Search results for: modular function deployment
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5564

Search results for: modular function deployment

4334 A Loop between Victimhood and Women with Choice: Case of Trafficked North Korean Women in China

Authors: Jinah Kwon

Abstract:

Why are there North Korean women who prefer their life in China, living as an undocumented migrant, to legal residence in South Korea? What is the line between choice and coercion in trafficking and how does it relate to family, especially in Asian culture? Is family function as a haven in the unsecured world or a fetter against the better world? Are the current international mechanisms on trafficked victims fully reflecting the voices of the victims? This study is about the paradoxical conditions of North Korean women situated in China as the trafficked victim and as members of their Chinese family. In order to answer the questions above, this study explored the case of trafficked North Korean women in China. This mixed-methods study employed in-depth interviews of 18 trafficked women living in China and a survey of 98 North Korean origin women residing in South Korea. From the survey, 40 out of 98 women from the survey indicated an unexpected function of trafficking, which was used as a channel of supporting the subjectivity of women in the North Korean context. Such results supported the actual observation and narratives of North Korean women who experienced trafficking from the author’s two visits to the Northeastern area of China in 2012 and 2018, respectively. Based on the findings, the last part of the study makes policy implications on international trafficking mechanisms—theories by Gayatri Spivak and Herbert A. Simon was employed to approach the relatively less dealt aspect of trafficking.

Keywords: China, North Korean women, trafficking, victimhood

Procedia PDF Downloads 192
4333 Encoded Fiber Optic Sensors for Simultaneous Multipoint Sensing

Authors: C. Babu Rao, Pandian Chelliah

Abstract:

Owing to their reliability, a number of fluorescent spectra based fiber optic sensors have been developed for detection and identification of hazardous chemicals such as explosives, narcotics etc. In High security regions, such as airports, it is important to monitor simultaneously multiple locations. This calls for deployment of a portable sensor at each location. However, the selectivity and sensitivity of these techniques depends on the spectral resolution of the spectral analyzer. The better the resolution the larger the repertoire of chemicals that can be detected. A portable unit will have limitations in meeting these requirements. Optical fibers can be employed for collecting and transmitting spectral signal from the portable sensor head to a sensitive central spectral analyzer (CSA). For multipoint sensing, optical multiplexing of multiple sensor heads with CSA has to be adopted. However with multiplexing, when one sensor head is connected to CSA, the rest may remain unconnected for the turn-around period. The larger the number of sensor heads the larger this turn-around time will be. To circumvent this imitation, we propose in this paper, an optical encoding methodology to use multiple portable sensor heads connected to a single CSA. Each portable sensor head is assigned an unique address. Spectra of every chemical detected through this sensor head, are encoded by its unique address and can be identified at the CSA end. The methodology proposed is demonstrated through a simulation using Matlab SIMULINK.

Keywords: optical encoding, fluorescence, multipoint sensing

Procedia PDF Downloads 710
4332 A System Dynamics Approach to Technological Learning Impact for Cost Estimation of Solar Photovoltaics

Authors: Rong Wang, Sandra Hasanefendic, Elizabeth von Hauff, Bart Bossink

Abstract:

Technological learning and learning curve models have been continuously used to estimate the photovoltaics (PV) cost development over time for the climate mitigation targets. They can integrate a number of technological learning sources which influence the learning process. Yet the accuracy and realistic predictions for cost estimations of PV development are still difficult to achieve. This paper develops four hypothetical-alternative learning curve models by proposing different combinations of technological learning sources, including both local and global technology experience and the knowledge stock. This paper specifically focuses on the non-linear relationship between the costs and technological learning source and their dynamic interaction and uses the system dynamics approach to predict a more accurate PV cost estimation for future development. As the case study, the data from China is gathered and drawn to illustrate that the learning curve model that incorporates both the global and local experience is more accurate and realistic than the other three models for PV cost estimation. Further, absorbing and integrating the global experience into the local industry has a positive impact on PV cost reduction. Although the learning curve model incorporating knowledge stock is not realistic for current PV cost deployment in China, it still plays an effective positive role in future PV cost reduction.

Keywords: photovoltaic, system dynamics, technological learning, learning curve

Procedia PDF Downloads 96
4331 Interval Bilevel Linear Fractional Programming

Authors: F. Hamidi, N. Amiri, H. Mishmast Nehi

Abstract:

The Bilevel Programming (BP) model has been presented for a decision making process that consists of two decision makers in a hierarchical structure. In fact, BP is a model for a static two person game (the leader player in the upper level and the follower player in the lower level) wherein each player tries to optimize his/her personal objective function under dependent constraints; this game is sequential and non-cooperative. The decision making variables are divided between the two players and one’s choice affects the other’s benefit and choices. In other words, BP consists of two nested optimization problems with two objective functions (upper and lower) where the constraint region of the upper level problem is implicitly determined by the lower level problem. In real cases, the coefficients of an optimization problem may not be precise, i.e. they may be interval. In this paper we develop an algorithm for solving interval bilevel linear fractional programming problems. That is to say, bilevel problems in which both objective functions are linear fractional, the coefficients are interval and the common constraint region is a polyhedron. From the original problem, the best and the worst bilevel linear fractional problems have been derived and then, using the extended Charnes and Cooper transformation, each fractional problem can be reduced to a linear problem. Then we can find the best and the worst optimal values of the leader objective function by two algorithms.

Keywords: best and worst optimal solutions, bilevel programming, fractional, interval coefficients

Procedia PDF Downloads 446
4330 Pregnancy and Women's Subjectivity Represented in Ali's Brick Lane, Cusk's Arlington Park, and Mcgregor's If Nobody Speaks of Remarkable Things

Authors: Nurul Imansari

Abstract:

The study object in this research is 'pregnancy and women’s subjectivity represented in Ali’s Brick Lane, Cusk’s Arlington Park, and McGregor’s If Nobody Speaks of Remarkable Things'. Pregnancy is invested with both figurative and literal significance in the novels. Being a symbol of domesticity of the woman in the novels, pregnancy conveys the relationship of the women due to their role as a mother and wife in a family and their subjectivity as a woman. The aim of this study is to examine to what extent pregnancy affects the subjectivity of woman in Ali’s 'Brick Lane', Cusk’s 'Arlington Park', and McGregor’s 'If Nobody Speaks of Remarkable Things'. It also discusses on how pregnancy can be seen as a symbolic sense and the things that symbolise it. The study uses theoretical ideas of female subjectivity proposed by Julia Kristeva. She stated that in patriarchal culture, the meaning of a woman is always being reduced to the function of reproduction. She has emphasized a new discourse about pregnancy that recognizes the importance of maternal function in the development of subjectivity and in culture. The result shows that the three novels represent pregnancy as something which can affect women’s subjectivity but the way in representing the pregnancy are different from each other. Kristeva’s idea about pregnancy and women’s subjectivity can be applied in both Cusk’s Arlington Park, and McGregor’s If Nobody Speaks of Remarkable Things as the characters in the texts come from the same background as her. However, it can hardly be applied to Ali’s Brick Lane because this idea can justify the women to choose their own way and South Asian culture still bound to the strong patriarchal system.

