Search results for: space production
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10643

Search results for: space production

9413 S. cerevisiae Strains Co-Cultured with Isochrysis Galbana Create Greater Biomass for Biofuel Production than Nannochloropsis sp.

Authors: Madhalasa Iyer

Abstract:

The increase in sustainable practices have encouraged the research and production of alternative fuels. New techniques of bio flocculation with the addition of yeast and bacteria strains have increased the efficiency of biofuel production. Fatty acid methyl ester (FAME) analysis in previous research has indicated that yeast can serve as a plausible enhancer for microalgal lipid production. The research hopes to identify the yeast and microalgae treatment group that produces the largest algae biomass. The mass of the dried algae is used as a proxy for TAG production correlating to the cultivation of biofuels. The study uses a model bioreactor created and built using PVC pipes, 8-port sprinkler system manifold, CO2 aquarium tank, and disposable water bottles to grow the microalgae. Nannochloropsis sp., and Isochrysis galbanawere inoculated separately in experimental group 1 and 2 with no treatments and in experimental groups 3 and 4 with each algaeco-cultured with Saccharomyces cerevisiae in the medium of standard garden stone fertilizer. S. cerevisiae was grown in a petri dish with nutrient agar medium before inoculation. A Secchi stick was used before extraction to collect data for the optical density of the microalgae. The biomass estimator was then used to measure the approximate production of biomass. The microalgae were grown and extracted with a french press to analyze secondary measurements using the dried biomass. The experimental units of Isochrysis galbana treated with the baker’s yeast strains showed an increase in the overall mass of the dried algae. S. cerevisiae proved to be an accurate and helpful addition to the solution to provide for the growth of algae. The increase in productivity of this fuel source legitimizes the possible replacement of non-renewable sources with more promising renewable alternatives. This research furthers the notion that yeast and mutants can be engineered to be employed in efficient biofuel creation.

Keywords: biofuel, co-culture, S. cerevisiae, microalgae, yeast

Procedia PDF Downloads 97
9412 A Comparative Study of Approaches in User-Centred Health Information Retrieval

Authors: Harsh Thakkar, Ganesh Iyer

Abstract:

In this paper, we survey various user-centered or context-based biomedical health information retrieval systems. We present and discuss the performance of systems submitted in CLEF eHealth 2014 Task 3 for this purpose. We classify and focus on comparing the two most prevalent retrieval models in biomedical information retrieval namely: Language Model (LM) and Vector Space Model (VSM). We also report on the effectiveness of using external medical resources and ontologies like MeSH, Metamap, UMLS, etc. We observed that the LM based retrieval systems outperform VSM based systems on various fronts. From the results we conclude that the state-of-art system scores for MAP was 0.4146, P@10 was 0.7560 and NDCG@10 was 0.7445, respectively. All of these score were reported by systems built on language modeling approaches.

Keywords: clinical document retrieval, concept-based information retrieval, query expansion, language models, vector space models

Procedia PDF Downloads 302
9411 Decomposition of Factors Affecting Farmers Net Income Variation of Potato Crop Production in Bangladesh

Authors: M. Shah Alamgir, Jun Furuya, Shintaro Kobayashi, M. Abdus Salam

Abstract:

Farmers’ environmental and economic situations are very diverse. In order to develop effective policies and technologies to improve farmers’ life standard, it is important to understand which factors induce the diversity of agricultural income. Analyze both primary and secondary data, this study applied descriptive, inferential statistical tools, and econometric techniques. From the study, farmers of Sylhet Division produce potato as one of the main cash crop with other seasonal crops. The total costs of potato production per hectare varied in different districts of Sylhet division in addition seed and hired labor cost has the biggest share of the full cost. To grasp the diversity of income, the study decomposes the variance of net income into different factors of potato production. Through this decomposition, seed cost is the important factors of income variability and it is the most important sector to induce total cost disparity for potato production. The result shows that 73% of net income variation is explained by gross income. It implies that potato yield or potato price (quality) or both vary widely among farmers. This finding is important of policymaking and technology development of agricultural farming in Bangladesh.

Keywords: agricultural income, seed, hired labor, technology development

Procedia PDF Downloads 402
9410 A Study of Effective Stereo Matching Method for Long-Wave Infrared Camera Module

Authors: Hyun-Koo Kim, Yonghun Kim, Yong-Hoon Kim, Ju Hee Lee, Myungho Song

Abstract:

In this paper, we have described an efficient stereo matching method and pedestrian detection method using stereo types LWIR camera. We compared with three types stereo camera algorithm as block matching, ELAS, and SGM. For pedestrian detection using stereo LWIR camera, we used that SGM stereo matching method, free space detection method using u/v-disparity, and HOG feature based pedestrian detection. According to testing result, SGM method has better performance than block matching and ELAS algorithm. Combination of SGM, free space detection, and pedestrian detection using HOG features and SVM classification can detect pedestrian of 30m distance and has a distance error about 30 cm.

Keywords: advanced driver assistance system, pedestrian detection, stereo matching method, stereo long-wave IR camera

Procedia PDF Downloads 385
9409 Action Research into including Sustainability in [Lean] Product Development: Cases from the European Space Sector

Authors: JoãO Paulo Estevam De Souza, Rob Dekkers

Abstract:

Particularly for the space sector the inclusion of sustainability in product development poses considerable challenges for practitioners. Outcomes of action research at two companies in this sector demonstrate how this contemporary theme could be included in methods for product and process development; this was supported by wider focus groups involving more companies. The working together with practitioners brought to the fore that holistic product life-cycle thinking needs further development, especially when firms are suppliers to original equipment manufacturers. Furthermore, the findings indicate that the social aspect of the triple-bottom-line causes remains elusive for companies; to this purpose, some pathways based on the action research and focus groups are proposed.

