Search results for: WEKA data mining tool
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 28608

Search results for: WEKA data mining tool

27348 The Crisis of Turkey's Downing the Russian Warplane within the Concept of Country Branding: The Examples of BBC World, and Al Jazeera English

Authors: Derya Gül Ünlü, Oguz Kuş

Abstract:

The branding of a country means that the country has its own position different from other countries in its region and thus it is perceived more specifically. It is made possible by the branding efforts of a country and the uniqueness of all the national structures, by presenting it in a specific way, by creating the desired image and attracting tourists and foreign investors. Establishing a national brand involves, in a sense, the process of managing the perceptions of the citizens of the other country about the target country, by structuring the image of the country permanently and holistically. By this means, countries are not easily affected by their crisis of international relations. Therefore, within the scope of the research that will be carried out from this point, it is aimed to show how the warplane downing crisis between Turkey and Russia is perceived on social media. The Russian warplane was downed by Turkey on November 24, 2015, on the grounds that Turkey violated the airspace on the Syrian border. Whereupon the relations between the two countries have been tensed, and Russia has called on its citizens not to go to Turkey and citizens in Turkey to return to their countries. Moreover, relations between two countries have been weakened, for example, tourism tours organized in Russia to Turkey and visa-free travel were canceled and all military dialogue was cut off. After the event, various news sites on social media published plenty of news related to topic and the readers made various comments about the event and Turkey. In this context, an investigation into the perception of Turkey's national brand before and after the warplane downing crisis has been conducted. through comments fetched from the reports on the BBC World, and from Al Jazeera English news sites on Facebook accounts, which takes place widely in the social media. In order to realize study, user comments were fetched from jet downing-related news which are published on Facebook fan-page of BBC World Service, and Al Jazeera English. Regarding this, all the news published between 24.10.2015-24.12.2015 and containing Turk and Turkey keyword in its title composed data set of our study. Afterwards, comments written to these news were analyzed via text mining technique. Furthermore, by sentiment analysis, it was intended to reveal reader’s emotions before and after the crisis.

Keywords: Al Jazeera English, BBC World, country branding, social media, text mining

Procedia PDF Downloads 224
27347 Government Big Data Ecosystem: A Systematic Literature Review

Authors: Syed Iftikhar Hussain Shah, Vasilis Peristeras, Ioannis Magnisalis

Abstract:

Data that is high in volume, velocity, veracity and comes from a variety of sources is usually generated in all sectors including the government sector. Globally public administrations are pursuing (big) data as new technology and trying to adopt a data-centric architecture for hosting and sharing data. Properly executed, big data and data analytics in the government (big) data ecosystem can be led to data-driven government and have a direct impact on the way policymakers work and citizens interact with governments. In this research paper, we conduct a systematic literature review. The main aims of this paper are to highlight essential aspects of the government (big) data ecosystem and to explore the most critical socio-technical factors that contribute to the successful implementation of government (big) data ecosystem. The essential aspects of government (big) data ecosystem include definition, data types, data lifecycle models, and actors and their roles. We also discuss the potential impact of (big) data in public administration and gaps in the government data ecosystems literature. As this is a new topic, we did not find specific articles on government (big) data ecosystem and therefore focused our research on various relevant areas like humanitarian data, open government data, scientific research data, industry data, etc.

Keywords: applications of big data, big data, big data types. big data ecosystem, critical success factors, data-driven government, egovernment, gaps in data ecosystems, government (big) data, literature review, public administration, systematic review

Procedia PDF Downloads 228
27346 A Machine Learning Decision Support Framework for Industrial Engineering Purposes

Authors: Anli Du Preez, James Bekker

Abstract:

Data is currently one of the most critical and influential emerging technologies. However, the true potential of data is yet to be exploited since, currently, about 1% of generated data are ever actually analyzed for value creation. There is a data gap where data is not explored due to the lack of data analytics infrastructure and the required data analytics skills. This study developed a decision support framework for data analytics by following Jabareen’s framework development methodology. The study focused on machine learning algorithms, which is a subset of data analytics. The developed framework is designed to assist data analysts with little experience, in choosing the appropriate machine learning algorithm given the purpose of their application.

Keywords: Data analytics, Industrial engineering, Machine learning, Value creation

Procedia PDF Downloads 168
27345 Women-Hating Masculinities: How the Demand for Prostitution Fuels Sex Trafficking

Authors: Rosa M. Senent

Abstract:

Over the centuries, prostitution has been problematized from many sides, with women always at the center of the debate. However, prostitution is a gendered, demand-driven phenomenon. Thus, a focus must be put on the men who demand it, as an increasing number of studies have been done in the last few decades. The purpose of this paper is to expose how men's discourse online reveals the link between their demand for paid sex in prostitution and sex trafficking. The methodological tool employed was Critical Discourse Analysis (CDA). A critical analysis of sex buyers' discourse online showed that online communities of sex buyers are a useful tool in researching their behavior towards women, that their knowledge of sex trafficking and exploitation do not work as a deterrent for them to buy sex, and that the type of masculinity that sex buyers endorse is characterized by attitudes linked to the perpetuation of violence against women.

