Search results for: user path prediction (UPP) and user pattern
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7873

Search results for: user path prediction (UPP) and user pattern

6643 Hull Detection from Handwritten Digit Image

Authors: Sriraman Kothuri, Komal Teja Mattupalli

Abstract:

In this paper we proposed a novel algorithm for recognizing hulls in a hand written digits. This is an extension to the work on “Digit Recognition Using Freeman Chain code”. In order to find out the hulls in a user given digit it is necessary to follow three steps. Those are pre-processing, Boundary Extraction and at last apply the Hull Detection system in a way to attain the better results. The detection of Hull Regions is mainly intended to increase the machine learning capability in detection of characters or digits. This can also extend this in order to get the hull regions and their intensities in Black Holes in Space Exploration.

Keywords: chain code, machine learning, hull regions, hull recognition system, SASK algorithm

Procedia PDF Downloads 399
6642 Phone Number Spoofing Attack in VoLTE 4G

Authors: Joo-Hyung Oh

Abstract:

The number of service users of 4G VoLTE (voice over LTE) using LTE data networks is rapidly growing. VoLTE based on all-IP network enables clearer and higher-quality voice calls than 3G. It does, however, pose new challenges; a voice call through IP networks makes it vulnerable to security threats such as wiretapping and forged or falsified information. And in particular, stealing other users’ phone numbers and forging or falsifying call request messages from outgoing voice calls within VoLTE result in considerable losses that include user billing and voice phishing to acquaintances. This paper focuses on the threats of caller phone number spoofing in the VoLTE and countermeasure technology as safety measures for mobile communication networks.

Keywords: LTE, 4G, VoLTE, phone number spoofing

Procedia PDF Downloads 431
6641 Legal Judgment Prediction through Indictments via Data Visualization in Chinese

Authors: Kuo-Chun Chien, Chia-Hui Chang, Ren-Der Sun

Abstract:

Legal Judgment Prediction (LJP) is a subtask for legal AI. Its main purpose is to use the facts of a case to predict the judgment result. In Taiwan's criminal procedure, when prosecutors complete the investigation of the case, they will decide whether to prosecute the suspect and which article of criminal law should be used based on the facts and evidence of the case. In this study, we collected 305,240 indictments from the public inquiry system of the procuratorate of the Ministry of Justice, which included 169 charges and 317 articles from 21 laws. We take the crime facts in the indictments as the main input to jointly learn the prediction model for law source, article, and charge simultaneously based on the pre-trained Bert model. For single article cases where the frequency of the charge and article are greater than 50, the prediction performance of law sources, articles, and charges reach 97.66, 92.22, and 60.52 macro-f1, respectively. To understand the big performance gap between articles and charges, we used a bipartite graph to visualize the relationship between the articles and charges, and found that the reason for the poor prediction performance was actually due to the wording precision. Some charges use the simplest words, while others may include the perpetrator or the result to make the charges more specific. For example, Article 284 of the Criminal Law may be indicted as “negligent injury”, "negligent death”, "business injury", "driving business injury", or "non-driving business injury". As another example, Article 10 of the Drug Hazard Control Regulations can be charged as “Drug Control Regulations” or “Drug Hazard Control Regulations”. In order to solve the above problems and more accurately predict the article and charge, we plan to include the article content or charge names in the input, and use the sentence-pair classification method for question-answer problems in the BERT model to improve the performance. We will also consider a sequence-to-sequence approach to charge prediction.

Keywords: legal judgment prediction, deep learning, natural language processing, BERT, data visualization

Procedia PDF Downloads 121
6640 The Basic Teachings of the Buddha

Authors: Bhaddiya Tanchangya

Abstract:

This article discusses the Four Noble Truths, the foundational teachings of Buddhism, and their significance to Buddhist philosophy. The Four Noble Truths are the Noble Truth of Suffering, the Noble Truth of the Cause of Suffering, the Noble Truth of the End of Suffering, and the Noble Truth of the Path Leading to the End of Suffering. The first truth, the Noble Truth of Suffering, explains that suffering or dukkha is an inherent part of existence, including emotional, physical, and existential forms of suffering, including the Five Aggregates, which refer to the five components that make up a sentient being's experience of existence, as they are all conditioned, interdependent, subject to the Three Characteristics of Existence: impermanence, unsatisfactoriness and emptiness. The second truth, the Noble Truth of the Cause of Suffering, states that craving or attachment to the sensory experiences of the Five Aggregates leads to suffering and identifies three types of craving: craving for sensual pleasures, craving for existence, and craving for non-existence. Through the doctrine of Dependent Origination (Paṭiccasamuppāda), the Buddha graphically shows how the entire process of suffering arises and ceases. The third truth, the Noble Truth of the End of Suffering, asserts that there is a way to end suffering and attain a state of liberation called Nibbāna that marks the end of the cycle of birth and death by removing that very craving towards the sensory experiences by cultivating the Noble Eightfold Path. The fourth truth, the Noble Truth of the Path Leading to the End of Suffering, describes the Noble Eightfold Path, a set of guidelines to develop insight and wisdom to overcome craving and attachment and attain liberation from suffering. The article emphasizes that the Four Noble Truths are universal, applicable to all people regardless of culture, background, or beliefs, and form the foundation of Buddhist philosophy and practice.

