Search results for: loss model
18441 Dynamic Investigation of Brake Squeal Problem in The Presence of Kinematic Nonlinearities
Authors: Shahroz Khan, Osman Taha Şen
Abstract:
In automotive brake systems, brake noise has been a major problem, and brake squeal is one of the critical ones which is an instability issue. The brake squeal produces an audible sound at high frequency that is irritating to the human ear. To study this critical problem, first a nonlinear mathematical model with three degree of freedom is developed. This model consists of a point mass that simulates the brake pad and a sliding surface that simulates the brake rotor. The model exposes kinematic and clearance nonlinearities, but no friction nonlinearity. In the formulation, the friction coefficient is assumed to be constant and the friction force does not change direction. The nonlinear governing equations of the model are first obtained, and numerical solutions are sought for different cases. Second, a computational model for the squeal problem is developed with a commercial software, and computational solutions are obtained with two different types of contact cases (solid-to-solid and sphere-to-plane). This model consists of three rigid bodies and several elastic elements that simulate the key characteristics of a brake system. The response obtained from this model is compared with numerical solutions in time and frequency domain.Keywords: contact force, nonlinearities, brake squeal, vehicle brake
Procedia PDF Downloads 24918440 Development of a Wind Resource Assessment Framework Using Weather Research and Forecasting (WRF) Model, Python Scripting and Geographic Information Systems
Authors: Jerome T. Tolentino, Ma. Victoria Rejuso, Jara Kaye Villanueva, Loureal Camille Inocencio, Ma. Rosario Concepcion O. Ang
Abstract:
Wind energy is rapidly emerging as the primary source of electricity in the Philippines, although developing an accurate wind resource model is difficult. In this study, Weather Research and Forecasting (WRF) Model, an open source mesoscale Numerical Weather Prediction (NWP) model, was used to produce a 1-year atmospheric simulation with 4 km resolution on the Ilocos Region of the Philippines. The WRF output (netCDF) extracts the annual mean wind speed data using a Python-based Graphical User Interface. Lastly, wind resource assessment was produced using a GIS software. Results of the study showed that it is more flexible to use Python scripts than using other post-processing tools in dealing with netCDF files. Using WRF Model, Python, and Geographic Information Systems, a reliable wind resource map is produced.Keywords: wind resource assessment, weather research and forecasting (WRF) model, python, GIS software
Procedia PDF Downloads 44518439 The Process of Crisis: Model of Its Development in the Organization
Authors: M. Mikušová
Abstract:
The main aim of this paper is to present a clear and comprehensive picture of the process of a crisis in the organization which will help to better understand its possible developments. For a description of the sequence of individual steps and an indication of their causation and possible variants of the developments, a detailed flow diagram with verbal comment is applied. For simplicity, the process of the crisis is observed in four basic phases called: symptoms of the crisis, diagnosis, action and prevention. The model highlights the complexity of the phenomenon of the crisis and that the various phases of the crisis are interweaving.Keywords: crisis, management, model, organization
Procedia PDF Downloads 29718438 Integrated Gas Turbine Performance Diagnostics and Condition Monitoring Using Adaptive GPA
Authors: Yi-Guang Li, Suresh Sampath
Abstract:
Gas turbine performance degrades over time, and the degradation is greatly affected by environmental, ambient, and operating conditions. The engines may degrade slowly under favorable conditions and result in a waste of engine life if a scheduled maintenance scheme is followed. They may also degrade fast and fail before a scheduled overhaul if the conditions are unfavorable, resulting in serious secondary damage, loss of engine availability, and increased maintenance costs. To overcome these problems, gas turbine owners are gradually moving from scheduled maintenance to condition-based maintenance, where condition monitoring is one of the key supporting technologies. This paper presents an integrated adaptive GPA diagnostics and performance monitoring system developed at Cranfield University for gas turbine gas path condition monitoring. It has the capability to predict the performance degradation of major gas path components of gas turbine engines, such