Keywords: aerospace, action research, product development, product life-cycle, sustainability, triple bottom-line

Procedia PDF Downloads 129
9408 Design of a Recombinant Expression System for Bacterial Cellulose Production

Authors: Gizem Buldum, Alexander Bismarck, Athanasios Mantalaris

Abstract:

Cellulose is the most abundant biopolymer on earth and it is currently being utilised in a multitude of industrial applications. Over the last 30 years, attention has been paid to the bacterial cellulose (BC), since BC exhibits unique physical, chemical and mechanical properties when compared to plant-based cellulose, including high purity and biocompatibility. Although Acetobacter xylinum is the most efficient producer of BC, it’s long doubling time results in insufficient yields of the cellulose production. This limits widespread and continued use of BC. In this study, E. coli BL21 (DE3) or E. coli HMS cells are selected as host organisms for the expression of bacterial cellulose synthase operon (bcs) of A.xylinum. The expression system is created based on pET-Duet1 and pCDF plasmid vectors, which carry bcs operon. The results showed that all bcs genes were successfully transferred and expressed in E.coli strains. The expressions of bcs proteins were shown by SDS and Native page analyses. The functionality of the bcs operon was proved by congo red binding assay. The effect of culturing temperature and the inducer concentration (IPTG) on cell growth and plasmid stability were monitored. The percentage of plasmid harboring cells induced with 0.025 mM IPTG was obtained as 85% at 22˚C in the end of 10-hr culturing period. It was confirmed that the high output cellulose production machinery of A.xylinum can be transferred into other organisms.

Keywords: bacterial cellulose, biopolymer, recombinant expression system, production

Procedia PDF Downloads 378
9407 A Tutorial on Model Predictive Control for Spacecraft Maneuvering Problem with Theory, Experimentation and Applications

Authors: O. B. Iskender, K. V. Ling, V. Dubanchet, L. Simonini

Abstract:

This paper discusses the recent advances and future prospects of spacecraft position and attitude control using Model Predictive Control (MPC). First, the challenges of the space missions are summarized, in particular, taking into account the errors, uncertainties, and constraints imposed by the mission, spacecraft and, onboard processing capabilities. The summary of space mission errors and uncertainties provided in categories; initial condition errors, unmodeled disturbances, sensor, and actuator errors. These previous constraints are classified into two categories: physical and geometric constraints. Last, real-time implementation capability is discussed regarding the required computation time and the impact of sensor and actuator errors based on the Hardware-In-The-Loop (HIL) experiments. The rationales behind the scenarios’ are also presented in the scope of space applications as formation flying, attitude control, rendezvous and docking, rover steering, and precision landing. The objectives of these missions are explained, and the generic constrained MPC problem formulations are summarized. Three key design elements used in MPC design: the prediction model, the constraints formulation and the objective cost function are discussed. The prediction models can be linear time invariant or time varying depending on the geometry of the orbit, whether it is circular or elliptic. The constraints can be given as linear inequalities for input or output constraints, which can be written in the same form. Moreover, the recent convexification techniques for the non-convex geometrical constraints (i.e., plume impingement, Field-of-View (FOV)) are presented in detail. Next, different objectives are provided in a mathematical framework and explained accordingly. Thirdly, because MPC implementation relies on finding in real-time the solution to constrained optimization problems, computational aspects are also examined. In particular, high-speed implementation capabilities and HIL challenges are presented towards representative space avionics. This covers an analysis of future space processors as well as the requirements of sensors and actuators on the HIL experiments outputs. The HIL tests are investigated for kinematic and dynamic tests where robotic arms and floating robots are used respectively. Eventually, the proposed algorithms and experimental setups are introduced and compared with the authors' previous work and future plans. The paper concludes with a conjecture that MPC paradigm is a promising framework at the crossroads of space applications while could be further advanced based on the challenges mentioned throughout the paper and the unaddressed gap.

Keywords: convex optimization, model predictive control, rendezvous and docking, spacecraft autonomy

Procedia PDF Downloads 99
9406 Extraction of Grapefruit Essential Oil from Grapefruit Peels

Authors: Adithya Subramanian, S. Ananthan, T. Prasanth, S. P. Selvabharathi

Abstract:

This project involves extraction of grapefruit essential oil from grapefruit peels using various oils like castor oil, gingelly oil, olive oil as carrier oils. The main aim of this project is to extract the oil which has numerous medicinal uses. The extraction can be performed by two methods. Project involves extraction of the oil with various carrier oil in a view to reduce the cost of production and the physical properties of the extracted oil are examined.

