Search results for: parallel variant
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1465

Search results for: parallel variant

235 Frustration Measure for Dipolar Spin Ice and Spin Glass

Authors: Konstantin Nefedev, Petr Andriushchenko

Abstract:

Usually under the frustrated magnetics, it understands such materials, in which ones the interaction between located magnetic moments or spins has competing character, and can not to be satisfied simultaneously. The most well-known and simplest example of the frustrated system is antiferromagnetic Ising model on the triangle. Physically, the existence of frustrations means, that one cannot select all three pairs of spins anti-parallel in the basic unit of the triangle. In physics of the interacting particle systems, the vector models are used, which are constructed on the base of the pair-interaction law. Each pair interaction energy between one-component vectors can take two opposite in sign values, excluding the case of zero. Mathematically, the existence of frustrations in system means that it is impossible to have all negative energies of pair interactions in the Hamiltonian even in the ground state (lowest energy). In fact, the frustration is the excitation, which leaves in system, when thermodynamics does not work, i.e. at the temperature absolute zero. The origin of the frustration is the presence at least of one ''unsatisfied'' pair of interacted spins (magnetic moments). The minimal relative quantity of these excitations (relative quantity of frustrations in ground state) can be used as parameter of frustration. If the energy of the ground state is Egs, and summary energy of all energy of pair interactions taken with a positive sign is Emax, that proposed frustration parameter pf takes values from the interval [0,1] and it is defined as pf=(Egs+Emax)/2Emax. For antiferromagnetic Ising model on the triangle pf=1/3. We calculated the parameters of frustration in thermodynamic limit for different 2D periodical structures of Ising dipoles, which were on the ribs of the lattice and interact by means of the long-range dipolar interaction. For the honeycomb lattice pf=0.3415, triangular - pf=0.2468, kagome - pf=0.1644. All dependencies of frustration parameter from 1/N obey to the linear law. The given frustration parameter allows to consider the thermodynamics of all magnetic systems from united point of view and to compare the different lattice systems of interacting particle in the frame of vector models. This parameter can be the fundamental characteristic of frustrated systems. It has no dependence from temperature and thermodynamic states, in which ones the system can be found, such as spin ice, spin glass, spin liquid or even spin snow. It shows us the minimal relative quantity of excitations, which ones can exist in system at T=0.

Keywords: frustrations, parameter of order, statistical physics, magnetism

Procedia PDF Downloads 170
234 Prednisone and Its Active Metabolite Prednisolone Attenuate Lipid Accumulation in Macrophages

Authors: H. Jeries, N. Volkova, C. G. Iglesias, M. Najjar, M. Rosenblat, M. Aviram, T. Hayek

Abstract:

Background: Synthetic forms of glucocorticoids (e.g., prednisone, prednisolone) are anti-inflammatory drugs which are widely used in clinical practice. The role of glucocorticoids (GCs) in cardiovascular diseases including atherosclerosis is highly controversial, and their impact on macrophage foam cell formation is still unknown. Our aim was to investigate the effects of prednisone or its active metabolite, prednisolone, on macrophage oxidative stress and lipid metabolism using in-vivo, ex-vivo and in-vitro systems. Methods: The in-vivo study included C57BL/6 mice which were intraperitoneally injected with prednisone or prednisolone (5mg/kg) for 4 weeks, followed by lipid metabolism analyses in the mice aorta, and in peritoneal macrophages (MPM). In the ex-vivo study, we analyzed the effect of serum samples obtained from 9 healthy volunteers before or after treatment with oral prednisone (20mg for 5 days), on J774A.1 macrophage atherogenicity. In-vitro studies were conducted using J774A.1 macrophages, human monocyte derived macrophages (HMDM) and fibroblasts. Cells were incubated with increasing concentrations (0-200 ng/ml) of prednisone or prednisolone, followed by determination of cellular oxidative status, triglyceride and cholesterol metabolism. Results: Prednisone or prednisolone treatment resulted in a significant reduction in triglycerides and mainly in cholesterol cellular accumulation in MPM or in J774A.1 macrophages incubated with human serum. Similar resulted were noted in HMDM or in J774A.1 macrophages which were directly incubated with the GCs. These effects were associated with GCs inhibitory effect on triglycerides and cholesterol biosynthesis rates, throughout downregulation of diacylglycerol acyltransferase1 (DGAT1) expression, and of the sterol regulatory element binding protein (SREBP2) and HMGCR expression, respectively. In parallel to prednisone or prednisolone induced reduction in macrophage triglyceride content, paraoxonase 2 (PON2) expression was significantly upregulated. GCs-induced reduction of cellular triglyceride and cholesterol mass was mediated by the GCs receptors on macrophages since the GCs receptor antagonist (RU 486) abolished these effects. In fibroblasts, unlike macrophages, prednisone or prednisolone showed no anti-atherogenic effects. Conclusions: Prednisone or prednisolone are anti-atherogenic since they protected macrophages from lipid accumulation and foam cell formation.

Keywords: atherosclerosis, cholesterol, foam cell, macrophage, prednisone, prednisolone, triglycerides

Procedia PDF Downloads 146
233 The Maps of Meaning (MoM) Consciousness Theory

Authors: Scott Andersen

Abstract:

Perhaps simply and rather unadornedly, consciousness is having multiple goals for action and the continuously adjudication of such goals to implement action, referred to as the Maps of Meaning (MoM) Consciousness Theory. The MoM theory triangulates through three parallel corollaries, action (behavior), mechanism (morphology/pathophysiology), and goals (teleology). (1) An organism’s consciousness contains a fluid, nested goals. These goals are not intentionality, but intersectionality, embodiment meeting the world. i.e., Darwinian inclusive fitness or randomization, then survival of the fittest. These goals form via gradual descent under inclusive fitness, the goals being the abstraction of a ‘match’ between the evolutionary environment and organism. Human consciousness implements the brain efficiency hypothesis, genetics, epigenetics, and experience crystallize efficiencies, not necessitating best or objective but fitness, i.e., perceived efficiency based on one’s adaptive environment. These efficiencies are objectively arbitrary, but determine the operation and level of one’s consciousness, termed extreme thrownness. Since inclusive fitness drives efficiencies in physiologic mechanism, morphology and behavior (action) and originates one’s goals, embodiment is necessarily entangled to human consciousness as its the intersection of mechanism or action (both necessitating embodiment) occurring in the world that determines fitness. Perception is the operant process of consciousness and is the consciousness’ de facto goal adjudication process. Goal operationalization is fundamentally efficiency-based via one’s unique neuronal mapping as a byproduct of genetics, epigenetics, and experience. Perception involves information intake and information discrimination, equally underpinned by efficiencies of inclusive fitness via extreme thrownness. Perception isn’t a ‘frame rate,’ but Bayesian priors of efficiency based on one’s extreme thrownness. Consciousness and human consciousness is a modular (i.e., a scalar level of richness, which builds up like building blocks) and dimensionalized (i.e., cognitive abilities become possibilities as emergent phenomena at various modularities, like stratified factors in factor analysis). The meta dimensions of human consciousness seemingly include intelligence quotient, personality (five-factor model), richness of perception intake, and richness of perception discrimination, among other potentialities. Future consciousness research should utilize factor analysis to parse modularities and dimensions of human consciousness and animal models.

Keywords: consciousness, perception, prospection, embodiment

Procedia PDF Downloads 62
232 Development of Market Penetration for High Energy Efficiency Technologies in Alberta’s Residential Sector

Authors: Saeidreza Radpour, Md. Alam Mondal, Amit Kumar

Abstract:

Market penetration of high energy efficiency technologies has key impacts on energy consumption and GHG mitigation. Also, it will be useful to manage the policies formulated by public or private organizations to achieve energy or environmental targets. Energy intensity in residential sector of Alberta was 148.8 GJ per household in 2012 which is 39% more than the average of Canada 106.6 GJ, it was the highest amount among the provinces on per household energy consumption. Energy intensity by appliances of Alberta was 15.3 GJ per household in 2012 which is 14% higher than average value of other provinces and territories in energy demand intensity by appliances in Canada. In this research, a framework has been developed to analyze the market penetration and market share of high energy efficiency technologies in residential sector. The overall methodology was based on development of data-intensive models’ estimation of the market penetration of the appliances in the residential sector over a time period. The developed models were a function of a number of macroeconomic and technical parameters. Developed mathematical equations were developed based on twenty-two years of historical data (1990-2011). The models were analyzed through a series of statistical tests. The market shares of high efficiency appliances were estimated based on the related variables such as capital and operating costs, discount rate, appliance’s life time, annual interest rate, incentives and maximum achievable efficiency in the period of 2015 to 2050. Results show that the market penetration of refrigerators is higher than that of other appliances. The stocks of refrigerators per household are anticipated to increase from 1.28 in 2012 to 1.314 and 1.328 in 2030 and 2050, respectively. Modelling results show that the market penetration rate of stand-alone freezers will decrease between 2012 and 2050. Freezer stock per household will decline from 0.634 in 2012 to 0.556 and 0.515 in 2030 and 2050, respectively. The stock of dishwashers per household is expected to increase from 0.761 in 2012 to 0.865 and 0.960 in 2030 and 2050, respectively. The increase in the market penetration rate of clothes washers and clothes dryers is nearly parallel. The stock of clothes washers and clothes dryers per household is expected to rise from 0.893 and 0.979 in 2012 to 0.960 and 1.0 in 2050, respectively. This proposed presentation will include detailed discussion on the modelling methodology and results.