as compressors, combustors, and turbines, using gas path measurement data. It is also able to predict engine key performance parameters for condition monitoring, such as turbine entry temperature that cannot be directly measured. The developed technology has been implemented into digital twin computer Software, Pythia, to support the condition monitoring of gas turbine engines. The capabilities of the integrated GPA condition monitoring system are demonstrated in three test cases using a model gas turbine engine similar to the GE aero-derivative LM2500 engine widely used in power generation and marine propulsion. It shows that when the compressor of the model engine degrades, the Adaptive GPA is able to predict the degradation and the changing engine performance accurately using gas path measurements. Such a presented technology and software are generic, can be applied to different types of gas turbine engines, and provide crucial engine health and performance parameters to support condition monitoring and condition-based maintenance.Keywords: gas turbine, adaptive GPA, performance, diagnostics, condition monitoring
Procedia PDF Downloads 9418437 Curved Rectangular Patch Array Antenna Using Flexible Copper Sheet for Small Missile Application
Authors: Jessada Monthasuwan, Charinsak Saetiaw, Chanchai Thongsopa
Abstract:
This paper presents the development and design of the curved rectangular patch arrays antenna for small missile application. This design uses a 0.1mm flexible copper sheet on the front layer and back layer, and a 1.8mm PVC substrate on a middle layer. The study used a small missile model with 122mm diameter size with speed 1.1 Mach and frequency range on ISM 2.4 GHz. The design of curved antenna can be installation on a cylindrical object like a missile. So, our proposed antenna design will have a small size, lightweight, low cost, and simple structure. The antenna was design and analysis by a simulation result from CST microwave studio and confirmed with a measurement result from a prototype antenna. The proposed antenna has a bandwidth covering the frequency range 2.35-2.48 GHz, the return loss below -10 dB and antenna gain 6.5 dB. The proposed antenna can be applied with a small guided missile effectively.Keywords: rectangular patch arrays, small missile antenna, antenna design and simulation, cylinder PVC tube
Procedia PDF Downloads 31818436 Seismic Behavior and Loss Assessment of High–Rise Buildings with Light Gauge Steel–Concrete Hybrid Structure
Authors: Bing Lu, Shuang Li, Hongyuan Zhou
Abstract:
The steel–concrete hybrid structure has been extensively employed in high–rise buildings and super high–rise buildings. The light gauge steel–concrete hybrid structure, including light gauge steel structure and concrete hybrid structure, is a new–type steel–concrete hybrid structure, which possesses some advantages of light gauge steel structure and concrete hybrid structure. The seismic behavior and loss assessment of three high–rise buildings with three different concrete hybrid structures were investigated through finite element software, respectively. The three concrete hybrid structures are reinforced concrete column–steel beam (RC‒S) hybrid structure, concrete–filled steel tube column–steel beam (CFST‒S) hybrid structure, and tubed concrete column–steel beam (TC‒S) hybrid structure. The nonlinear time-history analysis of three high–rise buildings under 80 earthquakes was carried out. After simulation, it indicated that the seismic performances of three high–rise buildings were superior. Under extremely rare earthquakes, the maximum inter–storey drifts of three high–rise buildings are significantly lower than 1/50. The inter–storey drift and floor acceleration of high–rise building with CFST‒S hybrid structure were bigger than those of high–rise buildings with RC‒S hybrid structure, and smaller than those of high–rise building with TC‒S hybrid structure. Then, based on the time–history analysis results, the post-earthquake repair cost ratio and repair time of three high–rise buildings were predicted through an economic performance analysis method proposed in FEMA‒P58 report. Under frequent earthquakes, basic earthquakes and rare earthquakes, the repair cost ratio and repair time of three high-rise buildings were less than 5% and 15 days, respectively. Under extremely rare earthquakes, the repair cost ratio and repair time of high-rise buildings with TC‒S hybrid structure were the most among three high rise buildings. Due to the advantages of CFST-S hybrid structure, it could be extensively employed in high-rise buildings subjected to earthquake excitations.Keywords: seismic behavior, loss assessment, light gauge steel–concrete hybrid structure, high–rise building, time–history analysis