Keywords: essential oil, carrier oil, medicinal uses, cost of production

Procedia PDF Downloads 416
9405 Artificial Intelligence and Governance in Relevance to Satellites in Space

Authors: Anwesha Pathak

Abstract:

With the increasing number of satellites and space debris, space traffic management (STM) becomes crucial. AI can aid in STM by predicting and preventing potential collisions, optimizing satellite trajectories, and managing orbital slots. Governance frameworks need to address the integration of AI algorithms in STM to ensure safe and sustainable satellite activities. AI and governance play significant roles in the context of satellite activities in space. Artificial intelligence (AI) technologies, such as machine learning and computer vision, can be utilized to process vast amounts of data received from satellites. AI algorithms can analyse satellite imagery, detect patterns, and extract valuable information for applications like weather forecasting, urban planning, agriculture, disaster management, and environmental monitoring. AI can assist in automating and optimizing satellite operations. Autonomous decision-making systems can be developed using AI to handle routine tasks like orbit control, collision avoidance, and antenna pointing. These systems can improve efficiency, reduce human error, and enable real-time responsiveness in satellite operations. AI technologies can be leveraged to enhance the security of satellite systems. AI algorithms can analyze satellite telemetry data to detect anomalies, identify potential cyber threats, and mitigate vulnerabilities. Governance frameworks should encompass regulations and standards for securing satellite systems against cyberattacks and ensuring data privacy. AI can optimize resource allocation and utilization in satellite constellations. By analyzing user demands, traffic patterns, and satellite performance data, AI algorithms can dynamically adjust the deployment and routing of satellites to maximize coverage and minimize latency. Governance frameworks need to address fair and efficient resource allocation among satellite operators to avoid monopolistic practices. Satellite activities involve multiple countries and organizations. Governance frameworks should encourage international cooperation, information sharing, and standardization to address common challenges, ensure interoperability, and prevent conflicts. AI can facilitate cross-border collaborations by providing data analytics and decision support tools for shared satellite missions and data sharing initiatives. AI and governance are critical aspects of satellite activities in space. They enable efficient and secure operations, ensure responsible and ethical use of AI technologies, and promote international cooperation for the benefit of all stakeholders involved in the satellite industry.

Keywords: satellite, space debris, traffic, threats, cyber security.

Procedia PDF Downloads 52
9404 Assessing the Effects of Climate Change on Wheat Production, Ensuring Food Security and Loss Compensation under Crop Insurance Program in Punjab-Pakistan

Authors: Mirza Waseem Abbas, Abdul Qayyum, Muhammad Islam

Abstract:

Climate change has emerged as a significant threat to global food security, affecting crop production systems worldwide. This research paper aims to examine the specific impacts of climate change on wheat production in Pakistan, Punjab in particular, a country highly dependent on wheat as a staple food crop. Through a comprehensive review of scientific literature, field observations, and data analysis, this study assesses the key climatic factors influencing wheat cultivation and the subsequent implications for food security in the region. A comparison of two subsequent Wheat seasons in Punjab was examined through climatic conditions, area, yield, and production data. From the analysis, it is observed that despite a decrease in the area under cultivation in the Punjab during the Wheat 2023 season, the production and average yield increased due to favorable weather conditions. These uncertain climatic conditions have a direct impact on crop yields. Last year due to heat waves, Wheat crop in Punjab suffered a significant loss. Through crop insurance, Wheat growers were provided with yield loss protection keeping in view the devastating heat wave and floods last year. Under crop insurance by the Government of the Punjab, 534,587 Wheat growers were insured with a $1.6 million premium subsidy. However, due to better climatic conditions, no loss in the yield was recorded in the insured areas. Crop Insurance is one of the suitable options for policymakers to protect farmers against climatic losses in the future as well.

Keywords: climate change, crop insurance, heatwave, wheat yield punjab

Procedia PDF Downloads 65
9403 Comprehensive Analysis and Optimization of Alkaline Water Electrolysis for Green Hydrogen Production: Experimental Validation, Simulation Study, and Cost Analysis

Authors: Umair Ahmed, Muhammad Bin Irfan

Abstract:

This study focuses on designing and optimization of an alkaline water electrolyser for the production of green hydrogen. The aim is to enhance the durability and efficiency of this technology while simultaneously reducing the cost associated with the production of green hydrogen. The experimental results obtained from the alkaline water electrolyser are compared with simulated results using Aspen Plus software, allowing a comprehensive analysis and evaluation. To achieve the aforementioned goals, several design and operational parameters are investigated. The electrode material, electrolyte concentration, and operating conditions are carefully selected to maximize the efficiency and durability of the electrolyser. Additionally, cost-effective materials and manufacturing techniques are explored to decrease the overall production cost of green hydrogen. The experimental setup includes a carefully designed alkaline water electrolyser, where various performance parameters (such as hydrogen production rate, current density, and voltage) are measured. These experimental results are then compared with simulated data obtained using Aspen Plus software. The simulation model is developed based on fundamental principles and validated against the experimental data. The comparison between experimental and simulated results provides valuable insight into the performance of an alkaline water electrolyser. It helps to identify the areas where improvements can be made, both in terms of design and operation, to enhance the durability and efficiency of the system. Furthermore, the simulation results allow cost analysis providing an estimate of the overall production cost of green hydrogen. This study aims to develop a comprehensive understanding of alkaline water electrolysis technology. The findings of this research can contribute to the development of more efficient and durable electrolyser technology while reducing the cost associated with this technology. Ultimately, these advancements can pave the way for a more sustainable and economically viable hydrogen economy.