Keywords: four noble truths, impermanence, suffering, not-self-ness, interconnectedness, emptiness, morality, concentration, wisdom, nirvana, happiness

Procedia PDF Downloads 87
6639 China’s Hotel m-Bookers’ Perceptions of their Booking Experiences

Authors: Weiqi Xia

Abstract:

We assess the perceptions of China’s hotel m-bookers using the E-SERVQUAL model and technology affordance assessment metrics. The data analysis provides insight into Chinese hotel m-bookers’ perceptions of information quality items, system quality items, and functional quality items. Respondents’ perceived value of such items is greatly enhanced via mini-program support and self-service innovation, which are predicted to be of increasing importance in the future. The findings of this study help close the gap between hotel operators’ understanding and customers’ perceptions. Our findings may also provide valuable insights into the functioning of China’s hotel industry.

Keywords: mobile hotel booking, hotel m-bookers, user perception, China’s WeChat mini program, hotel booking apps.

Procedia PDF Downloads 43
6638 Unconventional Calculus Spreadsheet Functions

Authors: Chahid K. Ghaddar

Abstract:

The spreadsheet engine is exploited via a non-conventional mechanism to enable novel worksheet solver functions for computational calculus. The solver functions bypass inherent restrictions on built-in math and user defined functions by taking variable formulas as a new type of argument while retaining purity and recursion properties. The enabling mechanism permits integration of numerical algorithms into worksheet functions for solving virtually any computational problem that can be modelled by formulas and variables. Several examples are presented for computing integrals, derivatives, and systems of deferential-algebraic equations. Incorporation of the worksheet solver functions with the ubiquitous spreadsheet extend the utility of the latter as a powerful tool for computational mathematics.

Keywords: calculus, differential algebraic equations, solvers, spreadsheet

Procedia PDF Downloads 359
6637 Improved Pattern Matching Applied to Surface Mounting Devices Components Localization on Automated Optical Inspection

Authors: Pedro M. A. Vitoriano, Tito. G. Amaral

Abstract:

Automated Optical Inspection (AOI) Systems are commonly used on Printed Circuit Boards (PCB) manufacturing. The use of this technology has been proven as highly efficient for process improvements and quality achievements. The correct extraction of the component for posterior analysis is a critical step of the AOI process. Nowadays, the Pattern Matching Algorithm is commonly used, although this algorithm requires extensive calculations and is time consuming. This paper will present an improved algorithm for the component localization process, with the capability of implementation in a parallel execution system.

Keywords: AOI, automated optical inspection, SMD, surface mounting devices, pattern matching, parallel execution

Procedia PDF Downloads 298
6636 A Study of Traffic Assignment Algorithms

Authors: Abdelfetah Laouzai, Rachid Ouafi

Abstract:

In a traffic network, users usually choose their way so that it reduces their travel time between pairs origin-destination. This behavior might seem selfish as it produces congestions in different parts of the network. The traffic assignment problem (TAP) models the interactions between congestion and user travel decisions to obtain vehicles flows over each axis of the traffic network. The resolution methods of TAP serve as a tool allows predicting users’ distribution, identifying congesting points and affecting the travelers’ behavior in the choice of their route in the network following dynamic data. In this article, we will present a review about specific resolution approach of TAP. A comparative analysis is carried out on those approaches so that it highlights the characteristics, advantages and disadvantages of each.

Keywords: network traffic, travel decisions, approaches, traffic assignment, flows

Procedia PDF Downloads 472
6635 Effect of Mach Number for Gust-Airfoil Interatcion Noise

Authors: ShuJiang Jiang

Abstract:

The interaction of turbulence with airfoil is an important noise source in many engineering fields, including helicopters, turbofan, and contra-rotating open rotor engines, where turbulence generated in the wake of upstream blades interacts with the leading edge of downstream blades and produces aerodynamic noise. One approach to study turbulence-airfoil interaction noise is to model the oncoming turbulence as harmonic gusts. A compact noise source produces a dipole-like sound directivity pattern. However, when the acoustic wavelength is much smaller than the airfoil chord length, the airfoil needs to be treated as a non-compact source, and the gust-airfoil interaction becomes more complicated and results in multiple lobes generated in the radiated sound directivity. Capturing the short acoustic wavelength is a challenge for numerical simulations. In this work, simulations are performed for gust-airfoil interaction at different Mach numbers, using a high-fidelity direct Computational AeroAcoustic (CAA) approach based on a spectral/hp element method, verified by a CAA benchmark case. It is found that the squared sound pressure varies approximately as the 5th power of Mach number, which changes slightly with the observer location. This scaling law can give a better sound prediction than the flat-plate theory for thicker airfoils. Besides, another prediction method, based on the flat-plate theory and CAA simulation, has been proposed to give better predictions than the scaling law for thicker airfoils.