Procedia PDF Downloads 19318435 Classification Based on Deep Neural Cellular Automata Model
Authors: Yasser F. Hassan
Abstract:
Deep learning structure is a branch of machine learning science and greet achievement in research and applications. Cellular neural networks are regarded as array of nonlinear analog processors called cells connected in a way allowing parallel computations. The paper discusses how to use deep learning structure for representing neural cellular automata model. The proposed learning technique in cellular automata model will be examined from structure of deep learning. A deep automata neural cellular system modifies each neuron based on the behavior of the individual and its decision as a result of multi-level deep structure learning. The paper will present the architecture of the model and the results of simulation of approach are given. Results from the implementation enrich deep neural cellular automata system and shed a light on concept formulation of the model and the learning in it.Keywords: cellular automata, neural cellular automata, deep learning, classification
Procedia PDF Downloads 20318434 Optimization of Scheduling through Altering Layout Using Pro-Model
Authors: Zouhair Issa Ahmed, Ahmed Abdulrasool Ahmed, Falah Hassan Abdulsada
Abstract:
This paper presents a layout of a factory using Pro-Model simulation by choosing the best layout that gives the highest productivity and least work in process. The general problem is to find the best sequence in which jobs pass between the machines which are compatible with the technological constraints and optimal with respect to some performance criteria. The best simulation with Pro-Model program increased productivity and reduced work in process by balancing lines of production compared with the current layout of factory when productivity increased from 45 products to 180 products through 720 hours.Keywords: scheduling, Pro-Model, simulation, balancing lines of production, layout planning, WIP
Procedia PDF Downloads 63918433 A Generative Pretrained Transformer-Based Question-Answer Chatbot and Phantom-Less Quantitative Computed Tomography Bone Mineral Density Measurement System for Osteoporosis
Authors: Mian Huang, Chi Ma, Junyu Lin, William Lu
Abstract:
Introduction: Bone health attracts more attention recently and an intelligent question and answer (QA) chatbot for osteoporosis is helpful for science popularization. With Generative Pretrained Transformer (GPT) technology developing, we build an osteoporosis corpus dataset and then fine-tune LLaMA, a famous open-source GPT foundation large language model(LLM), on our self-constructed osteoporosis corpus. Evaluated by clinical orthopedic experts, our fine-tuned model outperforms vanilla LLaMA on osteoporosis QA task in Chinese. Three-dimensional quantitative computed tomography (QCT) measured bone mineral density (BMD) is considered as more accurate than DXA for BMD measurement in recent years. We develop an automatic Phantom-less QCT(PL-QCT) that is more efficient for BMD measurement since no need of an external phantom for calibration. Combined with LLM on osteoporosis, our PL-QCT provides efficient and accurate BMD measurement for our chatbot users. Material and Methods: We build an osteoporosis corpus containing about 30,000 Chinese literatures whose titles are related to osteoporosis. The whole process is done automatically, including crawling literatures in .pdf format, localizing text/figure/table region by layout segmentation algorithm and recognizing text by OCR algorithm. We train our model by continuous pre-training with Low-rank Adaptation (LoRA, rank=10) technology to adapt LLaMA-7B model to osteoporosis domain, whose basic principle is to mask the next word in the text and make the model predict that word. The loss function is defined as cross-entropy between the predicted and ground-truth word. Experiment is implemented on single NVIDIA A800 GPU for 15 days. Our automatic PL-QCT BMD measurement adopt AI-associated region-of-interest (ROI) generation algorithm for localizing vertebrae-parallel cylinder in cancellous bone. Due to no phantom for BMD calibration, we calculate ROI BMD by CT-BMD of personal muscle and fat. Results & Discussion: Clinical orthopaedic experts are invited to design 5 osteoporosis questions in Chinese, evaluating performance of vanilla LLaMA and our fine-tuned model. Our model outperforms LLaMA on over 80% of these questions, understanding ‘Expert Consensus on Osteoporosis’, ‘QCT for osteoporosis diagnosis’ and ‘Effect of age on osteoporosis’. Detailed results are shown in appendix. Future