Keywords: sustainable development, green energy, green hydrogen, electrolysis technology

Procedia PDF Downloads 62
9402 Q-Efficient Solutions of Vector Optimization via Algebraic Concepts

Authors: Elham Kiyani

Abstract:

In this paper, we first introduce the concept of Q-efficient solutions in a real linear space not necessarily endowed with a topology, where Q is some nonempty (not necessarily convex) set. We also used the scalarization technique including the Gerstewitz function generated by a nonconvex set to characterize these Q-efficient solutions. The algebraic concepts of interior and closure are useful to study optimization problems without topology. Studying nonconvex vector optimization is valuable since topological interior is equal to algebraic interior for a convex cone. So, we use the algebraic concepts of interior and closure to define Q-weak efficient solutions and Q-Henig proper efficient solutions of set-valued optimization problems, where Q is not a convex cone. Optimization problems with set-valued maps have a wide range of applications, so it is expected that there will be a useful analytical tool in optimization theory for set-valued maps. These kind of optimization problems are closely related to stochastic programming, control theory, and economic theory. The paper focus on nonconvex problems, the results are obtained by assuming generalized non-convexity assumptions on the data of the problem. In convex problems, main mathematical tools are convex separation theorems, alternative theorems, and algebraic counterparts of some usual topological concepts, while in nonconvex problems, we need a nonconvex separation function. Thus, we consider the Gerstewitz function generated by a general set in a real linear space and re-examine its properties in the more general setting. A useful approach for solving a vector problem is to reduce it to a scalar problem. In general, scalarization means the replacement of a vector optimization problem by a suitable scalar problem which tends to be an optimization problem with a real valued objective function. The Gerstewitz function is well known and widely used in optimization as the basis of the scalarization. The essential properties of the Gerstewitz function, which are well known in the topological framework, are studied by using algebraic counterparts rather than the topological concepts of interior and closure. Therefore, properties of the Gerstewitz function, when it takes values just in a real linear space are studied, and we use it to characterize Q-efficient solutions of vector problems whose image space is not endowed with any particular topology. Therefore, we deal with a constrained vector optimization problem in a real linear space without assuming any topology, and also Q-weak efficient and Q-proper efficient solutions in the senses of Henig are defined. Moreover, by means of the Gerstewitz function, we provide some necessary and sufficient optimality conditions for set-valued vector optimization problems.

Keywords: algebraic interior, Gerstewitz function, vector closure, vector optimization

Procedia PDF Downloads 199
9401 Oil Revenues Anticipation, Global Entanglements and Indigenous Rights: Negotiating a Potential Resource Curse in Uganda

Authors: Nsubuga Bright Titus

Abstract:

The resource curse is an unavoidable phenomenon among oil producing states in Africa. There is no oil production currently in Uganda although exploration projections set 2020 as the year of initial production. But as the exploration proceeds and Production Sharing Agreements (PSA) are negotiated, so does the anticipation for oil revenues. The Indigenous people of Bunyoro are claiming the right to their indigenous lands through the African Commission on Human and People’s Rights (ACHPR) of the African Union. They urge the commission to investigate the government of Uganda on violations of their human rights. In this paper, oil as a resource curse is examined through the Dutch disease. Regional and global entanglements, as well as the contestation between the indigenous Bunyoro group and the oil industry in Uganda is explored. The paper also demonstrates that oil as a local possibility and national reality has propelled anxiety about oil revenues among various, local actors, State actors, regional and global actors.

Keywords: Entanglements, Extractive resources, Framing, web of relations

Procedia PDF Downloads 90
9400 Crude Oil Electrostatic Mathematical Modelling on an Existing Industrial Plant

Authors: Fatemeh Yazdanmehr, Iulian Nistor

Abstract:

The scope of the current study is the prediction of water separation in a two-stage industrial crude oil desalting plant. This research study was focused on developing a desalting operation in an existing production unit of one Iranian heavy oil field with 75 MBPD capacity. Because of some operational issues, such as oil dehydration at high temperatures, the optimization of the desalter operational parameters was essential. The mathematical desalting is modeled based on the population balance method. The existing operational data is used for tuning and validation of the accuracy of the modeling. The inlet oil temperature to desalter used was decreased from 110°C to 80°C, and the desalted electrical field was increased from 0.75 kv to 2.5 kv. The proposed condition for the desalter also meets the water oil specification. Based on these conditions of desalter, the oil recovery is increased by 574 BBL/D, and the gas flaring decrease by 2.8 MMSCF/D. Depending on the oil price, the additional production of oil can increase the annual income by about $15 MM and reduces greenhouse gas production caused by gas flaring.

Keywords: desalter, demulsification, modelling, water-oil separation, crude oil emulsion

Procedia PDF Downloads 51
9399 Application and Regeneration of CuMnCeO Catalyst Supporting K₂CO₃ Sorbent Adapted to CO Oxidation and CO₂ Absorption

Authors: Jin Lin, Shouxiang Lu, Kim Meow Liew

Abstract:

The requirement for the long-term mission of the submarine and spacecraft has made the removal of CO₂ and trace CO the critical technology to ensure the health and life of the crews. In this work, CuMnCe, a metal oxide catalyst, supporting K₂CO₃ sorbent was prepared by the wet-solid state impregnation method to realize the integrated CO and CO₂ removal, which might also reduce the volume/mass load of the purification units in the limited space. The as-prepared samples with different addition amount of K₂CO₃ were tested using the fixed bed reactor to reveal the CO oxidation and CO₂ absorption behavior. And the regeneration and stability experiments were also conducted. The results showed that the samples realized the catalyst and sorbent integration to capture CO and CO₂ at the same time. The addition amount of the sorbent had a weak influence on the CO oxidation performance. While the addition amount affected the CO₂ sorption efficiency and capacity significantly. Meanwhile, the presence of water vapor could reduce the CO oxidation activity of the samples similarly, whether with K2CO3 sorbent addition or not. Furtherly, regeneration and stability experiment results showed that the samples after 3-5 times regeneration exhibited almost the same performance of CO and CO₂ removal. Summarily, CuMnCe catalyst supporting K₂CO₃ sorbent could be a good attempt to control CO and CO₂ pollutants generated from the daily equipment running and staff breathing in the confined space such as submarine and spacecraft.