Keywords: aeroacoustics, gust-airfoil interaction, CFD, CAA

Procedia PDF Downloads 76
6634 Analysis of Vortical Structures Generated by the Swirler of Combustion Chamber

Authors: Vladislav A. Nazukin, Valery G. Avgustinovich, Vakhtang V. Tsatiashvili

Abstract:

The most important part of modern lean low NOx combustors is a premixer where swirlers are often used for intensification of mixing processes and further formation of required flow pattern in combustor liner. Swirling flow leads to formation of complex eddy structures causing flow perturbations. It is able to cause combustion instability. Therefore, at design phase, it is necessary to pay great attention to aerodynamics of premixers. Analysis based on unsteady CFD modeling of swirling flow in production combustor swirler showed presence of large number of different eddy structures that can be conditionally divided into three types relative to its location of origin and a propagation path. Further, features of each eddy type were subsequently defined. Comparison of calculated and experimental pressure fluctuations spectrums verified correctness of computations.

Keywords: DES simulation, swirler, vortical structures, combustion chamber

Procedia PDF Downloads 351
6633 Combining Multiscale Patterns of Weather and Sea States into a Machine Learning Classifier for Mid-Term Prediction of Extreme Rainfall in North-Western Mediterranean Sea

Authors: Pinel Sebastien, Bourrin François, De Madron Du Rieu Xavier, Ludwig Wolfgang, Arnau Pedro

Abstract:

Heavy precipitation constitutes a major meteorological threat in the western Mediterranean. Research has investigated the relationship between the states of the Mediterranean Sea and the atmosphere with the precipitation for short temporal windows. However, at a larger temporal scale, the precursor signals of heavy rainfall in the sea and atmosphere have drawn little attention. Moreover, despite ongoing improvements in numerical weather prediction, the medium-term forecasting of rainfall events remains a difficult task. Here, we aim to investigate the influence of early-spring environmental parameters on the following autumnal heavy precipitations. Hence, we develop a machine learning model to predict extreme autumnal rainfall with a 6-month lead time over the Spanish Catalan coastal area, based on i) the sea pattern (main current-LPC and Sea Surface Temperature-SST) at the mesoscale scale, ii) 4 European weather teleconnection patterns (NAO, WeMo, SCAND, MO) at synoptic scale, and iii) the hydrological regime of the main local river (Rhône River). The accuracy of the developed model classifier is evaluated via statistical analysis based on classification accuracy, logarithmic and confusion matrix by comparing with rainfall estimates from rain gauges and satellite observations (CHIRPS-2.0). Sensitivity tests are carried out by changing the model configuration, such as sea SST, sea LPC, river regime, and synoptic atmosphere configuration. The sensitivity analysis suggests a negligible influence from the hydrological regime, unlike SST, LPC, and specific teleconnection weather patterns. At last, this study illustrates how public datasets can be integrated into a machine learning model for heavy rainfall prediction and can interest local policies for management purposes.

Keywords: extreme hazards, sensitivity analysis, heavy rainfall, machine learning, sea-atmosphere modeling, precipitation forecasting

Procedia PDF Downloads 133
6632 Aggregate Angularity on the Permanent Deformation Zones of Hot Mix Asphalt

Authors: Lee P. Leon, Raymond Charles

Abstract:

This paper presents a method of evaluating the effect of aggregate angularity on hot mix asphalt (HMA) properties and its relationship to the Permanent Deformation resistance. The research concluded that aggregate particle angularity had a significant effect on the Permanent Deformation performance, and also that with an increase in coarse aggregate angularity there was an increase in the resistance of mixes to Permanent Deformation. A comparison between the measured data and predictive data of permanent deformation predictive models showed the limits of existing prediction models. The numerical analysis described the permanent deformation zones and concluded that angularity has an effect of the onset of these zones. Prediction of permanent deformation help road agencies and by extension economists and engineers determine the best approach for maintenance, rehabilitation, and new construction works of the road infrastructure.

Keywords: aggregate angularity, asphalt concrete, permanent deformation, rutting prediction

Procedia PDF Downloads 403
6631 Using an Empathy Intervention Model to Enhance Empathy and Socially Shared Regulation in Youth with Autism Spectrum Disorder

Authors: Yu-Chi Chou

Abstract:

The purpose of this study was to establish a logical path of an instructional model of empathy and social regulation, providing feasibility evidence on the model implementation in students with autism spectrum disorder (ASD). This newly developed Emotional Bug-Out Bag (BoB) curriculum was designed to enhance the empathy and socially shared regulation of students with ASD. The BoB model encompassed three instructional phases of basic theory lessons (BTL), action plan practices (APP), and final theory practices (FTP) during implementation. Besides, a learning flow (teacher-directed instruction, student self-directed problem-solving, group-based task completion, group-based reflection) was infused into the progress of instructional phases to deliberately promote the social regulatory process in group-working activities. A total of 23 junior high school students with ASD were implemented with the BoB curriculum. To examine the logical path for model implementation, data was collected from the participating students’ self-report scores on the learning nodes and understanding questions. Path analysis using structural equation modeling (SEM) was utilized for analyzing scores on 10 learning nodes and 41 understanding questions through the three phases of the BoB model. Results showed (a) all participants progressed throughout the implementation of the BoB model, and (b) the models of learning nodes and phases were positive and significant as expected, confirming the hypothesized logic path of this curriculum.

