Muksalmina

Abstract:

The issue of Over Dimension Over Loading (ODOL) in Indonesia remains a significant challenge, causing traffic accidents, disrupting traffic flow, accelerating road damage, and potentially leading to bridge collapses. Klaten Regency, located on the slopes of Mount Merapi along the Woro River in Kemalang District, has potential Class C excavation materials such as sand and stone. Data from the Klaten Regency Transportation Department indicates that ODOL violations account for 72%, while non-violating vehicles make up only 28%. ODOL involves modifying factory-standard vehicles beyond the limits specified in the Type Test Registration Certificate (SRUT) to save costs and travel time. This study aims to develop a prototype ‘Sabrang’ monitoring system based on Arduino Mega to control and monitor ODOL freight transportation in the mining of Class C excavation materials in Klaten Regency. The prototype is designed to automatically measure the dimensions and weight of objects using a microcontroller. The data analysis techniques used in this study include the Normality Test and Paired T-Test, comparing sensor measurement results on scaled objects. The study results indicate differences in measurement validation under room temperature and ambient temperature conditions. Measurements at room temperature showed that the majority of H0 was accepted, meaning there was no significant difference in measurements when the prototype tool was used. Conversely, measurements at ambient temperature showed that the majority of H0 was rejected, indicating a significant difference in measurements when the prototype tool was used. In conclusion, the ‘Sabrang’ monitoring system prototype is effective for controlling ODOL, although measurement results are influenced by temperature conditions. This study is expected to assist in the monitoring and control of ODOL, thereby enhancing traffic safety and road infrastructure.

Keywords: over dimension over loading, prototype, microcontroller, Arduino, normality test, paired t-test

Procedia PDF Downloads 34
26055 Big Data Analytics and Data Security in the Cloud via Fully Homomorphic Encyption Scheme

Authors: Victor Onomza Waziri, John K. Alhassan, Idris Ismaila, Noel Dogonyara

Abstract:

This paper describes the problem of building secure computational services for encrypted information in the Cloud. Computing without decrypting the encrypted data; therefore, it meets the yearning of computational encryption algorithmic aspiration model that could enhance the security of big data for privacy or confidentiality, availability and integrity of the data and user’s security. The cryptographic model applied for the computational process of the encrypted data is the Fully Homomorphic Encryption Scheme. We contribute a theoretical presentations in a high-level computational processes that are based on number theory that is derivable from abstract algebra which can easily be integrated and leveraged in the Cloud computing interface with detail theoretic mathematical concepts to the fully homomorphic encryption models. This contribution enhances the full implementation of big data analytics based on cryptographic security algorithm.

Keywords: big data analytics, security, privacy, bootstrapping, Fully Homomorphic Encryption Scheme

Procedia PDF Downloads 480
26054 Asymmetric Synthesis and Biological Study of Suberosanes

Authors: Mohammad Kousara, Françoise Dumas, Rama Ibrahim, Joëlle Dubois, Joël Raingeaud

Abstract:

Suberosanes are a small group of marine natural sesquiterpenes discovered since 1996 by Boyd, Sheu and Qi from three gorgonians. Their skeleton was previously found in quadranes produced by the terrestrial fungus Aspergillus terreus. Up to date, eleven suberosanes are described from which (-)-suberosanone and (-)-suberosenol A are reaching the picomolar cytotoxicity level on human solid tumors cell lines. Due to their impressive cytotoxic properties and their limited availability, we undertook an asymmetric synthesis of the most active members of this family in order to get insight into their absolute configurations and their biological properties. The challenge of their synthesis is the regio- and stereoselective elaboration of the compact bridged tricyclic skeleton with up to five all adjacent asymmetric centers, including a central quaternary carbon one. Our strategy is based on an aza-ene-synthesis key step which is regio-and stereo-controlled by the choice of a chiral amine enantiomer. it approach is concise and flexible, the enantiopur ABC tricyclic intermediate that have been synthesized being the common precursor of suberosanes.