Keywords: masculinities, prostitution, sex trafficking, violence

Procedia PDF Downloads 139
27344 The Effect of Feature Selection on Pattern Classification

Authors: Chih-Fong Tsai, Ya-Han Hu

Abstract:

The aim of feature selection (or dimensionality reduction) is to filter out unrepresentative features (or variables) making the classifier perform better than the one without feature selection. Since there are many well-known feature selection algorithms, and different classifiers based on different selection results may perform differently, very few studies consider examining the effect of performing different feature selection algorithms on the classification performances by different classifiers over different types of datasets. In this paper, two widely used algorithms, which are the genetic algorithm (GA) and information gain (IG), are used to perform feature selection. On the other hand, three well-known classifiers are constructed, which are the CART decision tree (DT), multi-layer perceptron (MLP) neural network, and support vector machine (SVM). Based on 14 different types of datasets, the experimental results show that in most cases IG is a better feature selection algorithm than GA. In addition, the combinations of IG with DT and IG with SVM perform best and second best for small and large scale datasets.

Keywords: data mining, feature selection, pattern classification, dimensionality reduction

Procedia PDF Downloads 669
27343 Simultaneous Improvement of Wear Performance and Toughness of Ledeburitic Tool Steels by Sub-Zero Treatment

Authors: Peter Jurči, Jana Ptačinová, Mária Hudáková, Mária Dománková, Martin Kusý, Martin Sahul

Abstract:

The strength, hardness, and toughness (ductility) are in strong conflict for the metallic materials. The only possibility how to make their simultaneous improvement is to provide the microstructural refinement, by cold deformation, and subsequent recrystallization. However, application of this kind of treatment is impossible for high-carbon high-alloyed ledeburitic tool steels. Alternatively, it has been demonstrated over the last few years that sub-zero treatment induces some microstructural changes in these materials, which might favourably influence their complex of mechanical properties. Commercially available PM ledeburitic steel Vanadis 6 has been used for the current investigations. The paper demonstrates that sub-zero treatment induces clear refinement of the martensite, reduces the amount of retained austenite, enhances the population density of fine carbides, and makes alterations in microstructural development that take place during tempering. As a consequence, the steel manifests improved wear resistance at higher toughness and fracture toughness. Based on the obtained results, the key question “can the wear performance be improved by sub-zero treatment simultaneously with toughness” can be answered by “definitely yes”.

Keywords: ledeburitic tool steels, microstructure, sub-zero treatment, mechanical properties

Procedia PDF Downloads 318
27342 Analysis and Identification of Different Factors Affecting Students’ Performance Using a Correlation-Based Network Approach

Authors: Jeff Chak-Fu Wong, Tony Chun Yin Yip

Abstract:

The transition from secondary school to university seems exciting for many first-year students but can be more challenging than expected. Enabling instructors to know students’ learning habits and styles enhances their understanding of the students’ learning backgrounds, allows teachers to provide better support for their students, and has therefore high potential to improve teaching quality and learning, especially in any mathematics-related courses. The aim of this research is to collect students’ data using online surveys, to analyze students’ factors using learning analytics and educational data mining and to discover the characteristics of the students at risk of falling behind in their studies based on students’ previous academic backgrounds and collected data. In this paper, we use correlation-based distance methods and mutual information for measuring student factor relationships. We then develop a factor network using the Minimum Spanning Tree method and consider further study for analyzing the topological properties of these networks using social network analysis tools. Under the framework of mutual information, two graph-based feature filtering methods, i.e., unsupervised and supervised infinite feature selection algorithms, are used to analyze the results for students’ data to rank and select the appropriate subsets of features and yield effective results in identifying the factors affecting students at risk of failing. This discovered knowledge may help students as well as instructors enhance educational quality by finding out possible under-performers at the beginning of the first semester and applying more special attention to them in order to help in their learning process and improve their learning outcomes.

Keywords: students' academic performance, correlation-based distance method, social network analysis, feature selection, graph-based feature filtering method

Procedia PDF Downloads 129
27341 The Road Ahead: Merging Human Cyber Security Expertise with Generative AI

Authors: Brennan Lodge

Abstract:

Amidst a complex regulatory landscape, Retrieval Augmented Generation (RAG) emerges as a transformative tool for Governance Risk and Compliance (GRC) officers. This paper details the application of RAG in synthesizing Large Language Models (LLMs) with external knowledge bases, offering GRC professionals an advanced means to adapt to rapid changes in compliance requirements. While the development for standalone LLM’s (Large Language Models) is exciting, such models do have their downsides. LLM’s cannot easily expand or revise their memory, and they can’t straightforwardly provide insight into their predictions, and may produce “hallucinations.” Leveraging a pre-trained seq2seq transformer and a dense vector index of domain-specific data, this approach integrates real-time data retrieval into the generative process, enabling gap analysis and the dynamic generation of compliance and risk management content. We delve into the mechanics of RAG, focusing on its dual structure that pairs parametric knowledge contained within the transformer model with non-parametric data extracted from an updatable corpus. This hybrid model enhances decision-making through context-rich insights, drawing from the most current and relevant information, thereby enabling GRC officers to maintain a proactive compliance stance. Our methodology aligns with the latest advances in neural network fine-tuning, providing a granular, token-level application of retrieved information to inform and generate compliance narratives. By employing RAG, we exhibit a scalable solution that can adapt to novel regulatory challenges and cybersecurity threats, offering GRC officers a robust, predictive tool that augments their expertise. The granular application of RAG’s dual structure not only improves compliance and risk management protocols but also informs the development of compliance narratives with pinpoint accuracy. It underscores AI’s emerging role in strategic risk mitigation and proactive policy formation, positioning GRC officers to anticipate and navigate the complexities of regulatory evolution confidently.