Keywords: autism spectrum disorder, empathy, regulation, socially shared regulation

Procedia PDF Downloads 65
6630 Floorboards, Whitewalls and Butterflies: Ethnography of a Community Mental Health Cafe

Authors: J. N. Bardi, N. Wright, S. Timmons, P. Crawford

Abstract:

Introduction: In the United Kingdom (UK), the transfer of care from the asylums to the community has meant that some people with mental health problems (MHP) may not have access to suitable or adequate statutory community mental health services (CMHS). However, in addition to statutory CMHS, there are informal CMHS that provide spaces where people with MHP can attend such as faith communities, clubhouses, user-led organisations, day centres including drop-in-centres and community hubs and community mental health cafés (CMHCs). Aim: To qualitatively understand what happens in a community mental health café in relation to the place, people and processes, from the participant's perspective. Methodology: Ethnography Methods: Data collection will be field notes from observations written as thick description and interviews with participants. Data analysis will be thematic and narrative analysis. Relevance: The study seeks to observe what happens in a user-led community mental health café and explore if it provides the services that it claims to offer. Therefore, a literature review was conducted to examine the research evidence related to informal CMHS, focusing on similarities and differences. Results indicated that informal CMHS differ with regards to why, how, who set them up and who funds them, but they are similar because people with MHP who attend them report related psychological, vocational, and social interaction benefits. In addition to the differences listed above, CMHCs differ in their adoption of the commercial café model of social space and some CMHCs claim to address needs of social isolation and loneliness which they assert are not properly addressed by statutory CMHS and some informal CMHS. Therefore, CMHCs explicitly differentiate themselves from statutory CMHS and some informal CMHS such as day centres, hospitals and social services. However, CMHCs were found to be like drop-in-centres and community hubs which are also free for MHP to attend without the need for assessments, membership or appointments. To situate community mental health café within other informal CMHS and provide a rationale for the proposed study a scoping review was conducted to determine the scope of available research evidence on CMHCs. Findings from the scoping review reflected the literature review findings with regards to the benefits of attending informal CMHCs for people with MHP. Of the ten studies included in the scoping review, seven were on CMHCs for people living with dementia and two were on CMHCs for people with a broader range of MHP. The researcher hopes that findings from the proposed PhD study will build on the existing understanding of informal CMHS, extend the research evidence on CMHCs and address any gap in the literature.

Keywords: cafe, community, ethnography, mental health

Procedia PDF Downloads 197
6629 The Concept of Path in Original Buddhism and the Concept of Psychotherapeutic Improvement

Authors: Beth Jacobs

Abstract:

The landmark movement of Western clinical psychology in the 20th century was the development of psychotherapy. The landmark movement of clinical psychology in the 21st century will be the absorption of meditation practices from Buddhist psychology. While millions of people explore meditation and related philosophy, very few people are exposed to the materials of original Buddhism on this topic, especially to the Theravadan Abhidharma. The Abhidharma is an intricate system of lists and matrixes that were used to understand and remember Buddha’s teaching. The Abhidharma delineates the first psychological system of Buddhism, how the mind works in the universe of reality and why meditation training strengthens and purifies the experience of life. Its lists outline the psychology of mental constructions, perception, emotion and cosmological causation. While the Abhidharma is technical, elaborate and complex, its essential purpose relates to the central purpose of clinical psychology: to relieve human suffering. Like Western depth psychology, the methodology rests on understanding underlying processes of consciousness and perception. What clinical psychologists might describe as therapeutic improvement, the Abhidharma delineates as a specific pathway of purified actions of consciousness. This paper discusses the concept of 'path' as presented in aspects of the Theravadan Abhidharma and relates this to current clinical psychological views of therapy outcomes and gains. The core path in Buddhism is the Eight-Fold Path, which is the fourth noble truth and the launching of activity toward liberation. The path is not composed of eight ordinal steps; it’s eight-fold and is described as opening the way, not funneling choices. The specific path in the Abhidharma is described in many steps of development of consciousness activities. The path is not something a human moves on, but something that moments of consciousness develop within. 'Cittas' are extensively described in the Abhidharma as the atomic-level unit of a raw action of consciousness touching upon an object in a field, and there are 121 types of cittas categorized. The cittas are embedded in the mental factors, which could be described as the psychological packaging elements of our experiences of consciousness. Based on these constellations of infinitesimal, linked occurrences of consciousness, citta are categorized by dimensions of purification. A path is a chain of citta developing through causes and conditions. There are no selves, no pronouns in the Abhidharma. Instead of me walking a path, this is about a person working with conditions to cultivate a stream of consciousness that is pure, immediate, direct and generous. The same effort, in very different terms, informs the work of most psychotherapies. Depth psychology seeks to release the bound, unconscious elements of mental process into the clarity of realization. Cognitive and behavioral psychologies work on breaking down automatic thought valuations and actions, changing schemas and interpersonal dynamics. Understanding how the original Buddhist concept of positive human development relates to the clinical psychological concept of therapy weaves together two brilliant systems of thought on the development of human well being.