Keywords: suberosanes, asymmetric synthesis, sesquiterpenes, quadranes

Procedia PDF Downloads 92
26053 An Approximation of Daily Rainfall by Using a Pixel Value Data Approach

Authors: Sarisa Pinkham, Kanyarat Bussaban

Abstract:

The research aims to approximate the amount of daily rainfall by using a pixel value data approach. The daily rainfall maps from the Thailand Meteorological Department in period of time from January to December 2013 were the data used in this study. The results showed that this approach can approximate the amount of daily rainfall with RMSE=3.343.

Keywords: daily rainfall, image processing, approximation, pixel value data

Procedia PDF Downloads 387
26052 A Next-Generation Blockchain-Based Data Platform: Leveraging Decentralized Storage and Layer 2 Scaling for Secure Data Management

Authors: Kenneth Harper

Abstract:

The rapid growth of data-driven decision-making across various industries necessitates advanced solutions to ensure data integrity, scalability, and security. This study introduces a decentralized data platform built on blockchain technology to improve data management processes in high-volume environments such as healthcare and financial services. The platform integrates blockchain networks using Cosmos SDK and Polkadot Substrate alongside decentralized storage solutions like IPFS and Filecoin, and coupled with decentralized computing infrastructure built on top of Avalanche. By leveraging advanced consensus mechanisms, we create a scalable, tamper-proof architecture that supports both structured and unstructured data. Key features include secure data ingestion, cryptographic hashing for robust data lineage, and Zero-Knowledge Proof mechanisms that enhance privacy while ensuring compliance with regulatory standards. Additionally, we implement performance optimizations through Layer 2 scaling solutions, including ZK-Rollups, which provide low-latency data access and trustless data verification across a distributed ledger. The findings from this exercise demonstrate significant improvements in data accessibility, reduced operational costs, and enhanced data integrity when tested in real-world scenarios. This platform reference architecture offers a decentralized alternative to traditional centralized data storage models, providing scalability, security, and operational efficiency.

Keywords: blockchain, cosmos SDK, decentralized data platform, IPFS, ZK-Rollups

Procedia PDF Downloads 28
26051 The Effect of Measurement Distribution on System Identification and Detection of Behavior of Nonlinearities of Data

Authors: Mohammad Javad Mollakazemi, Farhad Asadi, Aref Ghafouri

Abstract:

In this paper, we considered and applied parametric modeling for some experimental data of dynamical system. In this study, we investigated the different distribution of output measurement from some dynamical systems. Also, with variance processing in experimental data we obtained the region of nonlinearity in experimental data and then identification of output section is applied in different situation and data distribution. Finally, the effect of the spanning the measurement such as variance to identification and limitation of this approach is explained.

Keywords: Gaussian process, nonlinearity distribution, particle filter, system identification

Procedia PDF Downloads 516
26050 Proposals for the Practical Implementation of the Biological Monitoring of Occupational Exposure for Antineoplastic Drugs

Authors: Mireille Canal-Raffin, Nadege Lepage, Antoine Villa

Abstract:

Context: Most antineoplastic drugs (AD) have a potential carcinogenic, mutagenic and/or reprotoxic effect and are classified as 'hazardous to handle' by National Institute for Occupational Safety and Health Their handling increases with the increase of cancer incidence. AD contamination from workers who handle AD and/or care for treated patients is, therefore, a major concern for occupational physicians. As part of the process of evaluation and prevention of chemical risks for professionals exposed to AD, Biological Monitoring of Occupational Exposure (BMOE) is the tool of choice. BMOE allows identification of at-risk groups, monitoring of exposures, assessment of poorly controlled exposures and the effectiveness and/or wearing of protective equipment, and documenting occupational exposure incidents to AD. This work aims to make proposals for the practical implementation of the BMOE for AD. The proposed strategy is based on the French good practice recommendations for BMOE, issued in 2016 by 3 French learned societies. These recommendations have been adapted to occupational exposure to AD. Results: AD contamination of professionals is a sensitive topic, and the BMOE requires the establishment of a working group and information meetings within the concerned health establishment to explain the approach, objectives, and purpose of monitoring. Occupational exposure to AD is often discontinuous and 2 steps are essential upstream: a study of the nature and frequency of AD used to select the Biological Exposure Indice(s) (BEI) most representative of the activity; a study of AD path in the institution to target exposed professionals and to adapt medico-professional information sheet (MPIS). The MPIS is essential to gather the necessary elements for results interpretation. Currently, 28 urinary specific BEIs of AD exposure have been identified, and corresponding analytical methods have been published: 11 BEIs were AD metabolites, and 17 were AD. Results interpretation is performed by groups of homogeneous exposure (GHE). There is no threshold biological limit value of interpretation. Contamination is established when an AD is detected in trace concentration or in a urine concentration equal or greater than the limit of quantification (LOQ) of the analytical method. Results can only be compared to LOQs of these methods, which must be as low as possible. For 8 of the 17 AD BEIs, the LOQ is very low with values between 0.01 to 0.05µg/l. For the other BEIs, the LOQ values were higher between 0.1 to 30µg/l. Results restitution by occupational physicians to workers should be individual and collective. Faced with AD dangerousness, in cases of workers contamination, it is necessary to put in place corrective measures. In addition, the implementation of prevention and awareness measures for those exposed to this risk is a priority. Conclusion: This work is a help for occupational physicians engaging in a process of prevention of occupational risks related to AD exposure. With the current analytical tools, effective and available, the (BMOE) to the AD should now be possible to develop in routine occupational physician practice. The BMOE may be complemented by surface sampling to determine workers' contamination modalities.

Keywords: antineoplastic drugs, urine, occupational exposure, biological monitoring of occupational exposure, biological exposure indice

Procedia PDF Downloads 137
26049 Building a Scalable Telemetry Based Multiclass Predictive Maintenance Model in R

Authors: Jaya Mathew

Abstract:

Many organizations are faced with the challenge of how to analyze and build Machine Learning models using their sensitive telemetry data. In this paper, we discuss how users can leverage the power of R without having to move their big data around as well as a cloud based solution for organizations willing to host their data in the cloud. By using ScaleR technology to benefit from parallelization and remote computing or R Services on premise or in the cloud, users can leverage the power of R at scale without having to move their data around.

Keywords: predictive maintenance, machine learning, big data, cloud based, on premise solution, R

Procedia PDF Downloads 379
26048 Wireless Transmission of Big Data Using Novel Secure Algorithm

Authors: K. Thiagarajan, K. Saranya, A. Veeraiah, B. Sudha

Abstract:

This paper presents a novel algorithm for secure, reliable and flexible transmission of big data in two hop wireless networks using cooperative jamming scheme. Two hop wireless networks consist of source, relay and destination nodes. Big data has to transmit from source to relay and from relay to destination by deploying security in physical layer. Cooperative jamming scheme determines transmission of big data in more secure manner by protecting it from eavesdroppers and malicious nodes of unknown location. The novel algorithm that ensures secure and energy balance transmission of big data, includes selection of data transmitting region, segmenting the selected region, determining probability ratio for each node (capture node, non-capture and eavesdropper node) in every segment, evaluating the probability using binary based evaluation. If it is secure transmission resume with the two- hop transmission of big data, otherwise prevent the attackers by cooperative jamming scheme and transmit the data in two-hop transmission.