Keywords: appliances efficiency improvement, energy star, market penetration, residential sector

Procedia PDF Downloads 288
231 Metaphysics of the Unified Field of the Universe

Authors: Santosh Kaware, Dnyandeo Patil, Moninder Modgil, Hemant Bhoir, Debendra Behera

Abstract:

The Unified Field Theory has been an area of intensive research since many decades. This paper focuses on philosophy and metaphysics of unified field theory at Planck scale - and its relationship with super string theory and Quantum Vacuum Dynamic Physics. We examined the epistemology of questions such as - (1) what is the Unified Field of universe? (2) can it actually - (a) permeate the complete universe - or (b) be localized in bound regions of the universe - or, (c) extend into the extra dimensions? - -or (d) live only in extra dimensions? (3) What should be the emergent ontological properties of Unified field? (4) How the universe is manifesting through its Quantum Vacuum energies? (5) How is the space time metric coupled to the Unified field? We present a number of ansatz - which we outline below. It is proposed that the unified field possesses consciousness as well as a memory - a recording of past history - analogous to ‘Consistent Histories’ interpretation of quantum mechanics. We proposed Planck scale geometry of Unified Field with circle like topology and having 32 energy points on its periphery which are the connected to each other by 10 dimensional meta-strings which are sources for manifestation of different fundamentals forces and particles of universe through its Quantum Vacuum energies. It is also proposed that the sub energy levels of ‘Conscious Unified Field’ are used for the process of creation, preservation and rejuvenation of the universe over a period of time by means of negentropy. These epochs can be for the complete universe, or for localized regions such as galaxies or cluster of galaxies. It is proposed that Unified field operates through geometric patterns of its Quantum Vacuum energies - manifesting as various elementary particles by giving spins to zero point energy elements. Epistemological relationship between unified field theory and super-string theories is examined. Properties of ‘consciousness’ and 'memory' cascades from universe, into macroscopic objects - and further onto the elementary particles - via a fractal pattern. Other properties of fundamental particles - such as mass, charge, spin, iso-spin also spill out of such a cascade. The manifestations of the unified field can reach into the parallel universes or the ‘multi-verse’ and essentially have an existence independent of the space-time. It is proposed that mass, length, time scales of the unified theory are less than even the Planck scale - and can be called at a level which we call that of 'Super Quantum Gravity (SQG)'.

Keywords: super string theory, Planck scale geometry, negentropy, super quantum gravity

Procedia PDF Downloads 276
230 Creatine Associated with Resistance Training Increases Muscle Mass in the Elderly

Authors: Camila Lemos Pinto, Juliana Alves Carneiro, Patrícia Borges Botelho, João Felipe Mota

Abstract:

Sarcopenia, a syndrome characterized by progressive and generalized loss of skeletal muscle mass and strength, currently affects over 50 million people and increases the risk of adverse outcomes such as physical disability, poor quality of life and death. The aim of this study was to examine the efficacy of creatine supplementation associated with resistance training on muscle mass in the elderly. A 12-week, double blind, randomized, parallel group, placebo controlled trial was conducted. Participants were randomly allocated into one of the following groups: placebo with resistance training (PL+RT, n=14) and creatine supplementation with resistance training (CR + RT, n=13). The subjects from CR+RT group received 5 g/day of creatine monohydrate and the subjects from the PL+RT group were given the same dose of maltodextrin. Participants were instructed to ingest the supplement on non-training days immediately after lunch and on training days immediately after resistance training sessions dissolved in a beverage comprising 100 g of maltodextrin lemon flavored. Participants of both groups undertook a supervised exercise training program for 12 weeks (3 times per week). The subjects were assessed at baseline and after 12 weeks. The primary outcome was muscle mass, assessed by dual energy X-ray absorptiometry (DXA). The secondary outcome included diagnose participants with one of the three stages of sarcopenia (presarcopenia, sarcopenia and severe sarcopenia) by skeletal muscle mass index (SMI), handgrip strength and gait speed. CR+RT group had a significant increase in SMI and muscle (p<0.0001), a significant decrease in android and gynoid fat (p = 0.028 and p=0.035, respectively) and a tendency of decreasing in body fat (p=0.053) after the intervention. PL+RT only had a significant increase in SMI (p=0.007). The main finding of this clinical trial indicated that creatine supplementation combined with resistance training was capable of increasing muscle mass in our elderly cohort (p=0.02). In addition, the number of subjects diagnosed with one of the three stages of sarcopenia at baseline decreased in the creatine supplemented group in comparison with the placebo group (CR+RT, n=-3; PL+RT, n=0). In summary, 12 weeks of creatine supplementation associated with resistance training resulted in increases in muscle mass. This is the first research with elderly of both sexes that show the same increase in muscle mass with a minor quantity of creatine supplementation in a short period. Future long-term research should investigate the effects of these interventions in sarcopenic elderly.

Keywords: creatine, dietetic supplement, elderly, resistance training

Procedia PDF Downloads 474
229 An Experimental Study of Scalar Implicature Processing in Chinese

Authors: Liu Si, Wang Chunmei, Liu Huangmei

Abstract:

A prominent component of the semantic versus pragmatic debate, scalar implicature (SI) has been gaining great attention ever since it was proposed by Horn. The constant debate is between the structural and pragmatic approach. The former claims that generation of SI is costless, automatic, and dependent mostly on the structural properties of sentences, whereas the latter advocates both that such generation is largely dependent upon context, and that the process is costly. Many experiments, among which Katsos’s text comprehension experiments are influential, have been designed and conducted in order to verify their views, but the results are not conclusive. Besides, most of the experiments were conducted in English language materials. Katsos conducted one off-line and three on-line text comprehension experiments, in which the previous shortcomings were addressed on a certain extent and the conclusion was in favor of the pragmatic approach. We intend to test the results of Katsos’s experiment in Chinese scalar implicature. Four experiments in both off-line and on-line conditions to examine the generation and response time of SI in Chinese "yixie" (some) and "quanbu (dou)" (all) will be conducted in order to find out whether the structural or the pragmatic approach could be sustained. The study mainly aims to answer the following questions: (1) Can SI be generated in the upper- and lower-bound contexts as Katsos confirmed when Chinese language materials are used in the experiment? (2) Can SI be first generated, then cancelled as default view claimed or can it not be generated in a neutral context when Chinese language materials are used in the experiment? (3) Is SI generation costless or costly in terms of processing resources? (4) In line with the SI generation process, what conclusion can be made about the cognitive processing model of language meaning? Is it a parallel model or a linear model? Or is it a dynamic and hierarchical model? According to previous theoretical debates and experimental conflicts, presumptions could be made that SI, in Chinese language, might be generated in the upper-bound contexts. Besides, the response time might be faster in upper-bound than that found in lower-bound context. SI generation in neutral context might be the slowest. At last, a conclusion would be made that the processing model of SI could not be verified by either absolute structural or pragmatic approaches. It is, rather, a dynamic and complex processing mechanism, in which the interaction of language forms, ad hoc context, mental context, background knowledge, speakers’ interaction, etc. are involved.