Keywords: Abhidharma, Buddhist path, clinical psychology, psychotherapeutic outcome

Procedia PDF Downloads 213
6628 A User-Directed Approach to Optimization via Metaprogramming

Authors: Eashan Hatti

Abstract:

In software development, programmers often must make a choice between high-level programming and high-performance programs. High-level programming encourages the use of complex, pervasive abstractions. However, the use of these abstractions degrades performance-high performance demands that programs be low-level. In a compiler, the optimizer attempts to let the user have both. The optimizer takes high-level, abstract code as an input and produces low-level, performant code as an output. However, there is a problem with having the optimizer be a built-in part of the compiler. Domain-specific abstractions implemented as libraries are common in high-level languages. As a language’s library ecosystem grows, so does the number of abstractions that programmers will use. If these abstractions are to be performant, the optimizer must be extended with new optimizations to target them, or these abstractions must rely on existing general-purpose optimizations. The latter is often not as effective as needed. The former presents too significant of an effort for the compiler developers, as they are the only ones who can extend the language with new optimizations. Thus, the language becomes more high-level, yet the optimizer – and, in turn, program performance – falls behind. Programmers are again confronted with a choice between high-level programming and high-performance programs. To investigate a potential solution to this problem, we developed Peridot, a prototype programming language. Peridot’s main contribution is that it enables library developers to easily extend the language with new optimizations themselves. This allows the optimization workload to be taken off the compiler developers’ hands and given to a much larger set of people who can specialize in each problem domain. Because of this, optimizations can be much more effective while also being much more numerous. To enable this, Peridot supports metaprogramming designed for implementing program transformations. The language is split into two fragments or “levels”, one for metaprogramming, the other for high-level general-purpose programming. The metaprogramming level supports logic programming. Peridot’s key idea is that optimizations are simply implemented as metaprograms. The meta level supports several specific features which make it particularly suited to implementing optimizers. For instance, metaprograms can automatically deduce equalities between the programs they are optimizing via unification, deal with variable binding declaratively via higher-order abstract syntax, and avoid the phase-ordering problem via non-determinism. We have found that this design centered around logic programming makes optimizers concise and easy to write compared to their equivalents in functional or imperative languages. Overall, implementing Peridot has shown that its design is a viable solution to the problem of writing code which is both high-level and performant.

Keywords: optimization, metaprogramming, logic programming, abstraction

Procedia PDF Downloads 85
6627 Effective Stacking of Deep Neural Models for Automated Object Recognition in Retail Stores

Authors: Ankit Sinha, Soham Banerjee, Pratik Chattopadhyay

Abstract:

Automated product recognition in retail stores is an important real-world application in the domain of Computer Vision and Pattern Recognition. In this paper, we consider the problem of automatically identifying the classes of the products placed on racks in retail stores from an image of the rack and information about the query/product images. We improve upon the existing approaches in terms of effectiveness and memory requirement by developing a two-stage object detection and recognition pipeline comprising of a Faster-RCNN-based object localizer that detects the object regions in the rack image and a ResNet-18-based image encoder that classifies the detected regions into the appropriate classes. Each of the models is fine-tuned using appropriate data sets for better prediction and data augmentation is performed on each query image to prepare an extensive gallery set for fine-tuning the ResNet-18-based product recognition model. This encoder is trained using a triplet loss function following the strategy of online-hard-negative-mining for improved prediction. The proposed models are lightweight and can be connected in an end-to-end manner during deployment to automatically identify each product object placed in a rack image. Extensive experiments using Grozi-32k and GP-180 data sets verify the effectiveness of the proposed model.

Keywords: retail stores, faster-RCNN, object localization, ResNet-18, triplet loss, data augmentation, product recognition

Procedia PDF Downloads 154
6626 TARF: Web Toolkit for Annotating RNA-Related Genomic Features

Authors: Jialin Ma, Jia Meng

Abstract:

Genomic features, the genome-based coordinates, are commonly used for the representation of biological features such as genes, RNA transcripts and transcription factor binding sites. For the analysis of RNA-related genomic features, such as RNA modification sites, a common task is to correlate these features with transcript components (5'UTR, CDS, 3'UTR) to explore their distribution characteristics in terms of transcriptomic coordinates, e.g., to examine whether a specific type of biological feature is enriched near transcription start sites. Existing approaches for performing these tasks involve the manipulation of a gene database, conversion from genome-based coordinate to transcript-based coordinate, and visualization methods that are capable of showing RNA transcript components and distribution of the features. These steps are complicated and time consuming, and this is especially true for researchers who are not familiar with relevant tools. To overcome this obstacle, we develop a dedicated web app TARF, which represents web toolkit for annotating RNA-related genomic features. TARF web tool intends to provide a web-based way to easily annotate and visualize RNA-related genomic features. Once a user has uploaded the features with BED format and specified a built-in transcript database or uploaded a customized gene database with GTF format, the tool could fulfill its three main functions. First, it adds annotation on gene and RNA transcript components. For every features provided by the user, the overlapping with RNA transcript components are identified, and the information is combined in one table which is available for copy and download. Summary statistics about ambiguous belongings are also carried out. Second, the tool provides a convenient visualization method of the features on single gene/transcript level. For the selected gene, the tool shows the features with gene model on genome-based view, and also maps the features to transcript-based coordinate and show the distribution against one single spliced RNA transcript. Third, a global transcriptomic view of the genomic features is generated utilizing the Guitar R/Bioconductor package. The distribution of features on RNA transcripts are normalized with respect to RNA transcript landmarks and the enrichment of the features on different RNA transcript components is demonstrated. We tested the newly developed TARF toolkit with 3 different types of genomics features related to chromatin H3K4me3, RNA N6-methyladenosine (m6A) and RNA 5-methylcytosine (m5C), which are obtained from ChIP-Seq, MeRIP-Seq and RNA BS-Seq data, respectively. TARF successfully revealed their respective distribution characteristics, i.e. H3K4me3, m6A and m5C are enriched near transcription starting sites, stop codons and 5’UTRs, respectively. Overall, TARF is a useful web toolkit for annotation and visualization of RNA-related genomic features, and should help simplify the analysis of various RNA-related genomic features, especially those related RNA modifications.