Keywords: culture, pregnancy, subjectivity, women

Procedia PDF Downloads 338
4329 Neurocognitive Deficits Explaining Psychosocial Function and Relapse in Depression Remission: A Systematic Review

Authors: Nandini Mohan, Elayne Ahern

Abstract:

Neurocognitive deficits, as well as psychosocial dysfunction, are typically observed in major depressive disorder (MDD). These deficits persist even after a significant reduction of symptoms and remission from MDD. These deficits have also been linked to greater relapse rates. The link between neurocognitive deficits, relapse, and psychosocial functioning in MDD, on the other hand, has received little attention. This review aimed to conduct an in-depth review of the literature on the association between neurocognitive deficits, relapse, and psychosocial functioning in MDD remission. We used search terms related to MDD, MDD remission, psychosocial functioning, neurocognitive impairments, and relapse to conduct a systematic review of English-language literature in PubMed, PsycArticles, PsycINFO, Medline, and Web of Science to identify relevant studies in the area from which 15 studies were identified for inclusion following an examination against inclusion/ exclusion criteria. Executive functioning, psychomotor speed, and memory were closely related to the psychosocial deficits in the phase of MDD remission. Similarly, Executive function, divided attention, and inhibition were closely related to the relapse in the phase of MDD remission. The limitations of the present review include limited and contradicting evidence that led to fewer studies being included. The implications of this review include an understanding of the difference between clinical and full-functional recovery. This evidence can be the basis for incorporating treatment measures that focus on neurocognitive and psychosocial deficits along with the affective symptoms of MDD.

Keywords: depression, MDD, remission, relapse, neurocognitive functioning, psychosocial deficits

Procedia PDF Downloads 57
4328 Workforce Optimization: Fair Workload Balance and Near-Optimal Task Execution Order

Authors: Alvaro Javier Ortega

Abstract:

A large number of companies face the challenge of matching highly-skilled professionals to high-end positions by human resource deployment professionals. However, when the professional list and tasks to be matched are larger than a few dozens, this process result is far from optimal and takes a long time to be made. Therefore, an automated assignment algorithm for this workforce management problem is needed. The majority of companies are divided into several sectors or departments, where trained employees with different experience levels deal with a large number of tasks daily. Also, the execution order of all tasks is of mater consequence, due to some of these tasks just can be run it if the result of another task is provided. Thus, a wrong execution order leads to large waiting times between consecutive tasks. The desired goal is, therefore, creating accurate matches and a near-optimal execution order that maximizes the number of tasks performed and minimizes the idle time of the expensive skilled employees. The problem described before can be model as a mixed-integer non-linear programming (MINLP) as it will be shown in detail through this paper. A large number of MINLP algorithms have been proposed in the literature. Here, genetic algorithm solutions are considered and a comparison between two different mutation approaches is presented. The simulated results considering different complexity levels of assignment decisions show the appropriateness of the proposed model.

Keywords: employees, genetic algorithm, industry management, workforce

Procedia PDF Downloads 168
4327 Association Nephropathy and Hypertension in Diabetic Patients

Authors: Bahlous Afef, Bouzid Kahena, Bardkis Ahlem, Mrad Mehdi, Kalai Eya, Sonia Bahri, Abdelmoula Jaouida

Abstract:

Diabetic nephropathy is the first cause of chronic renal failure and hemodialysis use in several countries including Tunisia. The role of hypertension (HT) as major risk factor for nephropathy is undeniable. The aim of our study was to determine the relationship between blood pressure and nephropathy in a population of diabetic type 2 recently discovered. Materials and methods: We conducted a prospective study focused on 60 patients with type 2 diabetes recently discovered (<5 years). Each patient have benefited from: -a full clinical examination with measurement of blood pressure - exploring a blood-glucose control and renal function -urinary exploration with the determination of proteinuria microalbuminumie of 24 hours with a immunoturbidimetric method using Architect (ABBOTT CI 8200). Results and discussion: Hypertension was present in 46.7% of cases. Twenty patients, 35% of the study population showed nephropathy. Four of these patients (6.66% of cases) had proteinuria, while 16 (26.6% of patients) had microalbuminuria (> 30mg/24 hours). Systolic blood pressure was significantly (p < 0.05) associated with the presence of nephropathy (139 +19.44) vs. for the group with normal renal function (128.65 +15.12 mmHg). Conclusion: The etiology of diabetic nephropathy is multifactorial. However, systolic blood pressure and glycemic control remains the major risk factors. Better glycemic control and treatment of hypertension allowed preventing and slowing the progression of diabetic nephropathy.

Keywords: hypertension, nephropathy, hemodialysis, diabetes

Procedia PDF Downloads 316
4326 The Role and Function of National Land Authority as Mediator in Land Dispute Settlements in Indonesia

Authors: Nia Kurniati, Efa Laela Fakhriah

Abstract:

The regulation in Indonesia provides space for the land dispute to be settled outside the court by the government through National Land. In this case, the bureaucrat of Badan Pertanahan Nasional (BPN) acts as mediator to reach a fair agreement between the disputing parties. Land dispute is from a party who denies the ownership of the other party of a land and denies legal-technical facts written on land certificate published by BPN. Appointing the bureaucrat of BPN as mediator in dispute settlements may possibly create conflict of interest since the object. It has become a concern since bureaucrat of BPN acts as mediator, he will be bias and partial in assisting the dispute settlement, thus the spirit and purposes of mediation will be hampered. This issue triggers to be thoroughly examined further in a relation with the role and function of BPN as land dispute mediator. The methodology used in this research is a normative-legal one with qualitative-legal analytical method. The object of this research is in the form of random sampling of land dispute cases being occurred in some areas. Several principles in mediation have to be made as the base of the consideration to appoint bureaucrat of BPN as mediator since the mediator is an impartial third party, working with both disputing parties and assisting them to reach a fair resolution written in agreement as a foundation of land dispute settlement. The existence of BPN as mediator in land dispute settlement encounters conflict of interest which uphold legal uncertainty to act objectively.