Keywords: cognitive linguistics, pragmatics, scalar implicture, experimental study, Chinese language

Procedia PDF Downloads 363
228 Emoji, the Language of the Future: An Analysis of the Usage and Understanding of Emoji across User-Groups

Authors: Sakshi Bhalla

Abstract:

On the one hand, given their seemingly simplistic, near universal usage and understanding, emoji are discarded as a potential step back in the evolution of communication. On the other, their effectiveness, pervasiveness, and adaptability across and within contexts are undeniable. In this study, the responses of 40 people (categorized by age) were recorded based on a uniform two-part questionnaire where they were required to a) identify the meaning of 15 emoji when placed in isolation, and b) interpret the meaning of the same 15 emoji when placed in a context-defining posting on Twitter. Their responses were studied on the basis of deviation from their responses that identified the emoji in isolation, as well as the originally intended meaning ascribed to the emoji. Based on an analysis of these results, it was discovered that each of the five age categories uses, understands and perceives emoji differently, which could be attributed to the degree of exposure they have undergone. For example, in the case of the youngest category (aged < 20), it was observed that they were the least accurate at correctly identifying emoji in isolation (~55%). Further, their proclivity to change their response with respect to the context was also the least (~31%). However, an analysis of each of their individual responses showed that these first-borns of social media seem to have reached a point where emojis no longer inspire their most literal meanings to them. The meaning and implication of these emoji have evolved to imply their context-derived meanings, even when placed in isolation. These trends carry forward meaningfully for the other four groups as well. In the case of the oldest category (aged > 35), however, the trends indicated inaccuracy and therefore, a higher incidence of a proclivity to change their responses. When studied in a continuum, the responses indicate that slowly and steadily, emoji are evolving from pictograms to ideograms. That is to suggest that they do not just indicate a one-to-one relation between a singular form and singular meaning. In fact, they communicate increasingly complicated ideas. This is much like the evolution of ancient hieroglyphics on papyrus reed or cuneiform on Sumerian clay tablets, which evolved from simple pictograms to progressively more complex ideograms. This evolution within communication is parallel to and contingent on the simultaneous evolution of communication. What’s astounding is the capacity of humans to leverage different platforms to facilitate such changes. Twiterese, as it is now called, is one of the instances where language is adapting to the demands of the digital world. That it does not have a spoken component, an ostensible grammar, and lacks standardization of use and meaning, as some might suggest, may seem like impediments in qualifying it as the 'language' of the digital world. However, that kind of a declarative remains a function of time, and time alone.

Keywords: communication, emoji, language, Twitter

Procedia PDF Downloads 96
227 Storm-Runoff Simulation Approaches for External Natural Catchments of Urban Sewer Systems

Authors: Joachim F. Sartor

Abstract:

According to German guidelines, external natural catchments are greater sub-catchments without significant portions of impervious areas, which possess a surface drainage system and empty in a sewer network. Basically, such catchments should be disconnected from sewer networks, particularly from combined systems. If this is not possible due to local conditions, their flow hydrographs have to be considered at the design of sewer systems, because the impact may be significant. Since there is a lack of sufficient measurements of storm-runoff events for such catchments and hence verified simulation methods to analyze their design flows, German standards give only general advices and demands special considerations in such cases. Compared to urban sub-catchments, external natural catchments exhibit greatly different flow characteristics. With increasing area size their hydrological behavior approximates that of rural catchments, e.g. sub-surface flow may prevail and lag times are comparable long. There are few observed peak flow values and simple (mostly empirical) approaches that are offered by literature for Central Europe. Most of them are at least helpful to crosscheck results that are achieved by simulation lacking calibration. Using storm-runoff data from five monitored rural watersheds in the west of Germany with catchment areas between 0.33 and 1.07 km2 , the author investigated by multiple event simulation three different approaches to determine the rainfall excess. These are the modified SCS variable run-off coefficient methods by Lutz and Zaiß as well as the soil moisture model by Ostrowski. Selection criteria for storm events from continuous precipitation data were taken from recommendations of M 165 and the runoff concentration method (parallel cascades of linear reservoirs) from a DWA working report to which the author had contributed. In general, the two run-off coefficient methods showed results that are of sufficient accuracy for most practical purposes. The soil moisture model showed no significant better results, at least not to such a degree that it would justify the additional data collection that its parameter determination requires. Particularly typical convective summer events after long dry periods, that are often decisive for sewer networks (not so much for rivers), showed discrepancies between simulated and measured flow hydrographs.

Keywords: external natural catchments, sewer network design, storm-runoff modelling, urban drainage

Procedia PDF Downloads 153
226 Identification of Igneous Intrusions in South Zallah Trough-Sirt Basin

Authors: Mohamed A. Saleem

Abstract:

Using mostly seismic data, this study intends to show some examples of igneous intrusions found in some areas of the Sirt Basin and explore the period of their emplacement as well as the interrelationships between these sills. The study area is located in the south of the Zallah Trough, south-west Sirt basin, Libya. It is precisely between the longitudes 18.35ᵒ E and 19.35ᵒ E, and the latitudes 27.8ᵒ N and 28.0ᵒ N. Based on a variety of criteria that are usually used as marks on the igneous intrusions, twelve igneous intrusions (Sills), have been detected and analysed using 3D seismic data. One or more of the following were used as identification criteria: the high amplitude reflectors paired with abrupt reflector terminations, vertical offsets, or what is described as a dike-like connection, the violation, the saucer form, and the roughness. Because of their laying between the hosting layers, the majority of these intrusions are classified as sills. Another distinguishing feature is the intersection geometry link between some of these sills. Every single sill has given a name just to distinguish the sills from each other such as S-1, S-2, and …S-12. To avoid the repetition of description, the common characteristics and some statistics of these sills are shown in summary tables, while the specific characters that are not common and have been noticed for each sill are shown individually. The sills, S-1, S-2, and S-3, are approximately parallel to one other, with the shape of these sills being governed by the syncline structure of their host layers. The faults that dominated the strata (pre-upper Cretaceous strata) have a significant impact on the sills; they caused their discontinuity, while the upper layers have a shape of anticlines. S-1 and S-10 are the group's deepest and highest sills, respectively, with S-1 seated near the basement's top and S-10 extending into the sequence of the upper cretaceous. The dramatic escalation of sill S-4 can be seen in N-S profiles. The majority of the interpreted sills are influenced and impacted by a large number of normal faults that strike in various directions and propagate vertically from the surface to the basement's top. This indicates that the sediment sequences were existed before the sill’s intrusion, were deposited, and that the younger faults occurred more recently. The pre-upper cretaceous unit is the current geological depth for the Sills S-1, S-2 … S-9, while Sills S-10, S-11, and S-12 are hosted by the Cretaceous unit. Over the sills S-1, S-2, and S-3, which are the deepest sills, the pre-upper cretaceous surface has a slightly forced folding, these forced folding is also noticed above the right and left tips of sill S-8 and S-6, respectively, while the absence of these marks on the above sequences of layers supports the idea that the aforementioned sills were emplaced during the early upper cretaceous period.

Keywords: Sirt Basin, Zallah Trough, igneous intrusions, seismic data

Procedia PDF Downloads 113
225 Development of an Integrated Reaction Design for the Enzymatic Production of Lactulose

Authors: Natan C. G. Silva, Carlos A. C. Girao Neto, Marcele M. S. Vasconcelos, Luciana R. B. Goncalves, Maria Valderez P. Rocha

Abstract:

Galactooligosaccharides (GOS) are sugars with prebiotic function that can be synthesized chemically or enzymatically, and this last one can be promoted by the action of β-galactosidases. In addition to favoring the transgalactosylation reaction to form GOS, these enzymes can also catalyze the hydrolysis of lactose. A highly studied type of GOS is lactulose because it presents therapeutic properties and is a health promoter. Among the different raw materials that can be used to produce lactulose, whey stands out as the main by-product of cheese manufacturing, and its discarded is harmful to the environment due to the residual lactose present. Therefore, its use is a promising alternative to solve this environmental problem. Thus, lactose from whey is hydrolyzed into glucose and galactose by β-galactosidases. However, in order to favor the transgalactosylation reaction, the medium must contain fructose, due this sugar reacts with galactose to produce lactulose. Then, the glucose-isomerase enzyme can be used for this purpose, since it promotes the isomerization of glucose into fructose. In this scenario, the aim of the present work was first to develop β-galactosidase biocatalysts of Kluyveromyces lactis and to apply it in the integrated reactions of hydrolysis, isomerization (with the glucose-isomerase from Streptomyces murinus) and transgalactosylation reaction, using whey as a substrate. The immobilization of β-galactosidase in chitosan previously functionalized with 0.8% glutaraldehyde was evaluated using different enzymatic loads (2, 5, 7, 10, and 12 mg/g). Subsequently, the hydrolysis and transgalactosylation reactions were studied and conducted at 50°C, 120 RPM for 20 minutes. In parallel, the isomerization of glucose into fructose was evaluated under conditions of 70°C, 750 RPM for 90 min. After, the integration of the three processes for the production of lactulose was investigated. Among the evaluated loads, 7 mg/g was chosen because the best activity of the derivative (44.3 U/g) was obtained, being this parameter determinant for the reaction stages. The other parameters of immobilization yield (87.58%) and recovered activity (46.47%) were also satisfactory compared to the other conditions. Regarding the integrated process, 94.96% of lactose was converted, achieving 37.56 g/L and 37.97 g/L of glucose and galactose, respectively. In the isomerization step, conversion of 38.40% of glucose was observed, obtaining a concentration of 12.47 g/L fructose. In the transgalactosylation reaction was produced 13.15 g/L lactulose after 5 min. However, in the integrated process, there was no formation of lactulose, but it was produced other GOS at the same time. The high galactose concentration in the medium probably favored the reaction of synthesis of these other GOS. Therefore, the integrated process proved feasible for possible production of prebiotics. In addition, this process can be economically viable due to the use of an industrial residue as a substrate, but it is necessary a more detailed investigation of the transgalactosilation reaction.