Keywords: RNA-related genomic features, annotation, visualization, web server

Procedia PDF Downloads 205
6625 Comparative Study of Scheduling Algorithms for LTE Networks

Authors: Samia Dardouri, Ridha Bouallegue

Abstract:

Scheduling is the process of dynamically allocating physical resources to User Equipment (UE) based on scheduling algorithms implemented at the LTE base station. Various algorithms have been proposed by network researchers as the implementation of scheduling algorithm which represents an open issue in Long Term Evolution (LTE) standard. This paper makes an attempt to study and compare the performance of PF, MLWDF and EXP/PF scheduling algorithms. The evaluation is considered for a single cell with interference scenario for different flows such as Best effort, Video and VoIP in a pedestrian and vehicular environment using the LTE-Sim network simulator. The comparative study is conducted in terms of system throughput, fairness index, delay, packet loss ratio (PLR) and total cell spectral efficiency.

Keywords: LTE, multimedia flows, scheduling algorithms, mobile computing

Procedia PDF Downloads 382
6624 Use of Multistage Transition Regression Models for Credit Card Income Prediction

Authors: Denys Osipenko, Jonathan Crook

Abstract:

Because of the variety of the card holders’ behaviour types and income sources each consumer account can be transferred to a variety of states. Each consumer account can be inactive, transactor, revolver, delinquent, defaulted and requires an individual model for the income prediction. The estimation of transition probabilities between statuses at the account level helps to avoid the memorylessness of the Markov Chains approach. This paper investigates the transition probabilities estimation approaches to credit cards income prediction at the account level. The key question of empirical research is which approach gives more accurate results: multinomial logistic regression or multistage conditional logistic regression with binary target. Both models have shown moderate predictive power. Prediction accuracy for conditional logistic regression depends on the order of stages for the conditional binary logistic regression. On the other hand, multinomial logistic regression is easier for usage and gives integrate estimations for all states without priorities. Thus further investigations can be concentrated on alternative modeling approaches such as discrete choice models.

Keywords: multinomial regression, conditional logistic regression, credit account state, transition probability

Procedia PDF Downloads 484
6623 Mobile Based Long Range Weather Prediction System for the Farmers of Rural Areas of Pakistan

Authors: Zeeshan Muzammal, Usama Latif, Fouzia Younas, Syed Muhammad Hassan, Samia Razaq

Abstract:

Unexpected rainfall has always been an issue in the lifetime of crops and brings destruction for the farmers who harvest them. Unfortunately, Pakistan is one of the countries in which untimely rain impacts badly on crops like wash out of seeds and pesticides etc. Pakistan’s GDP is related to agriculture, especially in rural areas farmers sometimes quit farming because leverage of huge loss to their crops. Through our surveys and research, we came to know that farmers in the rural areas of Pakistan need rain information to avoid damages to their crops from rain. We developed a prototype using ICTs to inform the farmers about rain one week in advance. Our proposed solution has two ways of informing the farmers. In first we send daily messages about weekly prediction and also designed a helpline where they can call us to ask about possibility of rain.

Keywords: ICTD, farmers, mobile based, Pakistan, rural areas, weather prediction

Procedia PDF Downloads 570
6622 Review and Comparison of Associative Classification Data Mining Approaches

Authors: Suzan Wedyan

Abstract:

Data mining is one of the main phases in the Knowledge Discovery Database (KDD) which is responsible of finding hidden and useful knowledge from databases. There are many different tasks for data mining including regression, pattern recognition, clustering, classification, and association rule. In recent years a promising data mining approach called associative classification (AC) has been proposed, AC integrates classification and association rule discovery to build classification models (classifiers). This paper surveys and critically compares several AC algorithms with reference of the different procedures are used in each algorithm, such as rule learning, rule sorting, rule pruning, classifier building, and class allocation for test cases.

Keywords: associative classification, classification, data mining, learning, rule ranking, rule pruning, prediction

Procedia PDF Downloads 534
6621 Development of a Vegetation Searching System

Authors: Rattanathip Rattanachai, Kunyanuth Kularbphettong

Abstract:

This paper describes the development of a Vegetation Searching System based on Web Application in case of Suan Sunandha Rajabhat University. The model was developed by PHP, JavaScript, and MySQL database system and it was designed to support searching endemic and rare species of tree on web site. We describe the design methods and functional components of this prototype. To evaluate the system performance, questionnaires for system usability and Black Box Testing were used to measure expert and user satisfaction. The results were satisfactory as followed: Means for experts and users were 4.3 and 4.5, and standard deviation for experts and users were 0.61 and 0.73 respectively. Further analysis showed that the quality of plant searching web site was also at a good level as well.