Keywords: Indonesia, land dispute, mediator, national land authority

Procedia PDF Downloads 311
4325 Effects of a Bacteria-Based Probiotic on Subpopulations of Peripheral Leukocytes and Their Interleukin mRNA Expression in Calves

Authors: Abdul Qadir Qadis, Satoru Goya, Minoru Yatsu, Yu-uki Yoshida, Toshihiro Ichijo, Shigeru Sato

Abstract:

Bacterial probiotics are known to modulate the gut-associated lymphoid and epithelial tissue response to enhance the activities of intestinal and systemic immune system in human and animals. In cattle, the immune-stimulatory effects of probiotics have been evaluated during intestinal disorders. To investigate the effects of probiotic on the function of peripheral blood mononuclear cells, eight healthy Holstein calves (10 ± 3 weeks) were assigned to a 4 × 2 experimental design. The probiotic, consisting of Lactobacillus plantarum, Enterococcus faecium and Clostridium butyricum, was administered orally at 3.0 g/100 kg body weight to calves once daily for 5 consecutive days. Calves given no probiotic served as the control. In the treatment group, increases in numbers of CD282+ monocytes, CD3+ T-cells and CD4+, CD8+ and WC1+ γδ T- cell subsets were noted on day 7 post-placement compared to pre-dose day and the control group. Expression of interleukin-6, interferon-gamma and tumor necrosis factor-alpha was elevated in peripheral leukocytes on days 7 and 14. These results suggest that peripheral blood leukocytes in healthy calves may be stimulated via the gastrointestinal microbiota, which was increased by the oral probiotic treatment. The 5-day repeated administration of a bacterial probiotic may enhance cellular immune function in weaned calves.

Keywords: bacterial-probiotic, calf, interleukin, leukocyte

Procedia PDF Downloads 660
4324 Assisted Approach as a Tool for Increasing Attention When Using the iPad in a Special Elementary School: Action Research

Authors: Vojtěch Gybas, Libor Klubal, Kateřina Kostolányová

Abstract:

Nowadays, mobile touch technologies, such as tablets, are an integral part of teaching and learning in many special elementary schools. Many special education teachers tend to choose an iPad tablet with iOS. The reason is simple; the iPad has a function for pupils with special educational needs. If we decide to use tablets in teaching, in general, first we should try to stimulate the cognitive abilities of the pupil at the highest level, while holding the pupil’s attention on the task, when working with the device. This paper will describe how student attention can be increased by eliminating the working environment of selected applications, while using iPads with pupils in a special elementary school. Assisted function approach is highly effective at eliminating unwanted touching by a pupil when working on the desktop iPad, thus actively increasing the pupil´s attention while working on specific educational applications. During the various stages of the action, the research was conducted via data collection and interpretation. After a phase of gaining results and ideas for practice and actions, we carried out the check measurement, this time using the tool-assisted approach. In both cases, the pupils worked in the Math Board application and the resulting differences were evident.

Keywords: special elementary school, a mobile touch device, iPad, attention, Math Board

Procedia PDF Downloads 254
4323 Biophysical Assessment of the Ecological Condition of Wetlands in the Parkland and Grassland Natural Regions of Alberta, Canada

Authors: Marie-Claude Roy, David Locky, Ermias Azeria, Jim Schieck

Abstract:

It is estimated that up to 70% of the wetlands in the Parkland and Grassland natural regions of Alberta have been lost due to various land-use activities. These losses include ecosystem function and services they once provided. Those wetlands remaining are often embedded in a matrix of human-modified habitats and despite efforts taken to protect them the effects of land-uses on wetland condition and function remain largely unknown. We used biophysical field data and remotely-sensed human footprint data collected at 322 open-water wetlands by the Alberta Biodiversity Monitoring Institute (ABMI) to evaluate the impact of surrounding land use on the physico-chemistry characteristics and plant functional traits of wetlands. Eight physio-chemistry parameters were assessed: wetland water depth, water temperature, pH, salinity, dissolved oxygen, total phosphorus, total nitrogen, and dissolved organic carbon. Three plant functional traits were evaluated: 1) origin (native and non-native), 2) life history (annual, biennial, and perennial), and 3) habitat requirements (obligate-wetland and obligate-upland). Intensity land-use was quantified within a 250-meter buffer around each wetland. Ninety-nine percent of wetlands in the Grassland and Parkland regions of Alberta have land-use activities in their surroundings, with most being agriculture-related. Total phosphorus in wetlands increased with the cover of surrounding agriculture, while salinity, total nitrogen, and dissolved organic carbon were positively associated with the degree of soft-linear (e.g. pipelines, trails) land-uses. The abundance of non-native and annual/biennial plants increased with the amount of agriculture, while urban-industrial land-use lowered abundance of natives, perennials, and obligate wetland plants. Our study suggests that land-use types surrounding wetlands affect the physicochemical and biological conditions of wetlands. This research suggests that reducing human disturbances through reclamation of wetland buffers may enhance the condition and function of wetlands in agricultural landscapes.

Keywords: wetlands, biophysical assessment, land use, grassland and parkland natural regions

Procedia PDF Downloads 333
4322 Integral Form Solutions of the Linearized Navier-Stokes Equations without Deviatoric Stress Tensor Term in the Forward Modeling for FWI

Authors: Anyeres N. Atehortua Jimenez, J. David Lambraño, Juan Carlos Muñoz

Abstract:

Navier-Stokes equations (NSE), which describe the dynamics of a fluid, have an important application on modeling waves used for data inversion techniques as full waveform inversion (FWI). In this work a linearized version of NSE and its variables, neglecting deviatoric terms of stress tensor, is presented. In order to get a theoretical modeling of pressure p(x,t) and wave velocity profile c(x,t), a wave equation of visco-acoustic medium (VAE) is written. A change of variables p(x,t)=q(x,t)h(ρ), is made on the equation for the VAE leading to a well known Klein-Gordon equation (KGE) describing waves propagating in variable density medium (ρ) with dispersive term α^2(x). KGE is reduced to a Poisson equation and solved by proposing a specific function for α^2(x) accounting for the energy dissipation and dispersion. Finally, an integral form solution is derived for p(x,t), c(x,t) and kinematics variables like particle velocity v(x,t), displacement u(x,t) and bulk modulus function k_b(x,t). Further, it is compared this visco-acoustic formulation with another form broadly used in the geophysics; it is argued that this formalism is more general and, given its integral form, it may offer several advantages from the modern parallel computing point of view. Applications to minimize the errors in modeling for FWI applied to oils resources in geophysics are discussed.