Keywords: beta-galactosidase, glucose-isomerase, galactooligosaccharides, lactulose, whey

Procedia PDF Downloads 142
224 Genomic Prediction Reliability Using Haplotypes Defined by Different Methods

Authors: Sohyoung Won, Heebal Kim, Dajeong Lim

Abstract:

Genomic prediction is an effective way to measure the abilities of livestock for breeding based on genomic estimated breeding values, statistically predicted values from genotype data using best linear unbiased prediction (BLUP). Using haplotypes, clusters of linked single nucleotide polymorphisms (SNPs), as markers instead of individual SNPs can improve the reliability of genomic prediction since the probability of a quantitative trait loci to be in strong linkage disequilibrium (LD) with markers is higher. To efficiently use haplotypes in genomic prediction, finding optimal ways to define haplotypes is needed. In this study, 770K SNP chip data was collected from Hanwoo (Korean cattle) population consisted of 2506 cattle. Haplotypes were first defined in three different ways using 770K SNP chip data: haplotypes were defined based on 1) length of haplotypes (bp), 2) the number of SNPs, and 3) k-medoids clustering by LD. To compare the methods in parallel, haplotypes defined by all methods were set to have comparable sizes; in each method, haplotypes defined to have an average number of 5, 10, 20 or 50 SNPs were tested respectively. A modified GBLUP method using haplotype alleles as predictor variables was implemented for testing the prediction reliability of each haplotype set. Also, conventional genomic BLUP (GBLUP) method, which uses individual SNPs were tested to evaluate the performance of the haplotype sets on genomic prediction. Carcass weight was used as the phenotype for testing. As a result, using haplotypes defined by all three methods showed increased reliability compared to conventional GBLUP. There were not many differences in the reliability between different haplotype defining methods. The reliability of genomic prediction was highest when the average number of SNPs per haplotype was 20 in all three methods, implying that haplotypes including around 20 SNPs can be optimal to use as markers for genomic prediction. When the number of alleles generated by each haplotype defining methods was compared, clustering by LD generated the least number of alleles. Using haplotype alleles for genomic prediction showed better performance, suggesting improved accuracy in genomic selection. The number of predictor variables was decreased when the LD-based method was used while all three haplotype defining methods showed similar performances. This suggests that defining haplotypes based on LD can reduce computational costs and allows efficient prediction. Finding optimal ways to define haplotypes and using the haplotype alleles as markers can provide improved performance and efficiency in genomic prediction.

Keywords: best linear unbiased predictor, genomic prediction, haplotype, linkage disequilibrium

Procedia PDF Downloads 141
223 Factory Communication System for Customer-Based Production Execution: An Empirical Study on the Manufacturing System Entropy

Authors: Nyashadzashe Chiraga, Anthony Walker, Glen Bright

Abstract:

The manufacturing industry is currently experiencing a paradigm shift into the Fourth Industrial Revolution in which customers are increasingly at the epicentre of production. The high degree of production customization and personalization requires a flexible manufacturing system that will rapidly respond to the dynamic and volatile changes driven by the market. They are a gap in technology that allows for the optimal flow of information and optimal manufacturing operations on the shop floor regardless of the rapid changes in the fixture and part demands. Information is the reduction of uncertainty; it gives meaning and context on the state of each cell. The amount of information needed to describe cellular manufacturing systems is investigated by two measures: the structural entropy and the operational entropy. Structural entropy is the expected amount of information needed to describe scheduled states of a manufacturing system. While operational entropy is the amount of information that describes the scheduled states of a manufacturing system, which occur during the actual manufacturing operation. Using Anylogic simulator a typical manufacturing job shop was set-up with a cellular manufacturing configuration. The cellular make-up of the configuration included; a Material handling cell, 3D Printer cell, Assembly cell, manufacturing cell and Quality control cell. The factory shop provides manufactured parts to a number of clients, and there are substantial variations in the part configurations, new part designs are continually being introduced to the system. Based on the normal expected production schedule, the schedule adherence was calculated from the structural entropy and operation entropy of varying the amounts of information communicated in simulated runs. The structural entropy denotes a system that is in control; the necessary real-time information is readily available to the decision maker at any point in time. For contractive analysis, different out of control scenarios were run, in which changes in the manufacturing environment were not effectively communicated resulting in deviations in the original predetermined schedule. The operational entropy was calculated from the actual operations. From the results obtained in the empirical study, it was seen that increasing, the efficiency of a factory communication system increases the degree of adherence of a job to the expected schedule. The performance of downstream production flow fed from the parallel upstream flow of information on the factory state was increased.

Keywords: information entropy, communication in manufacturing, mass customisation, scheduling

Procedia PDF Downloads 247
222 Rapid Fetal MRI Using SSFSE, FIESTA and FSPGR Techniques

Authors: Chen-Chang Lee, Po-Chou Chen, Jo-Chi Jao, Chun-Chung Lui, Leung-Chit Tsang, Lain-Chyr Hwang

Abstract:

Fetal Magnetic Resonance Imaging (MRI) is a challenge task because the fetal movements could cause motion artifact in MR images. The remedy to overcome this problem is to use fast scanning pulse sequences. The Single-Shot Fast Spin-Echo (SSFSE) T2-weighted imaging technique is routinely performed and often used as a gold standard in clinical examinations. Fast spoiled gradient-echo (FSPGR) T1-Weighted Imaging (T1WI) is often used to identify fat, calcification and hemorrhage. Fast Imaging Employing Steady-State Acquisition (FIESTA) is commonly used to identify fetal structures as well as the heart and vessels. The contrast of FIESTA image is related to T1/T2 and is different from that of SSFSE. The advantages and disadvantages of these two scanning sequences for fetal imaging have not been clearly demonstrated yet. This study aimed to compare these three rapid MRI techniques (SSFSE, FIESTA, and FSPGR) for fetal MRI examinations. The image qualities and influencing factors among these three techniques were explored. A 1.5T GE Discovery 450 clinical MR scanner with an eight-channel high-resolution abdominal coil was used in this study. Twenty-five pregnant women were recruited to enroll fetal MRI examination with SSFSE, FIESTA and FSPGR scanning. Multi-oriented and multi-slice images were acquired. Afterwards, MR images were interpreted and scored by two senior radiologists. The results showed that both SSFSE and T2W-FIESTA can provide good image quality among these three rapid imaging techniques. Vessel signals on FIESTA images are higher than those on SSFSE images. The Specific Absorption Rate (SAR) of FIESTA is lower than that of the others two techniques, but it is prone to cause banding artifacts. FSPGR-T1WI renders lower Signal-to-Noise Ratio (SNR) because it severely suffers from the impact of maternal and fetal movements. The scan times for these three scanning sequences were 25 sec (T2W-SSFSE), 20 sec (FIESTA) and 18 sec (FSPGR). In conclusion, all these three rapid MR scanning sequences can produce high contrast and high spatial resolution images. The scan time can be shortened by incorporating parallel imaging techniques so that the motion artifacts caused by fetal movements can be reduced. Having good understanding of the characteristics of these three rapid MRI techniques is helpful for technologists to obtain reproducible fetal anatomy images with high quality for prenatal diagnosis.