Keywords: cybersecurity, gen AI, retrieval augmented generation, cybersecurity defense strategies

Procedia PDF Downloads 95
27340 The Modality of Multivariate Skew Normal Mixture

Authors: Bader Alruwaili, Surajit Ray

Abstract:

Finite mixtures are a flexible and powerful tool that can be used for univariate and multivariate distributions, and a wide range of research analysis has been conducted based on the multivariate normal mixture and multivariate of a t-mixture. Determining the number of modes is an important activity that, in turn, allows one to determine the number of homogeneous groups in a population. Our work currently being carried out relates to the study of the modality of the skew normal distribution in the univariate and multivariate cases. For the skew normal distribution, the aims are associated with studying the modality of the skew normal distribution and providing the ridgeline, the ridgeline elevation function, the $\Pi$ function, and the curvature function, and this will be conducive to an exploration of the number and location of mode when mixing the two components of skew normal distribution. The subsequent objective is to apply these results to the application of real world data sets, such as flow cytometry data.

Keywords: mode, modality, multivariate skew normal, finite mixture, number of mode

Procedia PDF Downloads 488
27339 The Application of Action Research to Integrate the Innovation in Learning Experience in a Design Course

Authors: Walaa Mohammed Metwally

Abstract:

This case study used the action research concept as a tool to integrate the innovation in a learning experience on a design course. The action research was investigated at Prince Sultan University, College of Engineering in the Interior Design and Architecture Department in January 2015, through the Higher Education Academy program. The action research was presented first with the definition of the research, leading to how it was used and how solutions were found. It concluded by showing that once the action research application in interior design and architecture were studied it was an effective tool to improve student’s learning, develop their practice in design courses, and it discussed the negative and positive issues that were encountered.

Keywords: action research, innovation, intervention, learning experience, peer review

Procedia PDF Downloads 339
27338 A Case-Based Reasoning-Decision Tree Hybrid System for Stock Selection

Authors: Yaojun Wang, Yaoqing Wang

Abstract:

Stock selection is an important decision-making problem. Many machine learning and data mining technologies are employed to build automatic stock-selection system. A profitable stock-selection system should consider the stock’s investment value and the market timing. In this paper, we present a hybrid system including both engage for stock selection. This system uses a case-based reasoning (CBR) model to execute the stock classification, uses a decision-tree model to help with market timing and stock selection. The experiments show that the performance of this hybrid system is better than that of other techniques regarding to the classification accuracy, the average return and the Sharpe ratio.

Keywords: case-based reasoning, decision tree, stock selection, machine learning

Procedia PDF Downloads 420
27337 Balance of Natural Resources to Manage Land Use Changes in Subosukawonosraten Area

Authors: Sri E. Wati, D. Roswidyatmoko, N. Maslahatun, Gunawan, Andhika B. Taji

Abstract:

Natural resource is the main sources to fulfill human needs. Its utilization must consider not only human prosperity but also sustainability. Balance of natural resources is a tool to manage natural wealth and to control land use change. This tool is needed to organize land use planning as stated on spatial plan in a certain region. Balance of natural resources can be calculated by comparing two-series of natural resource data obtained at different year. In this case, four years data period of land and forest were used (2010 and 2014). Land use data were acquired through satellite image interpretation and field checking. By means of GIS analysis, its result was then assessed with land use plan. It is intended to evaluate whether existing land use is suitable with land use plan. If it is improper, what kind of efforts and policies must be done to overcome the situation. Subosukawonosraten is rapid developed areas in Central Java Province. This region consists of seven regencies/cities which are Sukoharjo Regency, Boyolali Regency, Surakarta City, Karanganyar Regency, Wonogiri Regency, Sragen Regency, and Klaten Regency. This region is regarding to several former areas under Karasidenan Surakarta and their location is adjacent to Surakarta. Balance of forest resources show that width of forest area is not significantly changed. Some land uses within the area are slightly changed. Some rice field areas are converted into settlement (0.03%) whereas water bodies become vacant areas (0.09%). On the other hand, balance of land resources state that there are many land use changes in this region. Width area of rice field decreases 428 hectares and more than 50% of them have been transformed into settlement area and 11.21% is converted into buildings such as factories, hotels, and other infrastructures. It occurs mostly in Sragen, Sukoharjo, and Karanganyar Regency. The results illustrate that land use change in this region is mostly influenced by increasing of population number. Some agricultural lands have been converted into built-up area since demand of settlement, industrial area, and other infrastructures also increases. Unfortunately, recent utilization of more than a half of total area is not appropriate with land use plan declared in spatial planning document. It means, local government shall develop a strict regulation and law enforcement related to any violation in land use management.