Keywords: Navier-Stokes equations, modeling, visco-acoustic, inversion FWI

Procedia PDF Downloads 520
4321 Dialysis Rehabilitation and Muscle Hypertrophy

Authors: Itsuo Yokoyama, Rika Kikuti, Naoko Watabe

Abstract:

Introduction: It has been known that chronic kidney disease (CKD) patients can benefit from physical exercise during dialysis therapy improving aerobic capacity, muscle function, cardiovascular function, and overall health-related quality of life. This study aimed to evaluate the effectiveness of dialysis rehabilitation. Materials and Methods: A total of 55 patients underwent two-hour resistance exercise training during each hemodialysis session for three consecutive months. Various routine clinical data were collected, including the calculation of the planar dimension of the muscle area in both upper legs at the level of the ischial bone. This area calculation was possible in 26 patients who had yearly plain abdominal computed tomography (CT) scans. DICOM files from the CT scans were used with 3D Slicer software for area calculation. An age and sex-matched group of 26 patients without dialysis rehabilitation also had yearly CT scans during the study period for comparison. Clinical data were compared between the two groups: Group A (rehabilitation) and Group B (non-rehabilitation). Results: There were no differences in basic laboratory data between the two groups. The average muscle area before and after rehabilitation in Group A was 212 cm² and 216 cm², respectively. In Group B, the average areas were 230.0 cm² and 225.8 cm². While there was no significant difference in absolute values, the average percentage increase in muscle area was +1.2% (ranging from -7.6% to 6.54%) for Group A and -2.0% (ranging from -12.1% to 4.9%) for Group B, which was statistically significant. In Group A, 9 of 26 were diabetic (DM), and 13 of 26 in Group B were non-DM. The increase in muscle area for DM patients was 4.9% compared to -0.7% for non-DM patients, which was significantly different. There were no significant differences between the two groups in terms of nutritional assessment, Kt/V, or incidence of clinical complications such as cardiovascular events. Considerations: Dialysis rehabilitation has been reported to prevent muscle atrophy by increasing muscle fibers and capillaries. This study demonstrated that muscle volume increased after dialysis exercise, as evidenced by the increased muscle area in the thighs. Notably, diabetic patients seemed to benefit more from dialysis exercise than non-diabetics. Although this study is preliminary due to its relatively small sample size, it suggests that intradialytic physical training may improve insulin utilization in muscle fiber cells, particularly in type II diabetic patients where insulin receptor function and signaling are altered. Further studies are needed to investigate the detailed mechanisms underlying the muscle hypertrophic effects of dialysis exercise.

Keywords: dialysis, excercise, muscle, hypertrophy, diabetes, insulin

Procedia PDF Downloads 19
4320 Constitutive Androstane Receptor (CAR) Inhibitor CINPA1 as a Tool to Understand CAR Structure and Function

Authors: Milu T. Cherian, Sergio C. Chai, Morgan A. Casal, Taosheng Chen

Abstract:

This study aims to use CINPA1, a recently discovered small-molecule inhibitor of the xenobiotic receptor CAR (constitutive androstane receptor) for understanding the binding modes of CAR and to guide CAR-mediated gene expression profiling studies in human primary hepatocytes. CAR and PXR are xenobiotic sensors that respond to drugs and endobiotics by modulating the expression of metabolic genes that enhance detoxification and elimination. Elevated levels of drug metabolizing enzymes and efflux transporters resulting from CAR activation promote the elimination of chemotherapeutic agents leading to reduced therapeutic effectiveness. Multidrug resistance in tumors after chemotherapy could be associated with errant CAR activity, as shown in the case of neuroblastoma. CAR inhibitors used in combination with existing chemotherapeutics could be utilized to attenuate multidrug resistance and resensitize chemo-resistant cancer cells. CAR and PXR have many overlapping modulating ligands as well as many overlapping target genes which confounded attempts to understand and regulate receptor-specific activity. Through a directed screening approach we previously identified a new CAR inhibitor, CINPA1, which is novel in its ability to inhibit CAR function without activating PXR. The cellular mechanisms by which CINPA1 inhibits CAR function were also extensively examined along with its pharmacokinetic properties. CINPA1 binding was shown to change CAR-coregulator interactions as well as modify CAR recruitment at DNA response elements of regulated genes. CINPA1 was shown to be broken down in the liver to form two, mostly inactive, metabolites. The structure-activity differences of CINPA1 and its metabolites were used to guide computational modeling using the CAR-LBD structure. To rationalize how ligand binding may lead to different CAR pharmacology, an analysis of the docked poses of human CAR bound to CITCO (a CAR activator) vs. CINPA1 or the metabolites was conducted. From our modeling, strong hydrogen bonding of CINPA1 with N165 and H203 in the CAR-LBD was predicted. These residues were validated to be important for CINPA1 binding using single amino-acid CAR mutants in a CAR-mediated functional reporter assay. Also predicted were residues making key hydrophobic interactions with CINPA1 but not the inactive metabolites. Some of these hydrophobic amino acids were also identified and additionally, the differential coregulator interactions of these mutants were determined in mammalian two-hybrid systems. CINPA1 represents an excellent starting point for future optimization into highly relevant probe molecules to study the function of the CAR receptor in normal- and pathophysiology, and possible development of therapeutics (for e.g. use for resensitizing chemoresistant neuroblastoma cells).