Keywords: fetal MRI, FIESTA, FSPGR, motion artifact, SSFSE

Procedia PDF Downloads 531
221 The Geometrical Cosmology: The Projective Cast of the Collective Subjectivity of the Chinese Traditional Architectural Drawings

Authors: Lina Sun

Abstract:

Chinese traditional drawings related to buildings and construction apply a unique geometry differentiating with western Euclidean geometry and embrace a collection of special terminologies, under the category of tu (the Chinese character for drawing). This paper will on one side etymologically analysis the terminologies of Chinese traditional architectural drawing, and on the other side geometrically deconstruct the composition of tu and locate the visual narrative language of tu in the pictorial tradition. The geometrical analysis will center on selected series of Yang-shi-lei tu of the construction of emperors’ mausoleums in Qing Dynasty (1636-1912), and will also draw out the earlier architectural drawings and the architectural paintings such as the jiehua, and paintings on religious frescoes and tomb frescoes as the comparison. By doing these, this research will reveal that both the terminologies corresponding to different geometrical forms respectively indicate associations between architectural drawing and the philosophy of Chinese cosmology, and the arrangement of the geometrical forms in the visual picture plane facilitates expressions of the concepts of space and position in the geometrical cosmology. These associations and expressions are the collective intentions of architectural drawing evolving in the thousands of years’ tradition without breakage and irrelevant to the individual authorship. Moreover, the architectural tu itself as an entity, not only functions as the representation of the buildings but also express intentions and strengthen them by using the Chinese unique geometrical language flexibly and intentionally. These collective cosmological spatial intentions and the corresponding geometrical words and languages reveal that the Chinese traditional architectural drawing functions as a unique architectural site with subjectivity which exists parallel with buildings and express intentions and meanings by itself. The methodology and the findings of this research will, therefore, challenge the previous researches which treat architectural drawings just as the representation of buildings and understand the drawings more than just using them as the evidence to reconstruct the information of buildings. Furthermore, this research will situate architectural drawing in between the researches of Chinese technological tu and artistic painting, bridging the two academic areas which usually treated the partial features of architectural drawing separately. Beyond this research, the collective subjectivity of the Chinese traditional drawings will facilitate the revealing of the transitional experience from traditions to drawing modernity, where the individual subjective identities and intentions of architects arise. This research will root for the understanding both the ambivalence and affinity of the drawing modernity encountering the traditions.

Keywords: Chinese traditional architectural drawing (tu), etymology of tu, collective subjectivity of tu, geometrical cosmology in tu, geometry and composition of tu, Yang-shi-lei tu

Procedia PDF Downloads 123
220 Quantum Graph Approach for Energy and Information Transfer through Networks of Cables

Authors: Mubarack Ahmed, Gabriele Gradoni, Stephen C. Creagh, Gregor Tanner

Abstract:

High-frequency cables commonly connect modern devices and sensors. Interestingly, the proportion of electric components is rising fast in an attempt to achieve lighter and greener devices. Modelling the propagation of signals through these cable networks in the presence of parameter uncertainty is a daunting task. In this work, we study the response of high-frequency cable networks using both Transmission Line and Quantum Graph (QG) theories. We have successfully compared the two theories in terms of reflection spectra using measurements on real, lossy cables. We have derived a generalisation of the vertex scattering matrix to include non-uniform networks – networks of cables with different characteristic impedances and propagation constants. The QG model implicitly takes into account the pseudo-chaotic behavior, at the vertices, of the propagating electric signal. We have successfully compared the asymptotic growth of eigenvalues of the Laplacian with the predictions of Weyl law. We investigate the nearest-neighbour level-spacing distribution of the resonances and compare our results with the predictions of Random Matrix Theory (RMT). To achieve this, we will compare our graphs with the generalisation of Wigner distribution for open systems. The problem of scattering from networks of cables can also provide an analogue model for wireless communication in highly reverberant environments. In this context, we provide a preliminary analysis of the statistics of communication capacity for communication across cable networks, whose eventual aim is to enable detailed laboratory testing of information transfer rates using software defined radio. We specialise this analysis in particular for the case of MIMO (Multiple-Input Multiple-Output) protocols. We have successfully validated our QG model with both TL model and laboratory measurements. The growth of Eigenvalues compares well with Weyl’s law and the level-spacing distribution agrees so well RMT predictions. The results we achieved in the MIMO application compares favourably with the prediction of a parallel on-going research (sponsored by NEMF21.)

Keywords: eigenvalues, multiple-input multiple-output, quantum graph, random matrix theory, transmission line

Procedia PDF Downloads 174
219 Multi-Agent Searching Adaptation Using Levy Flight and Inferential Reasoning

Authors: Sagir M. Yusuf, Chris Baber

Abstract:

In this paper, we describe how to achieve knowledge understanding and prediction (Situation Awareness (SA)) for multiple-agents conducting searching activity using Bayesian inferential reasoning and learning. Bayesian Belief Network was used to monitor agents' knowledge about their environment, and cases are recorded for the network training using expectation-maximisation or gradient descent algorithm. The well trained network will be used for decision making and environmental situation prediction. Forest fire searching by multiple UAVs was the use case. UAVs are tasked to explore a forest and find a fire for urgent actions by the fire wardens. The paper focused on two problems: (i) effective agents’ path planning strategy and (ii) knowledge understanding and prediction (SA). The path planning problem by inspiring animal mode of foraging using Lévy distribution augmented with Bayesian reasoning was fully described in this paper. Results proof that the Lévy flight strategy performs better than the previous fixed-pattern (e.g., parallel sweeps) approaches in terms of energy and time utilisation. We also introduced a waypoint assessment strategy called k-previous waypoints assessment. It improves the performance of the ordinary levy flight by saving agent’s resources and mission time through redundant search avoidance. The agents (UAVs) are to report their mission knowledge at the central server for interpretation and prediction purposes. Bayesian reasoning and learning were used for the SA and results proof effectiveness in different environments scenario in terms of prediction and effective knowledge representation. The prediction accuracy was measured using learning error rate, logarithm loss, and Brier score and the result proves that little agents mission that can be used for prediction within the same or different environment. Finally, we described a situation-based knowledge visualization and prediction technique for heterogeneous multi-UAV mission. While this paper proves linkage of Bayesian reasoning and learning with SA and effective searching strategy, future works is focusing on simplifying the architecture.

Keywords: Levy flight, distributed constraint optimization problem, multi-agent system, multi-robot coordination, autonomous system, swarm intelligence

Procedia PDF Downloads 144
218 Experimental Study on Heat and Mass Transfer of Humidifier for Fuel Cell

Authors: You-Kai Jhang, Yang-Cheng Lu

Abstract:

Major contributions of this study are threefold: designing a new model of planar-membrane humidifier for Proton Exchange Membrane Fuel Cell (PEMFC), an index to measure the Effectiveness (εT) of that humidifier, and an air compressor system to replicate related planar-membrane humidifier experiments. PEMFC as a kind of renewable energy has become more and more important in recent years due to its reliability and durability. To maintain the efficiency of the fuel cell, the membrane of PEMFC need to be controlled in a good hydration condition. How to maintain proper membrane humidity is one of the key issues to optimize PEMFC. We developed new humidifier to recycle water vapor from cathode air outlet so as to keep the moisture content of cathode air inlet in a PEMFC. By measuring parameters such as dry side air outlet dew point temperature, dry side air inlet temperature and humidity, wet side air inlet temperature and humidity, and differential pressure between dry side and wet side, we calculated indices obtained by dew point approach temperature (DPAT), water flux (J), water recovery ratio (WRR), effectiveness (εT), and differential pressure (ΔP). We discussed six topics including sealing effect, flow rate effect, flow direction effect, channel effect, temperature effect, and humidity effect by using these indices. Gas cylinders are used as sources of air supply in many studies of humidifiers. Gas cylinder depletes quickly during experiment at 1kW air flow rate, and it causes replication difficult. In order to ensure high stable air quality and better replication of experimental data, this study designs an air supply system to overcome this difficulty. The experimental result shows that the best rate of pressure loss of humidifier is 0.133×10³ Pa(g)/min at the torque of 25 (N.m). The best humidifier performance ranges from 30-40 (LPM) of air flow rates. The counter flow configured humidifies moisturizes the dry side inlet air more effectively than the parallel flow humidifier. From the performance measurements of the channel plates various rib widths studied in this study, it is found that the narrower the rib width is, the more the performance of humidifier improves. Raising channel width in same hydraulic diameter (Dh ) will obtain higher εT and lower ΔP. Moreover, increasing the dry side air inlet temperature or humidity will lead to lower εT. In addition, when the dry side air inlet temperature exceeds 50°C, the effect becomes even more obvious.