Keywords: CO oxidation, CO₂ absorptio, potassium carbonate, CuMnCe metal oxide, confined space

Procedia PDF Downloads 106
9398 Study for Establishing a Concept of Underground Mining in a Folded Deposit with Weathering

Authors: Chandan Pramanik, Bikramjit Chanda

Abstract:

Large metal mines operated with open-cast mining methods must transition to underground mining at the conclusion of the operation; however, this requires a period of a difficult time when production convergence due to interference between the two mining methods. A transition model with collaborative mining operations is presented and established in this work, based on the case of the South Kaliapani Underground Project, to address these technical issues of inadequate production security and other mining challenges during the transition phase and beyond. By integrating the technology of the small-scale Drift and Fill method and Highly productive Sub Level Open Stoping at deep section, this hybrid mining concept tries to eliminate major bottlenecks and offers an optimized production profile with the safe and sustainable operation. Considering every geo-mining aspect, this study offers a genuine and precise technical deliberation for the transition from open pit to underground mining.

Keywords: drift and fill, geo-mining aspect, sublevel open stoping, underground mining method

Procedia PDF Downloads 86
9397 Digital Architectural Practice as a Challenge for Digital Architectural Technology Elements in the Era of Digital Design

Authors: Ling Liyun

Abstract:

In the field of contemporary architecture, complex forms of architectural works continue to emerge in the world, along with some new terminology emerged: digital architecture, parametric design, algorithm generation, building information modeling, CNC construction and so on. Architects gradually mastered the new skills of mathematical logic in the form of exploration, virtual simulation, and the entire design and coordination in the construction process. Digital construction technology has a greater degree in controlling construction, and ensure its accuracy, creating a series of new construction techniques. As a result, the use of digital technology is an improvement and expansion of the practice of digital architecture design revolution. We worked by reading and analyzing information about the digital architecture development process, a large number of cases, as well as architectural design and construction as a whole process. Thus current developments were introduced and discussed in our paper, such as architectural discourse, design theory, digital design models and techniques, material selecting, as well as artificial intelligence space design. Our paper also pays attention to the representative three cases of digital design and construction experiment at great length in detail to expound high-informatization, high-reliability intelligence, and high-technique in constructing a humane space to cope with the rapid development of urbanization. We concluded that the opportunities and challenges of the shift existed in architectural paradigms, such as the cooperation methods, theories, models, technologies and techniques which were currently employed in digital design research and digital praxis. We also find out that the innovative use of space can gradually change the way people learn, talk, and control information. The past two decades, digital technology radically breaks the technology constraints of industrial technical products, digests the publicity on a particular architectural style (era doctrine). People should not adapt to the machine, but in turn, it’s better to make the machine work for users.

Keywords: artificial intelligence, collaboration, digital architecture, digital design theory, material selection, space construction

Procedia PDF Downloads 122
9396 Design and Development of Compact 1KW Floating Battery Discharge Regulator

Authors: A. Sreedevi, G. Anantaramu

Abstract:

The present space research organizations are striving towards the development of lighter, smaller, more efficient, low cost, and highly reliable power supply. Switch mode power supplies (SMPS) overcome the demerits of linear power supplies such as low efficiency, difficulties in thermal management, and in boosting the output voltage. Space applications require a constant DC voltage to supply its load. As the load varies, the battery terminal voltage tends to vary accordingly. To avoid this variation in the load terminal voltage, a DC-DC regulator is required. The conventional regulator for space applications is isolated boost topology. The proposed topology uses an interleaved push-pull converter with a current doubler secondary to reduce the EMI issues and increase efficiency. The proposed topology uses a floating technique where the converter derives power from the battery and generates only the voltage that is required to fill the gap between the bus and the battery voltage. The direct voltage sense and current loop provide tight regulation of output and better stability. Converter is designed with 50 kHz switching frequency using UC 1825 PWM controller employing both voltage and peak current mode control. Experimental tests have been carried out on the converter under different input and load conditions to validate the design. The experimental results showed that the efficiency was greater than 91%. Stability analysis is done using venable stability analyzer.

Keywords: push pull converter, current doubler, converter, PWM control

Procedia PDF Downloads 86
9395 Derivation of Neutrino Mass Parameters from the Study of Neutrinoless Double Beta Decay

Authors: Sabin Stoica

Abstract:

In this paper the theoretical challenges in the study of neutrinoless double beta decay are reviewed. Then, new upper limits of the neutrino mass parameters in the case of three isotopes are derived; 48Ca, 76Ge, and 82Se, assuming two possible mechanisms of occurrence of this nuclear process, namely the exchange of i) light left-handed neutrinos and ii) heavy right-handed neutrinos, between two nucleons inside the nucleus. The derivation is based on accurate calculations of the phase space factors and nuclear matrix elements performed with new high-performance computer codes, which are described in more detail in recent publications. These results are useful both for a better understanding of the scale of neutrino absolute mass and for the planning of future double beta decay experiments.