Keywords: antagonist, chemoresistance, constitutive androstane receptor (CAR), multi-drug resistance, structure activity relationship (SAR), xenobiotic resistance

Procedia PDF Downloads 287
4319 Decomposition of the Discount Function Into Impatience and Uncertainty Aversion. How Neurofinance Can Help to Understand Behavioral Anomalies

Authors: Roberta Martino, Viviana Ventre

Abstract:

Intertemporal choices are choices under conditions of uncertainty in which the consequences are distributed over time. The Discounted Utility Model is the essential reference for describing the individual in the context of intertemporal choice. The model is based on the idea that the individual selects the alternative with the highest utility, which is calculated by multiplying the cardinal utility of the outcome, as if the reception were instantaneous, by the discount function that determines a decrease in the utility value according to how the actual reception of the outcome is far away from the moment the choice is made. Initially, the discount function was assumed to have an exponential trend, whose decrease over time is constant, in line with a profile of a rational investor described by classical economics. Instead, empirical evidence called for the formulation of alternative, hyperbolic models that better represented the actual actions of the investor. Attitudes that do not comply with the principles of classical rationality are termed anomalous, i.e., difficult to rationalize and describe through normative models. The development of behavioral finance, which describes investor behavior through cognitive psychology, has shown that deviations from rationality are due to the limited rationality condition of human beings. What this means is that when a choice is made in a very difficult and information-rich environment, the brain does a compromise job between the cognitive effort required and the selection of an alternative. Moreover, the evaluation and selection phase of the alternative, the collection and processing of information, are dynamics conditioned by systematic distortions of the decision-making process that are the behavioral biases involving the individual's emotional and cognitive system. In this paper we present an original decomposition of the discount function to investigate the psychological principles of hyperbolic discounting. It is possible to decompose the curve into two components: the first component is responsible for the smaller decrease in the outcome as time increases and is related to the individual's impatience; the second component relates to the change in the direction of the tangent vector to the curve and indicates how much the individual perceives the indeterminacy of the future indicating his or her aversion to uncertainty. This decomposition allows interesting conclusions to be drawn with respect to the concept of impatience and the emotional drives involved in decision-making. The contribution that neuroscience can make to decision theory and inter-temporal choice theory is vast as it would allow the description of the decision-making process as the relationship between the individual's emotional and cognitive factors. Neurofinance is a discipline that uses a multidisciplinary approach to investigate how the brain influences decision-making. Indeed, considering that the decision-making process is linked to the activity of the prefrontal cortex and amygdala, neurofinance can help determine the extent to which abnormal attitudes respect the principles of rationality.

Keywords: impatience, intertemporal choice, neurofinance, rationality, uncertainty

Procedia PDF Downloads 129
4318 Development and Evaluation of a Gut-Brain Axis Chip Based on 3D Printing Interconnecting Microchannel Scaffolds

Authors: Zhuohan Li, Jing Yang, Yaoyuan Cui

Abstract:

The gut-brain axis (GBA), a communication network between gut microbiota and the brain, benefits for investigation of brain diseases. Currently, organ chips are considered one of the potential tools for GBA research. However, most of the available GBA chips have limitations in replicating the three-dimensional (3D) growth environment of cells and lack the required cell types for barrier function. In the present study, a microfluidic chip was developed for GBA interaction. Blood-brain barrier (BBB) module was prepared with HBMEC, HBVP, U87 cells and decellularized matrix (dECM). Intestinal epithelial barrier (IEB) was prepared with Caco-2 and vascular endothelial cells and dECM. GBA microfluidic device was integrated with IEB and BBB modules using 3D printing interconnecting microchannel scaffolds. BBB and IEB interaction on this GBA chip were evaluated with lipopolysaccharide (LPS) exposure. The present GBA chip achieved multicellular three-dimensional cultivation. Compared with the co-culture cell model in the transwell, fluorescein was absorbed more slowly by 5.16-fold (IEB module) and 4.69-fold (BBB module) on the GBA chip. Accumulation of Rhodamine 123 and Hoechst33342 was dramatically decreased. The efflux function of transporters on IEB and BBB was significantly increased on the GBA chip. After lipopolysaccharide (LPS) disrupted the IEB, and then BBB dysfunction was further observed, which confirmed the interaction between IEB and BBB modules. These results demonstrated that this GBA chip may offer a promising tool for gut-brain interaction study.

Keywords: decellularized matrix, gut-brain axis, organ-on-chip, three-dimensional printing.

Procedia PDF Downloads 36
4317 Antigen-Presenting Cell Characteristics of Human γδ T Lymphocytes in Chronic Myeloid Leukemia

Authors: Piamsiri Sawaisorn, Tienrat Tangchaikeeree, Waraporn Chan-On, Chaniya Leepiyasakulchai, Rachanee Udomsangpetch, Suradej Hongeng, Kulachart Jangpatarapongsa

Abstract:

Human Vγ9Vδ2 T lymphocytes are regarded as promising effector cells for cancer immunotherapy since they have the ability to eliminate several tumor cells through non-peptide antigen recognition and non-major histocompatibility complex (MHC) restriction. An issue of recent interest is the capability to activate γδ T cells by use of a group of drugs, such as pamidronate, that cause accumulation of phosphoantigen which is recognized by γδ T cell receptors. Moreover, their antigen presenting cell-like phenotype and function have been confirmed in many clinical trials. In this study, Vγ9Vδ2 T cells derived from normal peripheral blood mononuclear cells were activated with pamidronate and the expanded Vγ9Vδ2 T cells can recognize and kill chronic myeloid leukemia (CML) cells treated with pamidronate through their cytotoxic activity. To support the strong role played by Vγ9Vδ2 T cells against cancer, we provide the evidence that Vγ9Vδ2 T cells activated with CML cell lysate antigen can efficiently express antigen presenting cell (APC) phenotype and function. In conclusion, pamidronate can be used in intentional activation of human Vγ9Vδ2 T cells and can increase the susceptibility of CML cells to cytotoxicity of Vγ9Vδ2 T cells. The activated Vγ9Vδ2 T cells by cancer cells lysate can show their APC characteristics, and so greatly increase the interest in exploring their therapeutic potential in hematologic malignancy.

Keywords: γδ T lymphocytes, antigen-presenting cells, chronic myeloid leukemia, cancer, immunotherapy

Procedia PDF Downloads 186
4316 Design and Implementation of Agricultural Machinery Equipment Scheduling Platform Based On Case-Based Reasoning

Authors: Wen Li, Zhengyu Bai, Qi Zhang

Abstract:

The demand for smart scheduling platform in agriculture, particularly in the scheduling process of machinery equipment, is high. With the continuous development of agricultural machinery equipment technology, a large number of agricultural machinery equipment and agricultural machinery cooperative service organizations continue to appear in China. The large area of cultivated land and a large number of agricultural activities in the central and western regions of China have made the demand for smart and efficient agricultural machinery equipment scheduling platforms more intense. In this study, we design and implement a platform for agricultural machinery equipment scheduling to allocate agricultural machinery equipment resources reasonably. With agricultural machinery equipment scheduling platform taken as the research object, we discuss its research significance and value, use the service blueprint technology to analyze and characterize the agricultural machinery equipment schedule workflow, the network analytic method to obtain the demand platform function requirements, and divide the platform functions through the platform function division diagram. Simultaneously, based on the case-based reasoning (CBR) algorithm, the equipment scheduling module of the agricultural machinery equipment scheduling platform is realized; finally, a design scheme of the agricultural machinery equipment scheduling platform architecture is provided, and the visualization interface of the platform is established via VB programming language. It provides design ideas and theoretical support for the construction of a modern agricultural equipment information scheduling platform.