Keywords: big data, two-hop transmission, physical layer wireless security, cooperative jamming, energy balance

Procedia PDF Downloads 490
26047 One Step Further: Pull-Process-Push Data Processing

Authors: Romeo Botes, Imelda Smit

Abstract:

In today’s modern age of technology vast amounts of data needs to be processed in real-time to keep users satisfied. This data comes from various sources and in many formats, including electronic and mobile devices such as GPRS modems and GPS devices. They make use of different protocols including TCP, UDP, and HTTP/s for data communication to web servers and eventually to users. The data obtained from these devices may provide valuable information to users, but are mostly in an unreadable format which needs to be processed to provide information and business intelligence. This data is not always current, it is mostly historical data. The data is not subject to implementation of consistency and redundancy measures as most other data usually is. Most important to the users is that the data are to be pre-processed in a readable format when it is entered into the database. To accomplish this, programmers build processing programs and scripts to decode and process the information stored in databases. Programmers make use of various techniques in such programs to accomplish this, but sometimes neglect the effect some of these techniques may have on database performance. One of the techniques generally used,is to pull data from the database server, process it and push it back to the database server in one single step. Since the processing of the data usually takes some time, it keeps the database busy and locked for the period of time that the processing takes place. Because of this, it decreases the overall performance of the database server and therefore the system’s performance. This paper follows on a paper discussing the performance increase that may be achieved by utilizing array lists along with a pull-process-push data processing technique split in three steps. The purpose of this paper is to expand the number of clients when comparing the two techniques to establish the impact it may have on performance of the CPU storage and processing time.

Keywords: performance measures, algorithm techniques, data processing, push data, process data, array list

Procedia PDF Downloads 244
26046 Extreme Temperature Forecast in Mbonge, Cameroon Through Return Level Analysis of the Generalized Extreme Value (GEV) Distribution

Authors: Nkongho Ayuketang Arreyndip, Ebobenow Joseph

Abstract:

In this paper, temperature extremes are forecast by employing the block maxima method of the generalized extreme value (GEV) distribution to analyse temperature data from the Cameroon Development Corporation (CDC). By considering two sets of data (raw data and simulated data) and two (stationary and non-stationary) models of the GEV distribution, return levels analysis is carried out and it was found that in the stationary model, the return values are constant over time with the raw data, while in the simulated data the return values show an increasing trend with an upper bound. In the non-stationary model, the return levels of both the raw data and simulated data show an increasing trend with an upper bound. This clearly shows that although temperatures in the tropics show a sign of increase in the future, there is a maximum temperature at which there is no exceedance. The results of this paper are very vital in agricultural and environmental research.

Keywords: forecasting, generalized extreme value (GEV), meteorology, return level

Procedia PDF Downloads 478
26045 Impact of Stack Caches: Locality Awareness and Cost Effectiveness

Authors: Abdulrahman K. Alshegaifi, Chun-Hsi Huang

Abstract:

Treating data based on its location in memory has received much attention in recent years due to its different properties, which offer important aspects for cache utilization. Stack data and non-stack data may interfere with each other’s locality in the data cache. One of the important aspects of stack data is that it has high spatial and temporal locality. In this work, we simulate non-unified cache design that split data cache into stack and non-stack caches in order to maintain stack data and non-stack data separate in different caches. We observe that the overall hit rate of non-unified cache design is sensitive to the size of non-stack cache. Then, we investigate the appropriate size and associativity for stack cache to achieve high hit ratio especially when over 99% of accesses are directed to stack cache. The result shows that on average more than 99% of stack cache accuracy is achieved by using 2KB of capacity and 1-way associativity. Further, we analyze the improvement in hit rate when adding small, fixed, size of stack cache at level1 to unified cache architecture. The result shows that the overall hit rate of unified cache design with adding 1KB of stack cache is improved by approximately, on average, 3.9% for Rijndael benchmark. The stack cache is simulated by using SimpleScalar toolset.