Keywords: balance, forest, land, spatial plan

Procedia PDF Downloads 319
27336 Embodying the Ecological Validity in Creating the Sustainable Public Policy: A Study in Strengthening the Green Economy in Indonesia

Authors: Gatot Dwi Hendro, Hayyan ul Haq

Abstract:

This work aims to explore the strategy in embodying the ecological validity in creating the sustainability of public policy, particularly in strengthening the green economy in Indonesia. This green economy plays an important role in supporting the national development in Indonesia, as it is a part of the national policy that posits the primary priority in Indonesian governance. The green economy refers to the national development covering strategic natural resources, such as mining, gold, oil, coal, forest, water, marine, and the other supporting infrastructure for products and distribution, such as fabrics, roads, bridges, and so forth. Thus, all activities in those national development should consider the sustainability. This sustainability requires the strong commitment of the national and regional government, as well as the local governments to put the ecology as the main requirement for issuing any policy, such as licence in mining production, and developing and building new production and supporting infrastructures for optimising the national resources. For that reason this work will focus on the strategy how to embody the ecological values and norms in the public policy. In detail, this work will offer the method, i.e. legal techniques, in visualising and embodying the norms and public policy that valid ecologically. This ecological validity is required in order to maintain and sustain our collective life.

Keywords: ecological validity, sustainable development, coherence, Indonesian Pancasila values, environment, marine

Procedia PDF Downloads 485
27335 Using Rainfall Simulators to Design and Assess the Post-Mining Erosional Stability

Authors: Ashraf M. Khalifa, Hwat Bing So, Greg Maddocks

Abstract:

Changes to the mining environmental approvals process in Queensland have been rolled out under the MERFP Act (2018). This includes requirements for a Progressive Rehabilitation and Closure Plan (PRC Plan). Key considerations of the landform design report within the PRC Plan must include: (i) identification of materials available for landform rehabilitation, including their ability to achieve the required landform design outcomes, (ii) erosion assessments to determine landform heights, gradients, profiles, and material placement, (iii) slope profile design considering the interactions between soil erodibility, rainfall erosivity, landform height, gradient, and vegetation cover to identify acceptable erosion rates over a long-term average, (iv) an analysis of future stability based on the factors described above e.g., erosion and /or landform evolution modelling. ACARP funded an extensive and thorough erosion assessment program using rainfall simulators from 1998 to 2010. The ACARP program included laboratory assessment of 35 soil and spoil samples from 16 coal mines and samples from a gold mine in Queensland using 3 x 0.8 m laboratory rainfall simulator. The reliability of the laboratory rainfall simulator was verified through field measurements using larger flumes 20 x 5 meters and catchment scale measurements at three sites (3 different catchments, average area of 2.5 ha each). Soil cover systems are a primary component of a constructed mine landform. The primary functions of a soil cover system are to sustain vegetation and limit the infiltration of water and oxygen into underlying reactive mine waste. If the external surface of the landform erodes, the functions of the cover system cannot be maintained, and the cover system will most likely fail. Assessing a constructed landform’s potential ‘long-term’ erosion stability requires defensible erosion rate thresholds below which rehabilitation landform designs are considered acceptably erosion-resistant or ‘stable’. The process used to quantify erosion rates using rainfall simulators (flumes) to measure rill and inter-rill erosion on bulk samples under laboratory conditions or on in-situ material under field conditions will be explained.

Keywords: open-cut, mining, erosion, rainfall simulator

Procedia PDF Downloads 101
27334 Predicting Success and Failure in Drug Development Using Text Analysis

Authors: Zhi Hao Chow, Cian Mulligan, Jack Walsh, Antonio Garzon Vico, Dimitar Krastev

Abstract:

Drug development is resource-intensive, time-consuming, and increasingly expensive with each developmental stage. The success rates of drug development are also relatively low, and the resources committed are wasted with each failed candidate. As such, a reliable method of predicting the success of drug development is in demand. The hypothesis was that some examples of failed drug candidates are pushed through developmental pipelines based on false confidence and may possess common linguistic features identifiable through sentiment analysis. Here, the concept of using text analysis to discover such features in research publications and investor reports as predictors of success was explored. R studios were used to perform text mining and lexicon-based sentiment analysis to identify affective phrases and determine their frequency in each document, then using SPSS to determine the relationship between our defined variables and the accuracy of predicting outcomes. A total of 161 publications were collected and categorised into 4 groups: (i) Cancer treatment, (ii) Neurodegenerative disease treatment, (iii) Vaccines, and (iv) Others (containing all other drugs that do not fit into the 3 categories). Text analysis was then performed on each document using 2 separate datasets (BING and AFINN) in R within the category of drugs to determine the frequency of positive or negative phrases in each document. A relative positivity and negativity value were then calculated by dividing the frequency of phrases with the word count of each document. Regression analysis was then performed with SPSS statistical software on each dataset (values from using BING or AFINN dataset during text analysis) using a random selection of 61 documents to construct a model. The remaining documents were then used to determine the predictive power of the models. Model constructed from BING predicts the outcome of drug performance in clinical trials with an overall percentage of 65.3%. AFINN model had a lower accuracy at predicting outcomes compared to the BING model at 62.5% but was not effective at predicting the failure of drugs in clinical trials. Overall, the study did not show significant efficacy of the model at predicting outcomes of drugs in development. Many improvements may need to be made to later iterations of the model to sufficiently increase the accuracy.