Keywords: case-based reasoning, service blueprint, system design, ANP, VB programming language

Procedia PDF Downloads 175
4315 Effects of Virtual Reality Treadmill Training on Gait and Balance Performance of Patients with Stroke: Review

Authors: Hanan Algarni

Abstract:

Background: Impairment of walking and balance skills has negative impact on functional independence and community participation after stroke. Gait recovery is considered a primary goal in rehabilitation by both patients and physiotherapists. Treadmill training coupled with virtual reality technology is a new emerging approach that offers patients with feedback, open and random skills practice while walking and interacting with virtual environmental scenes. Objectives: To synthesize the evidence around the effects of the VR treadmill training on gait speed and balance primarily, functional independence and community participation secondarily in stroke patients. Methods: Systematic review was conducted; search strategy included electronic data bases: MEDLINE, AMED, Cochrane, CINAHL, EMBASE, PEDro, Web of Science, and unpublished literature. Inclusion criteria: Participant: adult >18 years, stroke, ambulatory, without severe visual or cognitive impartments. Intervention: VR treadmill training alone or with physiotherapy. Comparator: any other interventions. Outcomes: gait speed, balance, function, community participation. Characteristics of included studies were extracted for analysis. Risk of bias assessment was performed using Cochrane's ROB tool. Narrative synthesis of findings was undertaken and summary of findings in each outcome was reported using GRADEpro. Results: Four studies were included involving 84 stroke participants with chronic hemiparesis. Interventions intensity ranged (6-12 sessions, 20 minutes-1 hour/session). Three studies investigated the effects on gait speed and balance. 2 studies investigated functional outcomes and one study assessed community participation. ROB assessment showed 50% unclear risk of selection bias and 25% of unclear risk of detection bias across the studies. Heterogeneity was identified in the intervention effects at post training and follow up. Outcome measures, training intensity and durations also varied across the studies, grade of evidence was low for balance, moderate for speed and function outcomes, and high for community participation. However, it is important to note that grading was done on few numbers of studies in each outcome. Conclusions: The summary of findings suggests positive and statistically significant effects (p<0.05) of VR treadmill training compared to other interventions on gait speed, dynamic balance skills, function and participation directly after training. However, the effects were not sustained at follow up in two studies (2 weeks-1 month) and other studies did not perform follow up measurements. More RCTs with larger sample sizes and higher methodological quality are required to examine the long term effects of VR treadmill effects on function independence and community participation after stroke, in order to draw conclusions and produce stronger robust evidence.

Keywords: virtual reality, treadmill, stroke, gait rehabilitation

Procedia PDF Downloads 274
4314 Develop a Conceptual Data Model of Geotechnical Risk Assessment in Underground Coal Mining Using a Cloud-Based Machine Learning Platform

Authors: Reza Mohammadzadeh

Abstract:

The major challenges in geotechnical engineering in underground spaces arise from uncertainties and different probabilities. The collection, collation, and collaboration of existing data to incorporate them in analysis and design for given prospect evaluation would be a reliable, practical problem solving method under uncertainty. Machine learning (ML) is a subfield of artificial intelligence in statistical science which applies different techniques (e.g., Regression, neural networks, support vector machines, decision trees, random forests, genetic programming, etc.) on data to automatically learn and improve from them without being explicitly programmed and make decisions and predictions. In this paper, a conceptual database schema of geotechnical risks in underground coal mining based on a cloud system architecture has been designed. A new approach of risk assessment using a three-dimensional risk matrix supported by the level of knowledge (LoK) has been proposed in this model. Subsequently, the model workflow methodology stages have been described. In order to train data and LoK models deployment, an ML platform has been implemented. IBM Watson Studio, as a leading data science tool and data-driven cloud integration ML platform, is employed in this study. As a Use case, a data set of geotechnical hazards and risk assessment in underground coal mining were prepared to demonstrate the performance of the model, and accordingly, the results have been outlined.

Keywords: data model, geotechnical risks, machine learning, underground coal mining

Procedia PDF Downloads 274
4313 Proposal of Non-Destructive Inspection Function Based on Internet of Things Technology Using Drone

Authors: Byoungjoon Yu, Jihwan Park, Sujung Sin, Junghyun Im, Minsoo Park, Sehwan Park, Seunghee Park

Abstract:

In this paper, we propose a technology to monitor the soundness of an Internet-based bridge using a non-conductive inspection function. There has been a collapse accident due to the aging of the bridge structure, and it is necessary to prepare for the deterioration of the bridge. The NDT/SHM system for maintenance of existing bridge structures requires a large number of inspection personnel and expensive inspection costs, and access of expensive and large equipment to measurement points is required. Because current drone inspection equipment can only be inspected through camera, it is difficult to inspect inside damage accurately, and the results of an internal damage evaluation are subjective, and it is difficult for non-specialists to recognize the evaluation results. Therefore, it is necessary to develop NDT/SHM techniques for maintenance of new-concept bridge structures that allow for free movement and real-time evaluation of measurement results. This work is financially supported by Korea Ministry of Land, Infrastructure, and Transport (MOLIT) as 'Smart City Master and Doctor Course Grant Program' and a grant (14SCIP-B088624-01) from Construction Technology Research Program funded by Ministry of Land, Infrastructure and Transport of Korean government.