Keywords: hit rate, locality of program, stack cache, stack data

Procedia PDF Downloads 303
26044 Autonomic Threat Avoidance and Self-Healing in Database Management System

Authors: Wajahat Munir, Muhammad Haseeb, Adeel Anjum, Basit Raza, Ahmad Kamran Malik

Abstract:

Databases are the key components of the software systems. Due to the exponential growth of data, it is the concern that the data should be accurate and available. The data in databases is vulnerable to internal and external threats, especially when it contains sensitive data like medical or military applications. Whenever the data is changed by malicious intent, data analysis result may lead to disastrous decisions. Autonomic self-healing is molded toward computer system after inspiring from the autonomic system of human body. In order to guarantee the accuracy and availability of data, we propose a technique which on a priority basis, tries to avoid any malicious transaction from execution and in case a malicious transaction affects the system, it heals the system in an isolated mode in such a way that the availability of system would not be compromised. Using this autonomic system, the management cost and time of DBAs can be minimized. In the end, we test our model and present the findings.

Keywords: autonomic computing, self-healing, threat avoidance, security

Procedia PDF Downloads 504
26043 Information Extraction Based on Search Engine Results

Authors: Mohammed R. Elkobaisi, Abdelsalam Maatuk

Abstract:

The search engines are the large scale information retrieval tools from the Web that are currently freely available to all. This paper explains how to convert the raw resulted number of search engines into useful information. This represents a new method for data gathering comparing with traditional methods. When a query is submitted for a multiple numbers of keywords, this take a long time and effort, hence we develop a user interface program to automatic search by taking multi-keywords at the same time and leave this program to collect wanted data automatically. The collected raw data is processed using mathematical and statistical theories to eliminate unwanted data and converting it to usable data.

Keywords: search engines, information extraction, agent system

Procedia PDF Downloads 430
26042 A Bibliometric Analysis of Ukrainian Research Articles on SARS-COV-2 (COVID-19) in Compliance with the Standards of Current Research Information Systems

Authors: Sabina Auhunas

Abstract:

These days in Ukraine, Open Science dramatically develops for the sake of scientists of all branches, providing an opportunity to take a more close look on the studies by foreign scientists, as well as to deliver their own scientific data to national and international journals. However, when it comes to the generalization of data on science activities by Ukrainian scientists, these data are often integrated into E-systems that operate inconsistent and barely related information sources. In order to resolve these issues, developed countries productively use E-systems, designed to store and manage research data, such as Current Research Information Systems that enable combining uncompiled data obtained from different sources. An algorithm for selecting SARS-CoV-2 research articles was designed, by means of which we collected the set of papers published by Ukrainian scientists and uploaded by August 1, 2020. Resulting metadata (document type, open access status, citation count, h-index, most cited documents, international research funding, author counts, the bibliographic relationship of journals) were taken from Scopus and Web of Science databases. The study also considered the info from COVID-19/SARS-CoV-2-related documents published from December 2019 to September 2020, directly from documents published by authors depending on territorial affiliation to Ukraine. These databases are enabled to get the necessary information for bibliometric analysis and necessary details: copyright, which may not be available in other databases (e.g., Science Direct). Search criteria and results for each online database were considered according to the WHO classification of the virus and the disease caused by this virus and represented (Table 1). First, we identified 89 research papers that provided us with the final data set after consolidation and removing duplication; however, only 56 papers were used for the analysis. The total number of documents by results from the WoS database came out at 21641 documents (48 affiliated to Ukraine among them) in the Scopus database came out at 32478 documents (41 affiliated to Ukraine among them). According to the publication activity of Ukrainian scientists, the following areas prevailed: Education, educational research (9 documents, 20.58%); Social Sciences, interdisciplinary (6 documents, 11.76%) and Economics (4 documents, 8.82%). The highest publication activity by institution types was reported in the Ministry of Education and Science of Ukraine (its percent of published scientific papers equals 36% or 7 documents), Danylo Halytsky Lviv National Medical University goes next (5 documents, 15%) and P. L. Shupyk National Medical Academy of Postgraduate Education (4 documents, 12%). Basically, research activities by Ukrainian scientists were funded by 5 entities: Belgian Development Cooperation, the National Institutes of Health (NIH, U.S.), The United States Department of Health & Human Services, grant from the Whitney and Betty MacMillan Center for International and Area Studies at Yale, a grant from the Yale Women Faculty Forum. Based on the results of the analysis, we obtained a set of published articles and preprints to be assessed on the variety of features in upcoming studies, including citation count, most cited documents, a bibliographic relationship of journals, reference linking. Further research on the development of the national scientific E-database continues using brand new analytical methods.