Keywords: data analysis, drug development, sentiment analysis, text-mining

Procedia PDF Downloads 157
27333 Modelling of Geotechnical Data Using Geographic Information System and MATLAB for Eastern Ahmedabad City, Gujarat

Authors: Rahul Patel

Abstract:

Ahmedabad, a city located in western India, is experiencing rapid growth due to urbanization and industrialization. It is projected to become a metropolitan city in the near future, resulting in various construction activities. Soil testing is necessary before construction can commence, requiring construction companies and contractors to periodically conduct soil testing. The focus of this study is on the process of creating a spatial database that is digitally formatted and integrated with geotechnical data and a Geographic Information System (GIS). Building a comprehensive geotechnical (Geo)-database involves three steps: collecting borehole data from reputable sources, verifying the accuracy and redundancy of the data, and standardizing and organizing the geotechnical information for integration into the database. Once the database is complete, it is integrated with GIS, allowing users to visualize, analyze, and interpret geotechnical information spatially. Using a Topographic to Raster interpolation process in GIS, estimated values are assigned to all locations based on sampled geotechnical data values. The study area was contoured for SPT N-Values, Soil Classification, Φ-Values, and Bearing Capacity (T/m2). Various interpolation techniques were cross-validated to ensure information accuracy. This GIS map enables the calculation of SPT N-Values, Φ-Values, and bearing capacities for different footing widths and various depths. This study highlights the potential of GIS in providing an efficient solution to complex phenomena that would otherwise be tedious to achieve through other means. Not only does GIS offer greater accuracy, but it also generates valuable information that can be used as input for correlation analysis. Furthermore, this system serves as a decision support tool for geotechnical engineers.

Keywords: ArcGIS, borehole data, geographic information system, geo-database, interpolation, SPT N-value, soil classification, Φ-Value, bearing capacity

Procedia PDF Downloads 74
27332 Classification of Contexts for Mentioning Love in Interviews with Victims of the Holocaust

Authors: Marina Yurievna Aleksandrova

Abstract:

Research of the Holocaust retains value not only for history but also for sociology and psychology. One of the most important fields of study is how people were coping during and after this traumatic event. The aim of this paper is to identify the main contexts of the topic of love and to determine which contexts are more characteristic for different groups of victims of the Holocaust (gender, nationality, age). In this research, transcripts of interviews with Holocaust victims that were collected during 1946 for the "Voices of the Holocaust" project were used as data. Main contexts were analyzed with methods of network analysis and latent semantic analysis and classified by gender, age, and nationality with random forest. The results show that love is articulated and described significantly differently for male and female informants, nationality is shown results with lower values of quality metrics, as well as the age.

Keywords: Holocaust, latent semantic analysis, network analysis, text-mining, random forest

Procedia PDF Downloads 180
27331 Accounting Knowledge Management and Value Creation of SME in Chatuchak Market: Case Study Ceramics Product

Authors: Runglaksamee Rodkam

Abstract:

The purpose of this research was to study the influence of accountants’ potential performance on their working process, a case study of Government Savings Banks in the northeast of Thailand. The independent variables included accounting knowledge, accounting skill, accounting value, accounting ethics, and accounting attitude, while the dependent variable included the success of the working process. A total of 155 accountants working for Government Savings Banks were selected by random sampling. A questionnaire was used as a tool for collecting data. Descriptive statistics in this research included percentage, mean, and multiple regression analyses. The findings revealed that the majority of accountants were female with an age between 35-40 years old. Most of the respondents had an undergraduate degree with ten years of experience. Moreover, the factors of accounting knowledge, accounting skill, accounting a value and accounting ethics and accounting attitude were rated at a high level. The findings from regression analysis of observation data revealed a causal relationship in that the observation data could explain at least 51 percent of the success in the accountants’ working process.

Keywords: influence, potential performance, success, working process

Procedia PDF Downloads 256
27330 Providing Security to Private Cloud Using Advanced Encryption Standard Algorithm

Authors: Annapureddy Srikant Reddy, Atthanti Mahendra, Samala Chinni Krishna, N. Neelima

Abstract:

In our present world, we are generating a lot of data and we, need a specific device to store all these data. Generally, we store data in pen drives, hard drives, etc. Sometimes we may loss the data due to the corruption of devices. To overcome all these issues, we implemented a cloud space for storing the data, and it provides more security to the data. We can access the data with just using the internet from anywhere in the world. We implemented all these with the java using Net beans IDE. Once user uploads the data, he does not have any rights to change the data. Users uploaded files are stored in the cloud with the file name as system time and the directory will be created with some random words. Cloud accepts the data only if the size of the file is less than 2MB.