Keywords: PEM fuel cell, water management, membrane humidifier, heat and mass transfer, humidifier performance

Procedia PDF Downloads 176
217 CFD Modeling of Stripper Ash Cooler of Circulating Fluidized Bed

Authors: Ravi Inder Singh

Abstract:

Due to high heat transfer rate, high carbon utilizing efficiency, fuel flexibilities and other advantages numerous circulating fluidized bed boilers have grown up in India in last decade. Many companies like BHEL, ISGEC, Thermax, Cethar Limited, Enmas GB Power Systems Projects Limited are making CFBC and installing the units throughout the India. Due to complexity many problems exists in CFBC units and only few have been reported. Agglomeration i.e clinker formation in riser, loop seal leg and stripper ash coolers is one of problem industry is facing. Proper documentation is rarely found in the literature. Circulating fluidized bed (CFB) boiler bottom ash contains large amounts of physical heat. While the boiler combusts the low-calorie fuel, the ash content is normally more than 40% and the physical heat loss is approximately 3% if the bottom ash is discharged without cooling. In addition, the red-hot bottom ash is bad for mechanized handling and transportation, as the upper limit temperature of the ash handling machinery is 200 °C. Therefore, a bottom ash cooler (BAC) is often used to treat the high temperature bottom ash to reclaim heat, and to have the ash easily handled and transported. As a key auxiliary device of CFB boilers, the BAC has a direct influence on the secure and economic operation of the boiler. There are many kinds of BACs equipped for large-scale CFB boilers with the continuous development and improvement of the CFB boiler. These ash coolers are water cooled ash cooling screw, rolling-cylinder ash cooler (RAC), fluidized bed ash cooler (FBAC).In this study prototype of a novel stripper ash cooler is studied. The Circulating Fluidized bed Ash Coolers (CFBAC) combined the major technical features of spouted bed and bubbling bed, and could achieve the selective discharge on the bottom ash. The novel stripper ash cooler is bubbling bed and it is visible cold test rig. The reason for choosing cold test is that high temperature is difficult to maintain and create in laboratory level. The aim of study to know the flow pattern inside the stripper ash cooler. The cold rig prototype is similar to stripper ash cooler used industry and it was made after scaling down to some parameter. The performance of a fluidized bed ash cooler is studied using a cold experiment bench. The air flow rate, particle size of the solids and air distributor type are considered to be the key parameters of the operation of a fluidized bed ash cooler (FBAC) are studied in this.

Keywords: CFD, Eulerian-Eulerian, Eulerian-Lagraingian model, parallel simulations

Procedia PDF Downloads 512
216 Transformative Measures in Chemical and Petrochemical Industry Through Agile Principles and Industry 4.0 Technologies

Authors: Bahman Ghorashi

Abstract:

The immense awareness of the global climate change has compelled traditional fossil fuel companies to develop strategies to reduce their carbon footprint and simultaneously consider the production of various sources of clean energy in order to mitigate the environmental impact of their operations. Similarly, supply chain issues, the scarcity of certain raw materials, energy costs as well as market needs, and changing consumer expectations have forced the traditional chemical industry to reexamine their time-honored modes of operation. This study examines how such transformative change might occur through the applications of agile principles as well as industry 4.0 technologies. Clearly, such a transformation is complex, costly, and requires a total commitment on the part of the top leadership and the entire management structure. Factors that need to be considered include organizational speed of change, a restructuring that would lend itself toward collaboration and the selling of solutions to customers’ problems, rather than just products, integrating ‘along’ as well as ‘across’ value chains, mastering change and uncertainty as well as a recognition of the importance of concept-to-cash time, i.e., the velocity of introducing new products to market, and the leveraging of people and information. At the same time, parallel to implementing such major shifts in the ethos, and the fabric of the organization, the change leaders should remain mindful of the companies’ DNA while incorporating the necessary DNA defying shifts. Furthermore, such strategic maneuvers should inevitably incorporate the managing of the upstream and downstream operations, harnessing future opportunities, preparing and training the workforce, implementing faster decision making and quick adaptation to change, managing accelerated response times, as well as forming autonomous and cross-functional teams. Moreover, the leaders should establish the balance between high-value solutions versus high-margin products, fully implement digitization of operations and, when appropriate, incorporate the latest relevant technologies, such as: AI, IIoT, ML, and immersive technologies. This study presents a summary of the agile principles and the relevant technologies and draws lessons from some of the best practices that are already implemented within the chemical industry in order to establish a roadmap to agility. Finally, the critical role of educational institutions in preparing the future workforce for Industry 4.0 is addressed.

Keywords: agile principles, immersive technologies, industry 4.0, workforce preparation

Procedia PDF Downloads 106
215 The Emergence of Memory at the Nanoscale

Authors: Victor Lopez-Richard, Rafael Schio Wengenroth Silva, Fabian Hartmann

Abstract:

Memcomputing is a computational paradigm that combines information processing and storage on the same physical platform. Key elements for this topic are devices with an inherent memory, such as memristors, memcapacitors, and meminductors. Despite the widespread emergence of memory effects in various solid systems, a clear understanding of the basic microscopic mechanisms that trigger them is still a puzzling task. We report basic ingredients of the theory of solid-state transport, intrinsic to a wide range of mechanisms, as sufficient conditions for a memristive response that points to the natural emergence of memory. This emergence should be discernible under an adequate set of driving inputs, as highlighted by our theoretical prediction and general common trends can be thus listed that become a rule and not the exception, with contrasting signatures according to symmetry constraints, either built-in or induced by external factors at the microscopic level. Explicit analytical figures of merit for the memory modulation of the conductance are presented, unveiling very concise and accessible correlations between general intrinsic microscopic parameters such as relaxation times, activation energies, and efficiencies (encountered throughout various fields in Physics) with external drives: voltage pulses, temperature, illumination, etc. These building blocks of memory can be extended to a vast universe of materials and devices, with combinations of parallel and independent transport channels, providing an efficient and unified physical explanation for a wide class of resistive memory devices that have emerged in recent years. Its simplicity and practicality have also allowed a direct correlation with reported experimental observations with the potential of pointing out the optimal driving configurations. The main methodological tools used to combine three quantum transport approaches, Drude-like model, Landauer-Buttiker formalism, and field-effect transistor emulators, with the microscopic characterization of nonequilibrium dynamics. Both qualitative and quantitative agreements with available experimental responses are provided for validating the main hypothesis. This analysis also shades light on the basic universality of complex natural impedances of systems out of equilibrium and might help pave the way for new trends in the area of memory formation as well as in its technological applications.

Keywords: memories, memdevices, memristors, nonequilibrium states

Procedia PDF Downloads 99
214 Sub-Optimum Safety Performance of a Construction Project: A Multilevel Exploration

Authors: Tas Yong Koh, Steve Rowlinson, Yuzhong Shen

Abstract:

In construction safety management, safety climate has long been linked to workers' safety behaviors and performance. For this reason, safety climate concept and tools have been used as heuristics to diagnose a range of safety-related issues by some progressive contractors in Hong Kong and elsewhere. However, as a diagnostic tool, safety climate tends to treat the different components of the climate construct in a linear fashion. Safety management in construction projects, in reality, is a multi-faceted and multilevel phenomenon that resembles a complex system. Hence, understanding safety management in construction projects requires not only the understanding of safety climate but also the organizational-systemic nature of the phenomenon. Our involvement, diagnoses, and interpretations of a range of safety climate-related issues which culminated in the project’s sub-optimum safety performance in an infrastructure construction project have brought about such revelation. In this study, a range of data types had been collected from various hierarchies of the project site organization. These include the frontline workers and supervisors from the main and sub-contractors, and the client supervisory personnel. Data collection was performed through the administration of safety climate questionnaire, interviews, observation, and document study. The findings collectively indicate that what had emerged in parallel of the seemingly linear climate-based exploration is the exposition of the organization-systemic nature of the phenomenon. The results indicate the negative impacts of climate perceptions mismatch, insufficient work planning, and risk management, mixed safety leadership, workforce negative attributes, lapsed safety enforcement and resources shortages collectively give rise to the project sub-optimum safety performance. From the dynamic causation and multilevel perspective, the analyses show that the individual, group, and organizational levels issues are interrelated and these interrelationships are linked to negative safety climate. Hence the adoption of both perspectives has enabled a fuller understanding of the phenomenon of safety management that point to the need for an organizational-systemic intervention strategy. The core message points to the fact that intervention at an individual level will only meet with limited success if the risks embedded in the higher levels in group and project organization are not addressed. The findings can be used to guide the effective development of safety infrastructure by linking different levels of systems in a construction project organization.

Keywords: construction safety management, dynamic causation, multilevel analysis, safety climate

Procedia PDF Downloads 176
213 Comics as an Intermediary for Media Literacy Education

Authors: Ryan C. Zlomek

Abstract:

The value of using comics in the literacy classroom has been explored since the 1930s. At that point in time researchers had begun to implement comics into daily lesson plans and, in some instances, had started the development process for comics-supported curriculum. In the mid-1950s, this type of research was cut short due to the work of psychiatrist Frederic Wertham whose research seemingly discovered a correlation between comic readership and juvenile delinquency. Since Wertham’s allegations the comics medium has had a hard time finding its way back to education. Now, over fifty years later, the definition of literacy is in mid-transition as the world has become more visually-oriented and students require the ability to interpret images as often as words. Through this transition, comics has found a place in the field of literacy education research as the shift focuses from traditional print to multimodal and media literacies. Comics are now believed to be an effective resource in bridging the gap between these different types of literacies. This paper seeks to better understand what students learn from the process of reading comics and how those skills line up with the core principles of media literacy education in the United States. In the first section, comics are defined to determine the exact medium that is being examined. The different conventions that the medium utilizes are also discussed. In the second section, the comics reading process is explored through a dissection of the ways a reader interacts with the page, panel, gutter, and different comic conventions found within a traditional graphic narrative. The concepts of intersubjective acts and visualization are attributed to the comics reading process as readers draw in real world knowledge to decode meaning. In the next section, the learning processes that comics encourage are explored parallel to the core principles of media literacy education. Each principle is explained and the extent to which comics can act as an intermediary for this type of education is theorized. In the final section, the author examines comics use in his computer science and technology classroom. He lays out different theories he utilizes from Scott McCloud’s text Understanding Comics and how he uses them to break down media literacy strategies with his students. The article concludes with examples of how comics has positively impacted classrooms around the United States. It is stated that integrating comics into the classroom will not solve all issues related to literacy education but, rather, that comics can be a powerful multimodal resource for educators looking for new mediums to explore with their students.