Keywords: Structural Health Monitoring, SHM, non-contact sensing, nondestructive testing, NDT, Internet of Things, autonomous self-driving drone

Procedia PDF Downloads 268
4312 New Variational Approach for Contrast Enhancement of Color Image

Authors: Wanhyun Cho, Seongchae Seo, Soonja Kang

Abstract:

In this work, we propose a variational technique for image contrast enhancement which utilizes global and local information around each pixel. The energy functional is defined by a weighted linear combination of three terms which are called on a local, a global contrast term and dispersion term. The first one is a local contrast term that can lead to improve the contrast of an input image by increasing the grey-level differences between each pixel and its neighboring to utilize contextual information around each pixel. The second one is global contrast term, which can lead to enhance a contrast of image by minimizing the difference between its empirical distribution function and a cumulative distribution function to make the probability distribution of pixel values becoming a symmetric distribution about median. The third one is a dispersion term that controls the departure between new pixel value and pixel value of original image while preserving original image characteristics as well as possible. Second, we derive the Euler-Lagrange equation for true image that can achieve the minimum of a proposed functional by using the fundamental lemma for the calculus of variations. And, we considered the procedure that this equation can be solved by using a gradient decent method, which is one of the dynamic approximation techniques. Finally, by conducting various experiments, we can demonstrate that the proposed method can enhance the contrast of colour images better than existing techniques.

Keywords: color image, contrast enhancement technique, variational approach, Euler-Lagrang equation, dynamic approximation method, EME measure

Procedia PDF Downloads 450
4311 Upward Millennium: Enterprise Resource Planning (ERP) Development and Implementation in Pakistani Organizations

Authors: Sara Aziz, Madiha Arooj, Hira Rizwani, Wasim Irshad

Abstract:

Enterprise Resource Planning (ER) as component of Information Resource System has turned up as one of the most demanding software in market for the new millennium. ERP system automates the core activities of any organization such as finance, manufacturing and supply chain management, human resource etc. to generate an access to the information in real time environment. Despite this fact many of the organizations globally particularly in developing country Pakistan are unaware and avoid adopting it. The development and implementation of ERP system is a complex and challenging process. This research was aimed to explore the benefits and coping strategies (with reference to end user reaction) of organizations those have implemented ERP. The problems addressed in this study focused the challenges and key success factors regarding implementing ERP Pakistani Organizations. Secondly, it has explored the stumbling blocks and business integration of those organizations that are not implementing ERP. The public and corporate sector organizations in Pakistan were selected to collect the data. The research finding shows that the organizational culture, openness towards adoption and learning, deployment and development, top management commitment and change systems, business processes and compatibility and user acceptance and reaction are contributing factors for successful implementation and development of ERP system. This research is thus an addition to enhance knowledge and understanding of implementation of ERP system in Pakistan.

Keywords: ERP system, user acceptance and involvement, change management, organizational culture

Procedia PDF Downloads 282
4310 Understanding the Damage Evolution and the Risk of Failure of Pyrrhotite Containing Concrete Foundations

Authors: Marisa Chrysochoou, James Mahoney, Kay Wille

Abstract:

Pyrrhotite is an iron-sulfide mineral which releases sulfuric acid when exposed to water and oxygen. The presence of this mineral in concrete foundations across Connecticut and Massachusetts in the US is causing in some cases premature failure. This has resulted in a devastating crisis for all parties affected by this type of failure which can take up to 15-25 years before internal damage becomes visible on the surface. This study shares laboratory results aimed to investigate the fundamental mechanisms of pyrrhotite reaction and to further the understanding of its deterioration kinetics within concrete. This includes the following analyses: total sulfur, wavelength dispersive X-ray fluorescence, expansion, reaction rate combined with ion-chromatography, as well as damage evolution using electro-chemical acceleration. This information is coupled to a statistical analysis of over 150 analyzed concrete foundations. Those samples were obtained and process using a developed and validated sampling method that is minimally invasive to the foundation in use, provides representative samples of the concrete matrix across the entire foundation, and is time and cost-efficient. The processed samples were then analyzed using a developed modular testing method based on total sulfur and wavelength dispersive X-ray fluorescence analysis to quantify the amount of pyrrhotite. As part of the statistical analysis the results were grouped into the following three categories: no damage observed and no pyrrhotite detected, no damage observed and pyrrhotite detected and damaged observed and pyrrhotite detected. As expected, a strong correlation between amount of pyrrhotite, age of the concrete and damage is observed. Information from the laboratory investigation and from the statistical analysis of field samples will aid in forming a scientific basis to support the decision process towards sustainable financial and administrative solutions by state and local stakeholders.

Keywords: concrete, pyrrhotite, risk of failure, statistical analysis

Procedia PDF Downloads 68
4309 Cross-sectional Developmental Trajectories of Executive Function and Relations to Theory of Mind in Autism Spectrum Disorder

Authors: Evangelia-Chrysanthi Kouklari, Evdokia Tagkouli, Vassiliki Ntre, Artemios Pehlivanidis, Stella Tsermentseli, Gerasimos Kolaitis, Katerina Papanikolaou

Abstract:

Executive Function (EF) is a set of goal-directed cognitive skills essentially needed in problem-solving and social behavior. Developmental EF research has indicated that EF emerges early in life and marks dramatic changes before the age of 5. Research evidence has suggested that it may continue to develop up to adolescence as well, following the development of the prefrontal cortex. Over the last decade, research evidence has suggested distinguished domains of cool and hot EF, but traditionally the development of EF in Autism Spectrum Disorder (ASD) has been examined mainly with tasks that address the “cool” cognitive aspects of EF. Thus, very little is known about the development of “hot” affective EF processes and whether the cross-sectional developmental pathways of cool and hot EF present similarities in ASD. Cool EF has also been proven to have a strong correlation with Theory of Mind (ToM) in young and middle childhood in typical development and in ASD, but information about the relationship of hot EF to ToM skills is minimal. The present study’s objective was to explore the age-related changes of cool and hot EF in ASD participants from middle childhood to adolescence, as well as their relationship to ToM. This study employed an approach of cross-sectional developmental trajectories to investigate patterns of cool and hot EF relative to chronological age within ASD. Eighty-two participants between 7 and 16 years of age were recruited to undertake measures that assessed cool EF (working memory, cognitive flexibility, planning & inhibition), hot EF (affective decision making & delay discounting) and ToM (false belief and mental state/emotion recognition). Results demonstrated that trajectories of all cool EF presented age-related changes in ASD (improvements with age). With regards to hot EF, affective decision-making presented age-related changes, but for delay discounting, there were no statistically significant changes found across younger and older ASD participants. ToM was correlated only to cool EF. Theoretical implications are discussed as the investigation of the cross-sectional developmental trajectories of the broader EF (cool and hot domains) may contribute to better defining cognitive phenotypes in ASD. These findings highlight the need to examine developmental trajectories of both hot and cool EF in research and clinical practice as they may aid in enhancing diagnosis or better-informed intervention programs.