Keywords: double beta decay, neutrino properties, nuclear matrix elements, phase space factors

Procedia PDF Downloads 587
9394 Development of an Indigenous Motorized Planter for the Sustainable Production of Grain Crops in Nigeria

Authors: Babatunde Oluwamayokun Soyoye

Abstract:

This technology, whose development revolves round culture, tradition, and prevailing needs of the people, is seen as a solution in promoting development in poor rural communities in many parts of Nigeria. The research was based on one of the food security agenda of the Federal Government of Nigeria by developing a motorized multi-grain crop planter suitable for planting operations in tropical soils. The ergonomic design is tailored towards the ease of planting operations for would-be users, improve crop yields and profitability by minimizing the cost of production. Some properties of the grain crops were determined and were used to develop and assemble the locally-made motorized planter. These properties were used in establishing the design criteria of various components of the planter. The geometric mean diameter of the maize, cowpea, groundnut, and soybean were 8.26 mm, 8.72 mm, 9.51 mm and 6.52 mm respectively, with respective groove depths of 8 mm, 7 mm, 9 mm and 6 mm. The results obtained from the evaluation of the planter confirmed that the planter has a uniform discharge and application rates. The field capacity of the planter was determined to be 0.187 ha/h. Also, the average performance efficiency of the planter was 95.5%, with the average discharge and application rates of 7.86 kg/h and 42.1 kg/ha, respectively. The motorized multi-grain planter can be used in increasing food production, reduce time, cost of production, and can become a major tool to fast-track the food security agenda of the government of Nigeria.

Keywords: design and fabrication, food security, grain crop, motorized planter

Procedia PDF Downloads 116
9393 Potential of Grass Silage as a Source of Nutrients in Poultry Production

Authors: Hamim Abbas, Jean Luc-Hornick, Isabelle Dufrasne

Abstract:

Feed costs constitute over 60% of total expenses in organic layer poultry production, with feed protein supply being a significant concern. Alfalfa-based dehydrated silage pellets are mainly diets composed of leaves (ABSP), which are non-conventional protein sources that could enhance profits by reducing feed costs and ensuring consistent availability. This experiment studied the effects on the performances of Novogen Brown light layers of a commercial control diet replaced with 10% ABSP. After a 21-day trial, this diet (ABSP) has improved the laying rate, yolk color of eggs, feed conversion rate, ω−3 (PUFAs) and ω−6/ω−3 ratio (P<0.05) while the body weight and egg weight were degraded with the substitution of the ABSP in the diet(P>0.05). The laying rate showed a tendency to increase (P=0.06). These findings suggest that ABSP can replace at least 10% of the feed in organic layer diets without compromising production parameters negatively.

Keywords: alfalfa, silage, pellet, organic layers

Procedia PDF Downloads 20
9392 Effect of Nanoparticles Concentration, pH and Agitation on Bioethanol Production by Saccharomyces cerevisiae BY4743: An Optimization Study

Authors: Adeyemi Isaac Sanusi, Gueguim E. B. Kana

Abstract:

Nanoparticles have received attention of the scientific community due to their biotechnological potentials. They exhibit advantageous size, shape and concentration-dependent catalytic, stabilizing, immunoassays and immobilization properties. This study investigates the impact of metallic oxide nanoparticles (NPs) on ethanol production by Saccharomyces cerevisiae BY4743. Nine different nanoparticles were synthesized using precipitation method and microwave treatment. The nanoparticles synthesized were characterized by Fourier Transform Infra-Red spectroscopy (FTIR), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Fermentation processes were carried out at varied NPs concentrations (0 – 0.08 wt%). Highest ethanol concentrations were achieved after 24 h using Cobalt NPs (5.07 g/l), Copper NPs (4.86 g/l) and Manganese NPs (4.74 g/l) at 0.01 wt% NPs concentrations, which represent 13%, 8.7% and 5.4% increase respectively over the control (4.47 g/l). The lowest ethanol concentration (0.17 g/l) was obtained when 0.08 wt% of Silver NPs was used. And lower ethanol concentrations were observed at higher NPs concentration. Ethanol concentration decrease after 24 h for all the processes. In all set up with NPs, the pH was observed to be stable and the stability was directly proportional to nanoparticles concentrations. These findings suggest that the presence of some of the NPs in the bioprocesses has catalytic and pH stabilizing potential. Ethanol production by Saccharomyces cerevisiae BY4743 was enhanced in the presence of Cobalt NPs, Copper NPs and Manganese NPs. Optimization study using response surface methodology (RSM) will further elucidate the impact of these nanoparticles on bioethanol production.

Keywords: agitation, bioethanol, nanoparticles concentration, optimization, pH value

Procedia PDF Downloads 169
9391 Nitrogen Fixation, Cytokinin and Exopolysachharide Production by indigenous Azotobacter spp. from East Nusa Tenggara

Authors: Reginawanti Hindersah, Widiya Septiani Perdanawati, Dewi Azizah Sulaksana, Hidiyah Ayu Ma’rufah

Abstract:

Maize in some region in East Nusa Tenggara Indonesia bordering Republic Democratic of Timor Leste is important local food crop and commonly cultivated using conventional method without appropriate plant nutrition system so that productivity is still low. A way to enhance local corn yield is adding biofertilizer containing nitrogen (N2) fixing bacteria such as Azotobacter. The purpose of this research was to determine N2 fixation, cytokinin as well as exopolysachharide production capacity of six indigenous Azotobacter strains in pure culture. The N2 fixation capacities of native 3 day old Azotobacter strains added to Ashby Media varied from 0.01 to 0.39 µM/g/hour. Cytokinin production of these strain in liquid culture of N-free Media was 0.11 to 40.04 ppm while exopolysachharide content in liquid culture of Vermani Media varied from 0.4 to 27.3 g/L. This results demonstrate that some local Azotobacter strains might be used as biofertilizer.