Keywords: comics, graphics novels, mass communication, media literacy, metacognition

Procedia PDF Downloads 300
212 Enhancement Effect of Superparamagnetic Iron Oxide Nanoparticle-Based MRI Contrast Agent at Different Concentrations and Magnetic Field Strengths

Authors: Bimali Sanjeevani Weerakoon, Toshiaki Osuga, Takehisa Konishi

Abstract:

Magnetic Resonance Imaging Contrast Agents (MRI-CM) are significant in the clinical and biological imaging as they have the ability to alter the normal tissue contrast, thereby affecting the signal intensity to enhance the visibility and detectability of images. Superparamagnetic Iron Oxide (SPIO) nanoparticles, coated with dextran or carboxydextran are currently available for clinical MR imaging of the liver. Most SPIO contrast agents are T2 shortening agents and Resovist (Ferucarbotran) is one of a clinically tested, organ-specific, SPIO agent which has a low molecular carboxydextran coating. The enhancement effect of Resovist depends on its relaxivity which in turn depends on factors like magnetic field strength, concentrations, nanoparticle properties, pH and temperature. Therefore, this study was conducted to investigate the impact of field strength and different contrast concentrations on enhancement effects of Resovist. The study explored the MRI signal intensity of Resovist in the physiological range of plasma from T2-weighted spin echo sequence at three magnetic field strengths: 0.47 T (r1=15, r2=101), 1.5 T (r1=7.4, r2=95), and 3 T (r1=3.3, r2=160) and the range of contrast concentrations by a mathematical simulation. Relaxivities of r1 and r2 (L mmol-1 Sec-1) were obtained from a previous study and the selected concentrations were 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 2.0, and 3.0 mmol/L. T2-weighted images were simulated using TR/TE ratio as 2000 ms /100 ms. According to the reference literature, with increasing magnetic field strengths, the r1 relaxivity tends to decrease while the r2 did not show any systematic relationship with the selected field strengths. In parallel, this study results revealed that the signal intensity of Resovist at lower concentrations tends to increase than the higher concentrations. The highest reported signal intensity was observed in the low field strength of 0.47 T. The maximum signal intensities for 0.47 T, 1.5 T and 3 T were found at the concentration levels of 0.05, 0.06 and 0.05 mmol/L, respectively. Furthermore, it was revealed that, the concentrations higher than the above, the signal intensity was decreased exponentially. An inverse relationship can be found between the field strength and T2 relaxation time, whereas, the field strength was increased, T2 relaxation time was decreased accordingly. However, resulted T2 relaxation time was not significantly different between 0.47 T and 1.5 T in this study. Moreover, a linear correlation of transverse relaxation rates (1/T2, s–1) with the concentrations of Resovist can be observed. According to these results, it can conclude that the concentration of SPIO nanoparticle contrast agents and the field strengths of MRI are two important parameters which can affect the signal intensity of T2-weighted SE sequence. Therefore, when MR imaging those two parameters should be considered prudently.

Keywords: Concentration, resovist, field strength, relaxivity, signal intensity

Procedia PDF Downloads 352
211 The Effect of Swirl on the Flow Distribution in Automotive Exhaust Catalysts

Authors: Piotr J. Skusiewicz, Johnathan Saul, Ijhar Rusli, Svetlana Aleksandrova, Stephen. F. Benjamin, Miroslaw Gall, Steve Pierson, Carol A. Roberts

Abstract:

The application of turbocharging in automotive engines leads to swirling flow entering the catalyst. The behaviour of this type of flow within the catalyst has yet to be adequately documented. This work discusses the effect of swirling flow on the flow distribution in automotive exhaust catalysts. Compressed air supplied to a moving-block swirl generator allowed for swirling flow with variable intensities to be generated. Swirl intensities were measured at the swirl generator outlet using single-sensor hot-wire probes. The swirling flow was fed into diffusers with total angles of 10°, 30° and 180°. Downstream of the diffusers, a wash-coated diesel oxidation catalyst (DOC) of length 143.8 mm, diameter 76.2 mm and nominal cell density of 400 cpsi was fitted. Velocity profiles were measured at the outlet sleeve about 30 mm downstream of the monolith outlet using single-sensor hot-wire probes. Wall static pressure was recorded using a multi-tube manometer connected to pressure taps positioned along the diffuser walls. The results show that as swirl is increased, more of the flow is directed towards the diffuser walls. The velocity decreases around the centre-line and maximum velocities are observed close to the outer radius of the monolith for all flow rates. At the maximum swirl intensity, reversed flow was recorded near the centre of the monolith. Wall static pressure measurements in the 180° diffuser indicated no pressure recovery as the flow enters the diffuser. This is indicative of flow separation at the inlet to the diffuser. To gain insight into the flow structure, CFD simulations have been performed for the 180° diffuser for a flow rate of 63 g/s. The geometry of the model consists of the complete assembly from the upstream swirl generator to the outlet sleeve. Modelling of the flow in the monolith was achieved using the porous medium approach, where the monolith with parallel flow channels is modelled as a porous medium that resists the flow. A reasonably good agreement was achieved between the experimental and CFD results downstream of the monolith. The CFD simulations allowed visualisation of the separation zones and central toroidal recirculation zones that occur within the expansion region at certain swirl intensities which are highlighted.

Keywords: catalyst, computational fluid dynamics, diffuser, hot-wire anemometry, swirling flow

Procedia PDF Downloads 304
210 Design, Numerical Simulation, Fabrication and Physical Experimentation of the Tesla’s Cohesion Type Bladeless Turbine

Authors: M.Sivaramakrishnaiah, D. S .Nasan, P. V. Subhanjeneyulu, J. A. Sandeep Kumar, N. Sreenivasulu, B. V. Amarnath Reddy, B. Veeralingam

Abstract:

Design, numerical simulation, fabrication, and physical experimentation of the Tesla’s Bladeless centripetal turbine for generating electrical power are presented in this research paper. 29 Pressurized air combined with water via a nozzle system is made to pass tangentially through a set of parallel smooth discs surfaces, which impart rotational motion to the discs fastened common shaft for the power generation. The power generated depends upon the fluid speed parameter leaving the nozzle inlet. Physically due to laminar boundary layer phenomena at smooth disc surface, the high speed fluid layers away from the plate moving against the low speed fluid layers nearer to the plate develop a tangential drag from the viscous shear forces. This compels the nearer layers to drag along with the high layers causing the disc to spin. Solid Works design software and fluid mechanics and machine elements design theories was used to compute mechanical design specifications of turbine parts like 48 mm diameter discs, common shaft, central exhaust, plenum chamber, swappable nozzle inlets, etc. Also, ANSYS CFX 2018 was used for the numerical 2 simulation of the physical phenomena encountered in the turbine working. When various numerical simulation and physical experimental results were verified, there is good agreement between them 6, both quantitatively and qualitatively. The sources of input and size of the blades may affect the power generated and turbine efficiency, respectively. The results may change if there is a change in the fluid flowing between the discs. The inlet fluid pressure versus turbine efficiency and the number of discs versus turbine power studies based on both results were carried out to develop the 8 relationships between the inlet and outlet parameters of the turbine. The present research work obtained the turbine efficiency in the range of 7-10%, and for this range; the electrical power output generated was 50-60 W.