Keywords: endemic species, vegetation, web-based system, black box testing, Thailand

Procedia PDF Downloads 309
6620 Analysis of Users’ Behavior on Book Loan Log Based on Association Rule Mining

Authors: Kanyarat Bussaban, Kunyanuth Kularbphettong

Abstract:

This research aims to create a model for analysis of student behavior using Library resources based on data mining technique in case of Suan Sunandha Rajabhat University. The model was created under association rules, apriori algorithm. The results were found 14 rules and the rules were tested with testing data set and it showed that the ability of classify data was 79.24 percent and the MSE was 22.91. The results showed that the user’s behavior model by using association rule technique can use to manage the library resources.

Keywords: behavior, data mining technique, a priori algorithm, knowledge discovery

Procedia PDF Downloads 403
6619 Contourlet Transform and Local Binary Pattern Based Feature Extraction for Bleeding Detection in Endoscopic Images

Authors: Mekha Mathew, Varun P Gopi

Abstract:

Wireless Capsule Endoscopy (WCE) has become a great device in Gastrointestinal (GI) tract diagnosis, which can examine the entire GI tract, especially the small intestine without invasiveness and sedation. Bleeding in the digestive tract is a symptom of a disease rather than a disease itself. Hence the detection of bleeding is important in diagnosing many diseases. In this paper we proposes a novel method for distinguishing bleeding regions from normal regions based on Contourlet transform and Local Binary Pattern (LBP). Experiments show that this method provides a high accuracy rate of 96.38% in CIE XYZ colour space for k-Nearest Neighbour (k-NN) classifier.

Keywords: Wireless Capsule Endoscopy, local binary pattern, k-NN classifier, contourlet transform

Procedia PDF Downloads 484
6618 Parallel 2-Opt Local Search on GPU

Authors: Wen-Bao Qiao, Jean-Charles Créput

Abstract:

To accelerate the solution for large scale traveling salesman problems (TSP), a parallel 2-opt local search algorithm with simple implementation based on Graphics Processing Unit (GPU) is presented and tested in this paper. The parallel scheme is based on technique of data decomposition by dynamically assigning multiple K processors on the integral tour to treat K edges’ 2-opt local optimization simultaneously on independent sub-tours, where K can be user-defined or have a function relationship with input size N. We implement this algorithm with doubly linked list on GPU. The implementation only requires O(N) memory. We compare this parallel 2-opt local optimization against sequential exhaustive 2-opt search along integral tour on TSP instances from TSPLIB with more than 10000 cities.

Keywords: parallel 2-opt, double links, large scale TSP, GPU

Procedia PDF Downloads 620
6617 IEEE802.15.4e Based Scheduling Mechanisms and Systems for Industrial Internet of Things

Authors: Ho-Ting Wu, Kai-Wei Ke, Bo-Yu Huang, Liang-Lin Yan, Chun-Ting Lin

Abstract:

With the advances in advanced technology, wireless sensor network (WSN) has become one of the most promising candidates to implement the wireless industrial internet of things (IIOT) architecture. However, the legacy IEEE 802.15.4 based WSN technology such as Zigbee system cannot meet the stringent QoS requirement of low powered, real-time, and highly reliable transmission imposed by the IIOT environment. Recently, the IEEE society developed IEEE 802.15.4e Time Slotted Channel Hopping (TSCH) access mode to serve this purpose. Furthermore, the IETF 6TiSCH working group has proposed standards to integrate IEEE 802.15.4e with IPv6 protocol smoothly to form a complete protocol stack for IIOT. In this work, we develop key network technologies for IEEE 802.15.4e based wireless IIoT architecture, focusing on practical design and system implementation. We realize the OpenWSN-based wireless IIOT system. The system architecture is divided into three main parts: web server, network manager, and sensor nodes. The web server provides user interface, allowing the user to view the status of sensor nodes and instruct sensor nodes to follow commands via user-friendly browser. The network manager is responsible for the establishment, maintenance, and management of scheduling and topology information. It executes centralized scheduling algorithm, sends the scheduling table to each node, as well as manages the sensing tasks of each device. Sensor nodes complete the assigned tasks and sends the sensed data. Furthermore, to prevent scheduling error due to packet loss, a schedule inspection mechanism is implemented to verify the correctness of the schedule table. In addition, when network topology changes, the system will act to generate a new schedule table based on the changed topology for ensuring the proper operation of the system. To enhance the system performance of such system, we further propose dynamic bandwidth allocation and distributed scheduling mechanisms. The developed distributed scheduling mechanism enables each individual sensor node to build, maintain and manage the dedicated link bandwidth with its parent and children nodes based on locally observed information by exchanging the Add/Delete commands via two processes. The first process, termed as the schedule initialization process, allows each sensor node pair to identify the available idle slots to allocate the basic dedicated transmission bandwidth. The second process, termed as the schedule adjustment process, enables each sensor node pair to adjust their allocated bandwidth dynamically according to the measured traffic loading. Such technology can sufficiently satisfy the dynamic bandwidth requirement in the frequently changing environments. Last but not least, we propose a packet retransmission scheme to enhance the system performance of the centralized scheduling algorithm when the packet delivery rate (PDR) is low. We propose a multi-frame retransmission mechanism to allow every single network node to resend each packet for at least the predefined number of times. The multi frame architecture is built according to the number of layers of the network topology. Performance results via simulation reveal that such retransmission scheme is able to provide sufficient high transmission reliability while maintaining low packet transmission latency. Therefore, the QoS requirement of IIoT can be achieved.