Keywords: azotobacter, local isolate, N fixation, phythohormone, exopolysaccaride

Procedia PDF Downloads 413
9390 Hybrid Reusable Launch Vehicle for Space Application A Naval Approach

Authors: Rajasekar Elangopandian, Anand Shanmugam

Abstract:

In order to reduce the cost of launching satellite and payloads to the orbit this project envisages some immense combined technology. This new technology in space odyssey contains literally four concepts. The first mode in this innovation is flight mission characteristics which, says how the mission will induct. The conventional technique of magnetic levitation will help us to produce the initial thrust. The name states reusable launch vehicle shows its viability of reuseness. The flight consists miniature rocket which produces the required thrust and the two JATO (jet assisted takeoff) boosters which gives the initial boost for the vehicle. The vehicle ostensibly looks like an airplane design and will be located on the super conducting rail track. When the high power electric current given to the rail track, the vehicle starts floating as per the principle of magnetic levitation. If the flight reaches the particular takeoff distance the two boosters gets starts and will give the 48KN thrust each. Obviously it`ll follow the vertical path up to the atmosphere end/start to space. As soon as it gets its speed the two boosters will cutoff. Once it reaches the space the inbuilt spacecraft keep the satellite in the desired orbit. When the work finishes, the apogee motors gives the initial kick to the vehicle to come in to the earth’s atmosphere with 22N thrust and automatically comes to the ground by following the free fall, the help of gravitational force. After the flying region it makes the spiral flight mode then gets landing where the super conducting levitated rail track located. It will catch up the vehicle and keep it by changing the poles of magnets and varying the current. Initial cost for making this vehicle might be high but for the frequent usage this will reduce the launch cost exactly half than the now-a-days technology. The incorporation of such a mechanism gives `hybrid` and the reusability gives `reusable launch vehicle` and ultimately Hybrid reusable launch vehicle.

Keywords: the two JATO (jet assisted takeoff) boosters, magnetic levitation, 48KN thrust each, 22N thrust and automatically comes to the ground

Procedia PDF Downloads 413
9389 Kebbi State University of Science and Technology, Aliero, Kebbi State

Authors: Ugbajah Maryjane

Abstract:

The study examined the production of grass cutter and the constraints in Anambra state, Nigeria. Specifically, it described socio-economic characteristics of the respondents, determinants of net farm income and constraints to grass cutter production. Multistage and random sampling methods were used to select 50 respondents for this study. Primary data were collected by means of structured questionnaire. Non-parametric and parametric statistical tools including frequency percentage mean ranking counts, cost and returns and returns and multiple regression were deployed for data analysis. Majority 84% produce on small scale, 64 % had formal education 68% had 3-4 years of farming experience hence small scaled production were common. The income (returns) on investment was used as index of profitability, gross margin (#5,972,280), net farm income (#5,327,055.2) net return on investment (2.5) and return on investment 3.1. Net farm income was significantly influence by stock size and years of farming experience. Grass cutter farmers production problem would be ameliorated by the expression of extension education awareness campaigns to discourage unhealthy practices such as indiscriminant bush burning, use of toxic chemicals as baits, and provision of credits to the farmers.

Keywords: socio-economic factors, profitability, awareness, toxic chemicals, credits

Procedia PDF Downloads 393
9388 Fermentation of Wood Waste by Treating with H₃PO₄-Acetone for Bioethanol Production

Authors: Deokyeong Choe, Keonwook Nam, Young Hoon Roh

Abstract:

Wood waste is a potentially significant resource for economic and environment-friendly recycling. Wood waste represents a key sustainable source of biomass for transformation into bioethanol. Unfortunately, wood waste is highly recalcitrant for biotransformation, which limits its use and prevents economically viable conversion into bioethanol. As a result, an effective pretreatment is necessary to degrade cellulose of the wood waste, which improves the accessibility of cellulase. In this work, a H₃PO₄-acetone pretreatment was selected among the various pretreatment methods and used to dissolve cellulose and lignin. When the H₃PO₄ and acetone were used, 5–6% of the wood waste was found to be very appropriate for saccharification. Also, when the enzymatic saccharification was conducted in the mixture of the wood waste and 0.05 M citrate buffer solution, glucose and xylose were measured to be 80.2 g/L and 9.2 g/L respectively. Furthermore, ethanol obtained after 70 h of fermentation by S. cerevisiae was 30.4 g/L. As a result, the conversion yield from wood waste to bioethanol was calculated to be 57.4%. These results show that the pretreated wood waste can be used as good feedstocks for bioethanol production and that the H₃PO₄-acetone pretreatment can effectively increase the yield of ethanol production.