Keywords: tesla turbine, cohesion type bladeless turbine, boundary layer theory, cohesion type bladeless turbine, tangential fluid flow, viscous and adhesive forces, plenum chamber, pico hydro systems

Procedia PDF Downloads 88
209 Analysis of Waterjet Propulsion System for an Amphibious Vehicle

Authors: Nafsi K. Ashraf, C. V. Vipin, V. Anantha Subramanian

Abstract:

This paper reports the design of a waterjet propulsion system for an amphibious vehicle based on circulation distribution over the camber line for the sections of the impeller and stator. In contrast with the conventional waterjet design, the inlet duct is straight for water entry parallel and in line with the nozzle exit. The extended nozzle after the stator bowl makes the flow more axial further improving thrust delivery. Waterjet works on the principle of volume flow rate through the system and unlike the propeller, it is an internal flow system. The major difference between the propeller and the waterjet occurs at the flow passing the actuator. Though a ducted propeller could constitute the equivalent of waterjet propulsion, in a realistic situation, the nozzle area for the Waterjet would be proportionately larger to the inlet area and propeller disc area. Moreover, the flow rate through impeller disk is controlled by nozzle area. For these reasons the waterjet design is based on pump systems rather than propellers and therefore it is important to bring out the characteristics of the flow from this point of view. The analysis is carried out using computational fluid dynamics. Design of waterjet propulsion is carried out adapting the axial flow pump design and performance analysis was done with three-dimensional computational fluid dynamics (CFD) code. With the varying environmental conditions as well as with the necessity of high discharge and low head along with the space confinement for the given amphibious vehicle, an axial pump design is suitable. The major problem of inlet velocity distribution is the large variation of velocity in the circumferential direction which gives rise to heavy blade loading that varies with time. The cavitation criteria have also been taken into account as per the hydrodynamic pump design. Generally, waterjet propulsion system can be parted into the inlet, the pump, the nozzle and the steering device. The pump further comprises an impeller and a stator. Analytical and numerical approaches such as RANSE solver has been undertaken to understand the performance of designed waterjet propulsion system. Unlike in case of propellers the analysis was based on head flow curve with efficiency and power curves. The modeling of the impeller is performed using rigid body motion approach. The realizable k-ϵ model has been used for turbulence modeling. The appropriate boundary conditions are applied for the domain, domain size and grid dependence studies are carried out.

Keywords: amphibious vehicle, CFD, impeller design, waterjet propulsion

Procedia PDF Downloads 229
208 Peers' Alterity in Inverted Inclusion: A Case Study

Authors: Johanna Sagner, María José Sandoval

Abstract:

At the early stages of adolescence, young people, regardless of a disability or not, start to establish closer friendship ties. Unlike previous developmental phases, these ties are rather reciprocal, more committed, and require more time. Friendship ties during adolescence allow the development of social and personal skills, specifically the skills to start constructing identity. In an inclusive context that incorporates young people with a disability, friendship among peers also takes place. Nonetheless, the relation is shaped, among others, by the alterity construction about the other with disability. Research about peers’ relation between young people with and without disability in an inclusive context has shown that the relation tends to become a helper-helpee relation, where those with a disability are seen as people in need. Prejudices about the others’ condition or distancing from the other because of his/hers disability are common. In this sense, the helper-helpee relation, as a non-reciprocal and protective relation, will not promote friendship between classmates, but a rather asymmetric alterity. Our research is an explorative case study that wants to know how the relation between peers is shaped within a different inclusive program, were also the integrated group has special educational needs. Therefore, we analyze from a qualitative and quantitative approach the data of an inverted inclusive program. This is a unique case of a special public school for visual disability in Germany that includes young people from a mainstream school who had learning difficulties. For the research, we analyze data from interviews, focal interviews and open-ended questions with an interpretative phenomenological analysis approach. The questionnaires include a five point Likert scale, for which we calculate the acceptance rate. The findings show that the alterity relation between pupils is less asymmetrical and represents a rather horizontal alterity. The helper-helpee relation is marked by exchange, since both groups have special educational needs and therefore, those with visual disability and those with learning difficulties help each other indistinctly. Friendship is more present among classmates. The horizontal alterity peers’ relation is influenced by a sort of tie, where none of the groups need more or less help than other groups. Both groups identify that they themselves and the other have special needs. The axiological axe of alterity is not of superiority or inferiority, recognizing each other’s differences and otherness. Another influential factor relates with the amount of time they spend together, since the program does not have a resource room or a teacher who teaches parallel lessons. Two probable causes for that rather equal peer relation might be the constellation of fewer pupils per classroom and the differentiated lessons taught by teachers with a special educational formation.

Keywords: alterity, disability, inverted inclusion, peers’ relation

Procedia PDF Downloads 316
207 Arsenic Contamination in Drinking Water Is Associated with Dyslipidemia in Pregnancy

Authors: Begum Rokeya, Rahelee Zinnat, Fatema Jebunnesa, Israt Ara Hossain, A. Rahman

Abstract:

Background and Aims: Arsenic in drinking water is a global environmental health problem, and the exposure may increase dyslipidemia and cerebrovascular diseases mortalities, most likely through causing atherosclerosis. However, the mechanism of lipid metabolism, atherosclerosis formation, arsenic exposure and impact in pregnancy is still unclear. Recent epidemiological evidences indicate close association between inorganic arsenic exposure via drinking water and Dyslipidemia. However, the exact mechanism of this arsenic-mediated increase in atherosclerosis risk factors remains enigmatic. We explore the association of the effect of arsenic on serum lipid profile in pregnant subjects. Methods: A total 200 pregnant mother screened in this study from arsenic exposed area. Our study group included 100 exposed subjects were cases and 100 Non exposed healthy pregnant were controls requited by a cross-sectional study. Clinical and anthropometric measurements were done by standard techniques. Lipidemic status was assessed by enzymatic endpoint method. Urinary As was measured by inductively coupled plasma-mass spectrometry and adjusted with specific gravity and Arsenic exposure was assessed by the level of urinary arsenic level > 100 μg/L was categorized as arsenic exposed and < 100 μg/L were categorized as non-exposed. Multivariate logistic regression and Student’s t - test was used for statistical analysis. Results: Systolic and diastolic blood pressure both were significantly higher in the Arsenic exposed pregnant subjects compared to the Non-exposed group (p<0.001). Arsenic exposed subjects had 2 times higher chance of developing hypertensive pregnancy (Odds Ratio 2.2). In parallel to the findings in Ar exposed subjects showed significantly higher proportion of triglyceride and total cholesterol and low density of lipo protein when compare to non- arsenic exposed pregnant subjects. Significant correlation of urinary arsenic level was also found with SBP, DBP, TG, T chol and serum LDL-Cholesterol. On multivariate logistic regression showed urinary arsenic had a positive association with DBP, SBP, Triglyceride and LDL-c. Conclusion: In conclusion, arsenic exposure may induce dyslipidemia like atherosclerosis through modifying reverse cholesterol transport in cholesterol metabolism. For decreasing atherosclerosis related mortality associated with arsenic, preventing exposure from environmental sources in early life is an important element.

Keywords: Arsenic Exposure, Dyslipidemia, Gestational Diabetes Mellitus, Serum lipid profile

Procedia PDF Downloads 127
206 Numerical Modeling and Experimental Analysis of a Pallet Isolation Device to Protect Selective Type Industrial Storage Racks

Authors: Marcelo Sanhueza Cartes, Nelson Maureira Carsalade

Abstract:

This research evaluates the effectiveness of a pallet isolation device for the protection of selective-type industrial storage racks. The device works only in the longitudinal direction of the aisle, and it is made up of a platform installed on the rack beams. At both ends, the platform is connected to the rack structure by means of a spring-damper system working in parallel. A system of wheels is arranged between the isolation platform and the rack beams in order to reduce friction, decoupling of the movement and improve the effectiveness of the device. The latter is evaluated by the reduction of the maximum dynamic responses of basal shear load and story drift in relation to those corresponding to the same rack with the traditional construction system. In the first stage, numerical simulations of industrial storage racks were carried out with and without the pallet isolation device. The numerical results allowed us to identify the archetypes in which it would be more appropriate to carry out experimental tests, thus limiting the number of trials. In the second stage, experimental tests were carried out on a shaking table to a select group of full-scale racks with and without the proposed device. The movement simulated by the shaking table was based on the Mw 8.8 magnitude earthquake of February 27, 2010, in Chile, registered at the San Pedro de la Paz station. The peak ground acceleration (PGA) was scaled in the frequency domain to fit its response spectrum with the design spectrum of NCh433. The experimental setup contemplates the installation of sensors to measure relative displacement and absolute acceleration. The movement of the shaking table with respect to the ground, the inter-story drift of the rack and the pallets with respect to the rack structure were recorded. Accelerometers redundantly measured all of the above in order to corroborate measurements and adequately capture low and high-frequency vibrations, whereas displacement and acceleration sensors are respectively more reliable. The numerical and experimental results allowed us to identify that the pallet isolation period is the variable with the greatest influence on the dynamic responses considered. It was also possible to identify that the proposed device significantly reduces both the basal cut and the maximum inter-story drift by up to one order of magnitude.

Keywords: pallet isolation system, industrial storage racks, basal shear load, interstory drift.

Procedia PDF Downloads 73