Keywords: autism spectrum disorder, developmental trajectories, executive function, theory of mind

Procedia PDF Downloads 148
4308 A Study on the Correlation Analysis between the Pre-Sale Competition Rate and the Apartment Unit Plan Factor through Machine Learning

Authors: Seongjun Kim, Jinwooung Kim, Sung-Ah Kim

Abstract:

The development of information and communication technology also affects human cognition and thinking, especially in the field of design, new techniques are being tried. In architecture, new design methodologies such as machine learning or data-driven design are being applied. In particular, these methodologies are used in analyzing the factors related to the value of real estate or analyzing the feasibility in the early planning stage of the apartment housing. However, since the value of apartment buildings is often determined by external factors such as location and traffic conditions, rather than the interior elements of buildings, data is rarely used in the design process. Therefore, although the technical conditions are provided, the internal elements of the apartment are difficult to apply the data-driven design in the design process of the apartment. As a result, the designers of apartment housing were forced to rely on designer experience or modular design alternatives rather than data-driven design at the design stage, resulting in a uniform arrangement of space in the apartment house. The purpose of this study is to propose a methodology to support the designers to design the apartment unit plan with high consumer preference by deriving the correlation and importance of the floor plan elements of the apartment preferred by the consumers through the machine learning and reflecting this information from the early design process. The data on the pre-sale competition rate and the elements of the floor plan are collected as data, and the correlation between pre-sale competition rate and independent variables is analyzed through machine learning. This analytical model can be used to review the apartment unit plan produced by the designer and to assist the designer. Therefore, it is possible to make a floor plan of apartment housing with high preference because it is possible to feedback apartment unit plan by using trained model when it is used in floor plan design of apartment housing.

Keywords: apartment unit plan, data-driven design, design methodology, machine learning

Procedia PDF Downloads 268
4307 Risk Assessment of Heavy Rainfall and Development of Damage Prediction Function for Gyeonggi-Do Province

Authors: Jongsung Kim, Daegun Han, Myungjin Lee, Soojun Kim, Hung Soo Kim

Abstract:

Recently, the frequency and magnitude of natural disasters are gradually increasing due to climate change. Especially in Korea, large-scale damage caused by heavy rainfall frequently occurs due to rapid urbanization. Therefore, this study proposed a Heavy rain Damage Risk Index (HDRI) using PSR (Pressure – State - Response) structure for heavy rain risk assessment. We constructed pressure index, state index, and response index for the risk assessment of each local government in Gyeonggi-do province, and the evaluation indices were determined by principal component analysis. The indices were standardized using the Z-score method then HDRIs were obtained for 31 local governments in the province. The HDRI is categorized into three classes, say, the safest class is 1st class. As the results, the local governments of the 1st class were 15, 2nd class 7, and 3rd class 9. From the study, we were able to identify the risk class due to the heavy rainfall for each local government. It will be useful to develop the heavy rainfall prediction function by risk class, and this was performed in this issue. Also, this risk class could be used for the decision making for efficient disaster management. Acknowledgements: This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (2017R1A2B3005695).

Keywords: natural disaster, heavy rain risk assessment, HDRI, PSR

Procedia PDF Downloads 199
4306 Suppression of Immunostimulatory Function of Dendritic Cells and Prolongation of Skin Allograft Survival by Dryocrassin

Authors: Hsin-Lien Lin, Ju-Hui Fu

Abstract:

Dendritic cells (DCs) are the major professional antigen-presenting cells for the development of optimal T-cell immunity. DCs can be used as pharmacological targets to screen novel biological modifiers for the treatment of harmful immune responses, such as transplantation rejection. Dryopteris crassirhizoma Nakai (Aspiadaceae) is used for traditional herbal medicine in the region of East Asia. The root of this fern plant has been listed for treating inflammatory diseases. Dryocrassin is the tetrameric phlorophenone component derived from Dryopteris. Here, we tested the immunomodulatory potential of dryocrassin on lipopolysaccharide (LPS)-stimulated activation of mouse bone marrow-derived DCs in vitro and in skin allograft transplantation in vivo. Results demonstrated that dryocrassin reduced the secretion of tumor necrosis factor-α, interleukin-6, and interleukin-12p70 by LPS-stimulated DCs. The expression of LPS-induced major histocompatibility complex class II, CD40, and CD86 on DCs was also blocked by dryocrassin. Moreover, LPS-stimulated DC-elicited allogeneic T-cell proliferation was lessened by dryocrassin. In addition, dryocrassin inhibited LPS-induced activation of IϰB kinase, JNK/p38 mitogen-activated protein kinase, as well as the translocation of NF-ϰB. Treatment with dryocrassin obviously diminished 2,4-dinitro-1-fluorobenzene- induced delayed-type hypersensitivity and prolonged skin allograft survival. Dryocrassin may be one of the potent immunosuppressive agents for transplant rejection through the destruction of DC maturation and function.

Keywords: dryocrassin, dendritic cells, immunosuppression, skin allograft

Procedia PDF Downloads 386
4305 Finite-Sum Optimization: Adaptivity to Smoothness and Loopless Variance Reduction

Authors: Bastien Batardière, Joon Kwon

Abstract:

For finite-sum optimization, variance-reduced gradient methods (VR) compute at each iteration the gradient of a single function (or of a mini-batch), and yet achieve faster convergence than SGD thanks to a carefully crafted lower-variance stochastic gradient estimator that reuses past gradients. Another important line of research of the past decade in continuous optimization is the adaptive algorithms such as AdaGrad, that dynamically adjust the (possibly coordinate-wise) learning rate to past gradients and thereby adapt to the geometry of the objective function. Variants such as RMSprop and Adam demonstrate outstanding practical performance that have contributed to the success of deep learning. In this work, we present AdaLVR, which combines the AdaGrad algorithm with loopless variance-reduced gradient estimators such as SAGA or L-SVRG that benefits from a straightforward construction and a streamlined analysis. We assess that AdaLVR inherits both good convergence properties from VR methods and the adaptive nature of AdaGrad: in the case of L-smooth convex functions we establish a gradient complexity of O(n + (L + √ nL)/ε) without prior knowledge of L. Numerical experiments demonstrate the superiority of AdaLVR over state-of-the-art methods. Moreover, we empirically show that the RMSprop and Adam algorithm combined with variance-reduced gradients estimators achieve even faster convergence.

Keywords: convex optimization, variance reduction, adaptive algorithms, loopless

Procedia PDF Downloads 71