work may be done by training a larger LLM on the whole orthopaedics with more high-quality domain data, or a multi-modal GPT combining and understanding X-ray and medical text for orthopaedic computer-aided-diagnosis. However, GPT model gives unexpected outputs sometimes, such as repetitive text or seemingly normal but wrong answer (called ‘hallucination’). Even though GPT give correct answers, it cannot be considered as valid clinical diagnoses instead of clinical doctors. The PL-QCT BMD system provided by Bone’s QCT(Bone’s Technology(Shenzhen) Limited) achieves 0.1448mg/cm2(spine) and 0.0002 mg/cm2(hip) mean absolute error(MAE) and linear correlation coefficient R2=0.9970(spine) and R2=0.9991(hip)(compared to QCT-Pro(Mindways)) on 155 patients in three-center clinical trial in Guangzhou, China. Conclusion: This study builds a Chinese osteoporosis corpus and develops a fine-tuned and domain-adapted LLM as well as a PL-QCT BMD measurement system. Our fine-tuned GPT model shows better capability than LLaMA model on most testing questions on osteoporosis. Combined with our PL-QCT BMD system, we are looking forward to providing science popularization and early morning screening for potential osteoporotic patients.Keywords: GPT, phantom-less QCT, large language model, osteoporosis
Procedia PDF Downloads 7418432 Effect of Wind and Humidity on Microwave Links in West North Libya
Authors: M. S. Agha, A. M. Eshahiry, S. A. Aldabbar, Z. M. Alshahri
Abstract:
The propagation of microwave is affected by rain and dust particles by way of signal attenuation and de-polarization. Computations of these effects require knowledge of the propagation characteristics of microwave and millimeter wave energy in the climate conditions of the studied region. This paper presents the effect of wind and humidity on wireless communication such as microwave links in the west north region of Libya (Al-Khoms), experimental procedure to study the effects mentioned above. The experimental procedure is done on three selected antennae towers (Nagaza stations, Al-Khoms center stations, Al-Khoms gateway stations) to determining of the attenuation loss per unit length and cross-polarization discrimination (XPD) change which coverage in the studied region, it is required to collect the dust particles carried out by the wind, measure the particles size distribution (PSD), calculate the concentration, and carry chemical analysis of the contents, then the dielectric constant can be calculated. The result showed that effect of the humidity and dust, the antenna height, the visibility, on the complex permittivity effects both attenuation and phase shift, there is some consideration that has to be taken into account in the communication power budget.Keywords: attenuation, de-polarization, scattering, transmission loss
Procedia PDF Downloads 15518431 Commercial Automobile Insurance: A Practical Approach of the Generalized Additive Model
Authors: Nicolas Plamondon, Stuart Atkinson, Shuzi Zhou
Abstract:
The insurance industry is usually not the first topic one has in mind when thinking about applications of data science. However, the use of data science in the finance and insurance industry is growing quickly for several reasons, including an abundance of reliable customer data, ferocious competition requiring more accurate pricing, etc. Among the top use cases of data science, we find pricing optimization, customer segmentation, customer risk assessment, fraud detection, marketing, and triage analytics. The objective of this paper is to present an application of the generalized additive model (GAM) on a commercial automobile insurance product: an individually rated commercial automobile. These are vehicles used for commercial purposes, but for which there is not enough volume to apply pricing to several vehicles at the same time. The GAM model was selected as an improvement over GLM for its ease of use and its wide range of applications. The model was trained using the largest split of the data to determine model parameters. The remaining part of the data was used as testing data to verify the quality of the modeling activity. We used the Gini coefficient to evaluate the performance of the model. For long-term monitoring, commonly used metrics such as RMSE and MAE will be used. Another topic of interest in the insurance industry is to process of producing the model. We will discuss at a high level the interactions between the different teams with an insurance company that needs to work together to produce a model and then monitor the performance of the model over time. Moreover, we will discuss the regulations in place in the insurance industry. Finally, we will discuss the maintenance of the model and the fact that new data does not come constantly and that some metrics can take a long time to become meaningful.Keywords: insurance, data science, modeling, monitoring, regulation, processes