Keywords: content analysis, COVID-19, scientometrics, text mining

Procedia PDF Downloads 115
26041 Implementation and Performance Analysis of Data Encryption Standard and RSA Algorithm with Image Steganography and Audio Steganography

Authors: S. C. Sharma, Ankit Gambhir, Rajeev Arya

Abstract:

In today’s era data security is an important concern and most demanding issues because it is essential for people using online banking, e-shopping, reservations etc. The two major techniques that are used for secure communication are Cryptography and Steganography. Cryptographic algorithms scramble the data so that intruder will not able to retrieve it; however steganography covers that data in some cover file so that presence of communication is hidden. This paper presents the implementation of Ron Rivest, Adi Shamir, and Leonard Adleman (RSA) Algorithm with Image and Audio Steganography and Data Encryption Standard (DES) Algorithm with Image and Audio Steganography. The coding for both the algorithms have been done using MATLAB and its observed that these techniques performed better than individual techniques. The risk of unauthorized access is alleviated up to a certain extent by using these techniques. These techniques could be used in Banks, RAW agencies etc, where highly confidential data is transferred. Finally, the comparisons of such two techniques are also given in tabular forms.

Keywords: audio steganography, data security, DES, image steganography, intruder, RSA, steganography

Procedia PDF Downloads 290
26040 Data Monetisation by E-commerce Companies: A Need for a Regulatory Framework in India

Authors: Anushtha Saxena

Abstract:

This paper examines the process of data monetisation bye-commerce companies operating in India. Data monetisation is collecting, storing, and analysing consumers’ data to use further the data that is generated for profits, revenue, etc. Data monetisation enables e-commerce companies to get better businesses opportunities, innovative products and services, a competitive edge over others to the consumers, and generate millions of revenues. This paper analyses the issues and challenges that are faced due to the process of data monetisation. Some of the issues highlighted in the paper pertain to the right to privacy, protection of data of e-commerce consumers. At the same time, data monetisation cannot be prohibited, but it can be regulated and monitored by stringent laws and regulations. The right to privacy isa fundamental right guaranteed to the citizens of India through Article 21 of The Constitution of India. The Supreme Court of India recognized the Right to Privacy as a fundamental right in the landmark judgment of Justice K.S. Puttaswamy (Retd) and Another v. Union of India . This paper highlights the legal issue of how e-commerce businesses violate individuals’ right to privacy by using the data collected, stored by them for economic gains and monetisation and protection of data. The researcher has mainly focused on e-commerce companies like online shopping websitesto analyse the legal issue of data monetisation. In the Internet of Things and the digital age, people have shifted to online shopping as it is convenient, easy, flexible, comfortable, time-consuming, etc. But at the same time, the e-commerce companies store the data of their consumers and use it by selling to the third party or generating more data from the data stored with them. This violatesindividuals’ right to privacy because the consumers do not know anything while giving their data online. Many times, data is collected without the consent of individuals also. Data can be structured, unstructured, etc., that is used by analytics to monetise. The Indian legislation like The Information Technology Act, 2000, etc., does not effectively protect the e-consumers concerning their data and how it is used by e-commerce businesses to monetise and generate revenues from that data. The paper also examines the draft Data Protection Bill, 2021, pending in the Parliament of India, and how this Bill can make a huge impact on data monetisation. This paper also aims to study the European Union General Data Protection Regulation and how this legislation can be helpful in the Indian scenarioconcerning e-commerce businesses with respect to data monetisation.

Keywords: data monetization, e-commerce companies, regulatory framework, GDPR

Procedia PDF Downloads 120