Keywords: IEEE 802.15.4e, industrial internet of things (IIOT), scheduling mechanisms, wireless sensor networks (WSN)

Procedia PDF Downloads 160
6616 Integration of Educational Data Mining Models to a Web-Based Support System for Predicting High School Student Performance

Authors: Sokkhey Phauk, Takeo Okazaki

Abstract:

The challenging task in educational institutions is to maximize the high performance of students and minimize the failure rate of poor-performing students. An effective method to leverage this task is to know student learning patterns with highly influencing factors and get an early prediction of student learning outcomes at the timely stage for setting up policies for improvement. Educational data mining (EDM) is an emerging disciplinary field of data mining, statistics, and machine learning concerned with extracting useful knowledge and information for the sake of improvement and development in the education environment. The study is of this work is to propose techniques in EDM and integrate it into a web-based system for predicting poor-performing students. A comparative study of prediction models is conducted. Subsequently, high performing models are developed to get higher performance. The hybrid random forest (Hybrid RF) produces the most successful classification. For the context of intervention and improving the learning outcomes, a feature selection method MICHI, which is the combination of mutual information (MI) and chi-square (CHI) algorithms based on the ranked feature scores, is introduced to select a dominant feature set that improves the performance of prediction and uses the obtained dominant set as information for intervention. By using the proposed techniques of EDM, an academic performance prediction system (APPS) is subsequently developed for educational stockholders to get an early prediction of student learning outcomes for timely intervention. Experimental outcomes and evaluation surveys report the effectiveness and usefulness of the developed system. The system is used to help educational stakeholders and related individuals for intervening and improving student performance.

Keywords: academic performance prediction system, educational data mining, dominant factors, feature selection method, prediction model, student performance

Procedia PDF Downloads 104
6615 Fake news and Conspiracy Narratives in the Covid-19 Crisis: An International Comparison

Authors: Caja Thimm

Abstract:

Already well before the Corona pandemic hit the world, ‘fake news‘ were no longer regarded as harmless twists of the truth but as intentionally composed disinformation, often with the goal of manipulative populist propaganda. During the Corona crisis, particularly conspiracy narratives have become a worldwide phenomenon with dangerous consequences (anti vaccination myths). The success of these manipulated news need s to be counteracted by trustworthy news, which in Europe particularly includes public broadcasting media and their social media channels. To understand better how the main public broadcasters in Germany, the UK, and France used Instagram strategically, a comparative study was carried out. The study – comparative analysis of Instagram during the Corona Crisis In our empirical study, we compared the activities by selected formats during the Corona crisis in order to see how the public broadcasters reached their audiences and how this might, in the longer run, affect journalistic strategies on social media platforms. First analysis showed that the increase in the use of social media overall was striking. Almost one in two adult online users (48 %) obtained information about the virus in social media, and in total, 38% of the younger age group (18-24) looked for Covid19 information on Instagram, so the platform can be regarded as one of the central digital spaces for Corona related information searches. Quantitative measures showed that 47% of recent posts by the broadcasters were related to Corona, and 7% treated conspiracy myths. For the more detailed content analysis, the following categories of analysis were applied: • Digital storytelling and instastories • Textuality and semantic keys • links to information • stickers • videochat • fact checking • news ticker • service • infografics and animated tables Additionally to these basic features, we particularly looked for new formats created during the crisis. Journalistic use of social media platforms opens up immediate and creative ways of applying the media logics of the respective platforms, and particularly the BBC and ARD formats proved to be interactive, responsive, and entertaining. Among them were new formats such as a space for user questions and personal uploads, interviews, music, comedy, etc. Particularly the fact checking channel got a lot of attention, as many user questions were focused on the conspiracy theories, which dominated the public discourse during many weeks in 2020. In the presentation, we will introduce eight particular strategies that show how public broadcasting journalism can adopt digital platforms and use them creatively and, hence help to counteract against conspiracy narratives and fake news.

Keywords: fake news, social media, digital journalism, digital methods

Procedia PDF Downloads 156
6614 The New Face of TV: An Exploratory Study on the Effects of Snapchat on TV Ratings in Kuwait

Authors: Bashaiar Alsanaa

Abstract:

The advent of new forms of media has always led to a change in the way existing media deliver content. No medium has been replaced by another yet over the course of history. Whether this fact changes with the introduction of new age technology and social media remains to be seen. Snapchat may be the first application, to seriously challenge TV. It is perhaps the new face of television. The individualistic nature of Snapchat, whereby users control who, when, and in what order to watch, assesses user freedom from traditional broadcasters’ control. This study aims to fill the void in research conducted around such topic. The research explores how Snapchat maybe slowly but replacing TV. The study surveys users in Kuwait in order to present an overview of the topic. It also draws a framework through which implications and suggestions for future research may be discussed to better serve the advancement of media research.

Keywords: Kuwait, media, Snapchat, television

Procedia PDF Downloads 239