Keywords: cloud space, AES, FTP, NetBeans IDE

Procedia PDF Downloads 206
27329 Characteristic Study of Polymer Sand as a Potential Substitute for Natural River Sand in Construction Industry

Authors: Abhishek Khupsare, Ajay Parmar, Ajay Agarwal, Swapnil Wanjari

Abstract:

The extreme demand for aggregate leads to the exploitation of river-bed for fine aggregates, affecting the environment adversely. Therefore, a suitable alternative to natural river sand is essentially required. This study focuses on preventing environmental impact by developing polymer sand to replace natural river sand (NRS). Development of polymer sand by mixing high volume fly ash, bottom ash, cement, natural river sand, and locally purchased high solid content polycarboxylate ether-based superplasticizer (HS-PCE). All the physical and chemical properties of polymer sand (P-Sand) were observed and satisfied the requirement of the Indian Standard code. P-Sand yields good specific gravity of 2.31 and is classified as zone-I sand with a satisfactory friction angle (37˚) compared to natural river sand (NRS) and Geopolymer fly ash sand (GFS). Though the water absorption (6.83%) and pH (12.18) are slightly more than those of GFS and NRS, the alkali silica reaction and soundness are well within the permissible limit as per Indian Standards. The chemical analysis by X-Ray fluorescence showed the presence of high amounts of SiO2 and Al2O3 with magnitudes of 58.879% 325 and 26.77%, respectively. Finally, the compressive strength of M-25 grade concrete using P-sand and Geopolymer sand (GFS) was observed to be 87.51% and 83.82% with respect to natural river sand (NRS) after 28 days, respectively. The results of this study indicate that P-sand can be a good alternative to NRS for construction work as it not only reduces the environmental effect due to sand mining but also focuses on utilising fly ash and bottom ash.

Keywords: polymer sand, fly ash, bottom ash, HSPCE plasticizer, river sand mining

Procedia PDF Downloads 77
27328 Recommender Systems Using Ensemble Techniques

Authors: Yeonjeong Lee, Kyoung-jae Kim, Youngtae Kim

Abstract:

This study proposes a novel recommender system that uses data mining and multi-model ensemble techniques to enhance the recommendation performance through reflecting the precise user’s preference. The proposed model consists of two steps. In the first step, this study uses logistic regression, decision trees, and artificial neural networks to predict customers who have high likelihood to purchase products in each product group. Then, this study combines the results of each predictor using the multi-model ensemble techniques such as bagging and bumping. In the second step, this study uses the market basket analysis to extract association rules for co-purchased products. Finally, the system selects customers who have high likelihood to purchase products in each product group and recommends proper products from same or different product groups to them through above two steps. We test the usability of the proposed system by using prototype and real-world transaction and profile data. In addition, we survey about user satisfaction for the recommended product list from the proposed system and the randomly selected product lists. The results also show that the proposed system may be useful in real-world online shopping store.

Keywords: product recommender system, ensemble technique, association rules, decision tree, artificial neural networks

Procedia PDF Downloads 294
27327 Metabolic Pathway Analysis of Microbes using the Artificial Bee Colony Algorithm

Authors: Serena Gomez, Raeesa Tanseen, Netra Shaligram, Nithin Francis, Sandesh B. J.

Abstract:

The human gut consists of a community of microbes which has a lot of effects on human health disease. Metabolic modeling can help to predict relative populations of stable microbes and their effect on health disease. In order to study and visualize microbes in the human gut, we developed a tool that offers the following modules: Build a tool that can be used to perform Flux Balance Analysis for microbes in the human gut using the Artificial Bee Colony optimization algorithm. Run simulations for an individual microbe in different conditions, such as aerobic and anaerobic and visualize the results of these simulations.

Keywords: microbes, metabolic modeling, flux balance analysis, artificial bee colony

Procedia PDF Downloads 101
27326 Optimum Drilling States in Down-the-Hole Percussive Drilling: An Experimental Investigation

Authors: Joao Victor Borges Dos Santos, Thomas Richard, Yevhen Kovalyshen

Abstract:

Down-the-hole (DTH) percussive drilling is an excavation method that is widely used in the mining industry due to its high efficiency in fragmenting hard rock formations. A DTH hammer system consists of a fluid driven (air or water) piston and a drill bit; the reciprocating movement of the piston transmits its kinetic energy to the drill bit by means of stress waves that propagate through the drill bit towards the rock formation. In the literature of percussive drilling, the existence of an optimum drilling state (Sweet Spot) is reported in some laboratory and field experimental studies. An optimum rate of penetration is achieved for a specific range of axial thrust (or weight-on-bit) beyond which the rate of penetration decreases. Several authors advance different explanations as possible root causes to the occurrence of the Sweet Spot, but a universal explanation or consensus does not exist yet. The experimental investigation in this work was initiated with drilling experiments conducted at a mining site. A full-scale drilling rig (equipped with a DTH hammer system) was instrumented with high precision sensors sampled at a very high sampling rate (kHz). Data was collected while two boreholes were being excavated, an in depth analysis of the recorded data confirmed that an optimum performance can be achieved for specific ranges of input thrust (weight-on-bit). The high sampling rate allowed to identify the bit penetration at each single impact (of the piston on the drill bit) as well as the impact frequency. These measurements provide a direct method to identify when the hammer does not fire, and drilling occurs without percussion, and the bit propagate the borehole by shearing the rock. The second stage of the experimental investigation was conducted in a laboratory environment with a custom-built equipment dubbed Woody. Woody allows the drilling of shallow holes few centimetres deep by successive discrete impacts from a piston. After each individual impact, the bit angular position is incremented by a fixed amount, the piston is moved back to its initial position at the top of the barrel, and the air pressure and thrust are set back to their pre-set values. The goal is to explore whether the observed optimum drilling state stems from the interaction between the drill bit and the rock (during impact) or governed by the overall system dynamics (between impacts). The experiments were conducted on samples of Calca Red, with a drill bit of 74 millimetres (outside diameter) and with weight-on-bit ranging from 0.3 kN to 3.7 kN. Results show that under the same piston impact energy and constant angular displacement of 15 degrees between impact, the average drill bit rate of penetration is independent of the weight-on-bit, which suggests that the sweet spot is not caused by intrinsic properties of the bit-rock interface.

Keywords: optimum drilling state, experimental investigation, field experiments, laboratory experiments, down-the-hole percussive drilling

Procedia PDF Downloads 89
27325 Role of Academic Library in/for Information Literacy

Authors: Veena Rani

Abstract:

This paper presents the role of academic library in information literacy in the present time. Information is the very important aspect for the growth of any country. In this context information literacy is an essential tool in the development of various fields. Academic library is an essential part of university as well as of an institution. In Academic library we can include university library, college library as well as school library. Academic libraries are playing an important role for information literacy. Academic libraries provide excellent services for the benefit of students, teachers, researchers, and all those who are interested in education. All over the world many of the schemes, policies and services provide for information literacy.

Keywords: information literacy, academic library, tool literacy, higher education

Procedia PDF Downloads 372
27324 A Use Case-Oriented Performance Measurement Framework for AI and Big Data Solutions in the Banking Sector

Authors: Yassine Bouzouita, Oumaima Belghith, Cyrine Zitoun, Charles Bonneau

Abstract:

Performance measurement framework (PMF) is an essential tool in any organization to assess the performance of its processes. It guides businesses to stay on track with their objectives and benchmark themselves from the market. With the growing trend of the digital transformation of business processes, led by innovations in artificial intelligence (AI) & Big Data applications, developing a mature system capable of capturing the impact of digital solutions across different industries became a necessity. Based on the conducted research, no such system has been developed in academia nor the industry. In this context, this paper covers a variety of methodologies on performance measurement, overviews the major AI and big data applications in the banking sector, and covers an exhaustive list of relevant metrics. Consequently, this paper is of interest to both researchers and practitioners. From an academic perspective, it offers a comparative analysis of the reviewed performance measurement frameworks. From an industry perspective, it offers exhaustive research, from market leaders, of the major applications of AI and Big Data technologies, across the different departments of an organization. Moreover, it suggests a standardized classification model with a well-defined structure of intelligent digital solutions. The aforementioned classification is mapped to a centralized library that contains an indexed collection of potential metrics for each application. This library is arranged in a manner that facilitates the rapid search and retrieval of relevant metrics. This proposed framework is meant to guide professionals in identifying the most appropriate AI and big data applications that should be adopted. Furthermore, it will help them meet their business objectives through understanding the potential impact of such solutions on the entire organization.

Keywords: AI and Big Data applications, impact assessment, metrics, performance measurement

Procedia PDF Downloads 198
27323 Use of Indian Food Mascot Design as an Advertising Tool in Maintaining and Growing the Brand Name

Authors: Preeti Yadav, Dandeswar Bisoyi, Debkumar Chakrabarti

Abstract:

Mascots provide memories to viewers, and numerous promotional campaigns with different appearances, continue to trigger viewers and capture their interest. This study investigates the effect of Indian food mascot designs and influence on enhancing communication; thereby, building long-term brand recognition by the consumers. This paper presents a descriptive approach to Indian food mascot design as an advertising tool, and its research adopts a quantitative methodology. The study confirms that mascots have an ability to communicate a message in an effective manner; all though they are simple in terms of design and fashion trend, they have the capability to build positive reactions.