Keywords: wood waste, H₃PO₄-acetone, bioethanol, fermentation

Procedia PDF Downloads 556
9387 A Robust Software for Advanced Analysis of Space Steel Frames

Authors: Viet-Hung Truong, Seung-Eock Kim

Abstract:

This paper presents a robust software package for practical advanced analysis of space steel framed structures. The pre- and post-processors of the presented software package are coded in the C++ programming language while the solver is written by using the FORTRAN programming language. A user-friendly graphical interface of the presented software is developed to facilitate the modeling process and result interpretation of the problem. The solver employs the stability functions for capturing the second-order effects to minimize modeling and computational time. Both the plastic-hinge and fiber-hinge beam-column elements are available in the presented software. The generalized displacement control method is adopted to solve the nonlinear equilibrium equations.

Keywords: advanced analysis, beam-column, fiber-hinge, plastic hinge, steel frame

Procedia PDF Downloads 293
9386 Improvement of Energy Consumption toward Sustainable Ceramic Industry in Indonesia

Authors: Sawarni Hasibuan, Rudi Effendi Listyanto

Abstract:

The industrial sector is the largest consumer of energy consumption in Indonesia. The ceramics industry includes one of seven industries categorized as an energy-intensive industry. Energy costs on the ceramic floor production process reached 40 percent of the total production cost. The kiln is one of the machines in the ceramic industry that consumes the most gas energy reach 51 percent of gas consumption in ceramic production. The purpose of this research is to make improvement of energy consumption in kiln machine part with the innovation of burner tube to support the sustainability of Indonesian ceramics industry. The tube burner is technically designed to be able to raise the temperature and stabilize the air pressure in the burner so as to facilitate the combustion process in the kiln machine which implies the efficiency of gas consumption required. The innovation of the burner tube also has an impact on the decrease of the combustion chamber pressure in the kiln and managed to keep the pressure of the combustion chamber according to the operational standard of the kiln; consequently, the smoke fan motor power can be lowered and the kiln electric energy consumption is also more efficient. The innovation of burner tube succeeded in saving consume of gas and electricity respectively by 0.0654 GJ and 1,693 x 10-3 GJ for every ton of ceramics produced. Improvement of this energy consumption not only implies the cost savings of production but also supports the sustainability of the Indonesian ceramics industry.

Keywords: sustainable ceramic industry, burner tube, kiln, energy efficiency

Procedia PDF Downloads 310
9385 Sustainable Energy Production from Microalgae in Queshm Island, Persian Gulf

Authors: N. Moazami, R. Ranjbar, A. Ashori

Abstract:

Out of hundreds of microalgal strains reported, only very few of them are capable for production of high content of lipid. Therefore, the key technical challenges include identifying the strains with the highest growth rates and oil contents with adequate composition, which were the main aims of this work. From 147 microalgae screened for high biomass and oil productivity, the Nannochloropsis sp. PTCC 6016, which attained 52% lipid content, was selected for large scale cultivation in Persian Gulf Knowledge Island. Nannochloropsis strain PTCC 6016 belongs to Eustigmatophyceae (Phylum heterokontophyta) isolated from Mangrove forest area of Qheshm Island and Persian Gulf (Iran) in 2008. The strain PTCC 6016 had an average biomass productivity of 2.83 g/L/day and 52% lipid content. The biomass productivity and the oil production potential could be projected to be more than 200 tons biomass and 100000 L oil per hectare per year, in an outdoor algal culture (300 day/year) in the Persian Gulf climate.

Keywords: biofuels, microalgae, Nannochloropsis, raceway open pond, bio-jet

Procedia PDF Downloads 463
9384 Investigation of the Effects of the Whey Addition on the Biogas Production of a Reactor Using Cattle Manure for Biogas Production

Authors: Behnam Mahdiyan Nasl

Abstract:

In a lab-scale research, the effects of feeding whey into the biogas system and how to solve the probable problems arising were analysed. In the study a semi-continuous glass reactor, having a total capacity of 13 liters and having a working capacity of 10 liters, was placed in an incubator, and the temperature was tried to be held at 38 °C. At first, the reactor was operated by adding 5 liters of animal manure and water with a ratio of 1/1. By passing time, the production rate of the gas reduced intensively that on the fourth day there was no production of gas and the system stopped working. In this condition, the pH was adjusted and by adding NaOH, it was increased from 5.4 to 7. On 48th day, the first gas measurement was done and an amount of 12.07 % of CH₄ was detected. After making buffer in the ambient, the number of bacteria existing in the cattle’s manure and contributing to the gas production was thought to be not adequate, and up to 20 % of its volume 2 liters of mud was added to the reactor. 7 days after adding the anaerobic mud, second gas measurement was carried out, and biogas including 43 % CH₄ was obtained. From the 61st day of the study, the cheese whey with the animal manure was started to be added with an amount of 40 mL per day. However, by passing time, the raising of the microorganisms existed in the whey (especially Ni and Co), the percent of methane in the biogas decreased. In fact, 2 weeks after adding PAS, the gas measurement was done and 36,97 % CH₄ was detected. 0,06 mL Ni-Co (to gain a concentration of 0.05 mg/L in the reactor’s mixture) solution was added to the system for 15 days. To find out the effect of the solution on archaea, 7 days after stopping addition of the solution, methane gas was found to have a 9,03 % increase and reach 46 %. Lastly, the effects of adding molasses to the reactor were investigated. The effects of its activity on the bacteria was analysed by adding 4 grams of it to the system. After adding molasses in 10 days, according to the last measurement, the amount of methane gas reached up to 49%.

Keywords: biogas, cheese whey, cattle manure, energy

Procedia PDF Downloads 315