Keywords: food mascot, brand recognitions, advertising, humour

Procedia PDF Downloads 178
27322 Assisted Approach as a Tool for Increasing Attention When Using the iPad in a Special Elementary School: Action Research

Authors: Vojtěch Gybas, Libor Klubal, Kateřina Kostolányová

Abstract:

Nowadays, mobile touch technologies, such as tablets, are an integral part of teaching and learning in many special elementary schools. Many special education teachers tend to choose an iPad tablet with iOS. The reason is simple; the iPad has a function for pupils with special educational needs. If we decide to use tablets in teaching, in general, first we should try to stimulate the cognitive abilities of the pupil at the highest level, while holding the pupil’s attention on the task, when working with the device. This paper will describe how student attention can be increased by eliminating the working environment of selected applications, while using iPads with pupils in a special elementary school. Assisted function approach is highly effective at eliminating unwanted touching by a pupil when working on the desktop iPad, thus actively increasing the pupil´s attention while working on specific educational applications. During the various stages of the action, the research was conducted via data collection and interpretation. After a phase of gaining results and ideas for practice and actions, we carried out the check measurement, this time using the tool-assisted approach. In both cases, the pupils worked in the Math Board application and the resulting differences were evident.

Keywords: special elementary school, a mobile touch device, iPad, attention, Math Board

Procedia PDF Downloads 254
27321 Investigation on the Effect of Welding Parameters in Additive Friction Stir Welding of Glass Fiber Reinforced Polyamide 66 Composite

Authors: Nandhini Ravi, Muthukumaran Shanmugam

Abstract:

Metals are being replaced by thermoplastic polymer composites in automotive industries because of their low density, easiness to fabricate, low cost and good wear resistance. Complex polymer components consist of assemblies of smaller parts which can be joined by friction stir welding. This study deals with the additive friction stir welding of 15 wt.% glass fiber reinforced polyamide 66 composite which is a modified technique of the conventional friction stir welding by the addition of a filler plate for the heating of the composite work piece through the tool during the welding process. Welding at different combinations of tool rotational speed, travel speed and tool plunge depth was done after which the tensile strength of the respective experiments was determined. The maximum tensile strength obtained was 77 MPa which was 80% of the strength of the base material. The process parameters were optimized using the L9 orthogonal array and also the effect of individual welding parameter on the tensile strength was studied. The optimum parameter combination was determined with the help of ANOVA studies. The hardness of the welded joints was studied with the help of Shore Durometer which yielded the maximum of D 75.

Keywords: additive friction stir welding, polyamide 66, process parameters, thermoplastic polymer composite

Procedia PDF Downloads 159
27320 The Determinants of Trade Flow and Potential between Ethiopia and Group of Twenty

Authors: Terefe Alemu

Abstract:

This study is intended to examine Ethiopia’s trade flow determinants and trade potential with G20 countries whether it was overtraded or there is/are trade potential by using trade gravity model. The sources of panel data used were IMF, WDI, United Nations population division, The Heritage Foundation, Washington's No. 1 think tank online website database, online distance calculator, and others for the duration of 2010 to 2019 for 10 consecutive years. The empirical data analyzing tool used was Random effect model (REM), which is effective in estimation of time-invariant data. The empirical data analyzed using STATA software result indicates that Ethiopia has a trade potential with seven countries of G20, whereas Ethiopia overtrade with 12 countries and EU region. The Ethiopia’s and G20 countries/region bilateral trade flow statistically significant/ p<0.05/determinants were the population of G20 countries, growth domestic products of G20 countries, growth domestic products of Ethiopia, geographical distance between Ethiopia and G20 countries. The top five G20 countries exported to Ethiopia were china, United State of America, European Union, India, and South Africa, whereas the top five G20 countries imported from Ethiopia were EU, China, United State of America, Saudi Arabia, and Germany, respectively. Finally, the policy implication were Ethiopia has to Keep the consistence of trade flow with overtraded countries and improve with under traded countries through trade policy revision, and secondly, focusing on the trade determinants to improve trade flow is recommended.

Keywords: trade gravity model, trade determinants, G20, international trade, trade potential

Procedia PDF Downloads 214
27319 Correction of Frequent English Writing Errors by Using Coded Indirect Corrective Feedback and Error Treatment

Authors: Chaiwat Tantarangsee

Abstract:

The purposes of this study are: 1) to study the frequent English writing errors of students registering the course: Reading and Writing English for Academic Purposes II, and 2) to find out the results of writing error correction by using coded indirect corrective feedback and writing error treatments. Samples include 28 2nd year English Major students, Faculty of Education, Suan Sunandha Rajabhat University. Tool for experimental study includes the lesson plan of the course; Reading and Writing English for Academic Purposes II, and tool for data collection includes 4 writing tests of short texts. The research findings disclose that frequent English writing errors found in this course comprise 7 types of grammatical errors, namely Fragment sentence, Subject-verb agreement, Wrong form of verb tense, Singular or plural noun endings, Run-ons sentence, Wrong form of verb pattern and Lack of parallel structure. Moreover, it is found that the results of writing error correction by using coded indirect corrective feedback and error treatment reveal the overall reduction of the frequent English writing errors and the increase of students’ achievement in the writing of short texts with the significance at .05.

Keywords: coded indirect corrective feedback, error correction, error treatment, frequent English writing errors

Procedia PDF Downloads 237