Procedia PDF Downloads 7918430 Water Balance Components under Climate Change in Croatia
Authors: Jelena Bašić, Višnjica Vučetić, Mislav Anić, Tomislav Bašić
Abstract:
Lack of precipitation combined with high temperatures causes great damage to the agriculture and economy in Croatia. Therefore, it is important to understand water circulation and balance. We decided to gain a better insight into the spatial distribution of water balance components (WBC) and their long-term changes in Croatia. WBC are precipitation (P), potential evapotranspiration (PET), actual evapotranspiration (ET), soil moisture content (S), runoff (RO), recharge (R), and soil moisture loss (L). Since measurements of the mentioned components in Croatia are very rare, the Palmer model has been applied to estimate them. We refined method by setting into the account the corrective factor to include influence effects of the wind as well as a maximum soil capacity for specific soil types. We will present one hundred years’ time series of PET and ET showing the trends at few meteorological stations and a comparison of components of two climatological periods. The meteorological data from 109 stations have been used for the spatial distribution map of the WBC of Croatia.Keywords: croatia, long-term trends, the palmer method, water balance components
Procedia PDF Downloads 14618429 Rathke’s Cleft Cyst Presenting as Unilateral Visual Field Defect
Authors: Ritesh Verma, Manisha Rathi, Chand Singh Dhull, Sumit Sachdeva, Jitender Phogat
Abstract:
A Rathke's cleft cyst is a benign growth found on the pituitary gland in the brain, specifically a fluid-filled cyst in the posterior portion of the anterior pituitary gland. It occurs when the Rathke's pouch does not develop properly and ranges in size from 2 to 40mm in diameter. A 38-year-old male presented to the outpatient department with loss of vision in the inferior quadrant of the left eye since 15 days. Visual acuity was 6/6 in the right eye and 6/9 in the left eye. Visual field analysis by HFA-24-2 revealed an inferior field defect extending to the supero-temporal quadrant in the left eye. MRI brain and orbit was advised to the patient and it revealed a well defined cystic pituitary adenoma indenting left optic nerve near optic chiasm consistent with the diagnosis of Rathke’s cleft cyst (RCC). The patient was referred to neurosurgery department for further management. Symptoms vary greatly between individuals having RCCs. RCCs can be non-functioning, functioning, or both. Besides headaches, neurocognitive deficits are almost always present but have a high rate of immediate reversal if the cyst is properly treated or drained.Keywords: pituitary tumors, rathke’s cleft cyst, visual field defects, vision loss
Procedia PDF Downloads 20918428 Turbulent Forced Convection of Cu-Water Nanofluid: CFD Models Comparison
Authors: I. Behroyan, P. Ganesan, S. He, S. Sivasankaran
Abstract:
This study compares the predictions of five types of Computational Fluid Dynamics (CFD) models, including two single-phase models (i.e. Newtonian and non-Newtonian) and three two-phase models (Eulerian-Eulerian, mixture and Eulerian-Lagrangian), to investigate turbulent forced convection of Cu-water nanofluid in a tube with a constant heat flux on the tube wall. The Reynolds (Re) number of the flow is between 10,000 and 25,000, while the volume fraction of Cu particles used is in the range of 0 to 2%. The commercial CFD package of ANSYS-Fluent is used. The results from the CFD models are compared with results from experimental investigations from literature. According to the results of this study, non-Newtonian single-phase model, in general, does not show a good agreement with Xuan and Li correlation in prediction of Nu number. Eulerian-Eulerian model gives inaccurate results expect for φ=0.5%. Mixture model gives a maximum error of 15%. Newtonian single-phase model and Eulerian-Lagrangian model, in overall, are the recommended models. This work can be used as a reference for selecting an appreciate model for future investigation. The study also gives a proper insight about the important factors such as Brownian motion, fluid behavior parameters and effective nanoparticle conductivity which should be considered or changed by the each model.Keywords: heat transfer, nanofluid, single-phase models, two-phase models
Procedia PDF Downloads 48718427 Particle Filter Implementation of a Non-Linear Dynamic Fall Model
Authors: T. Kobayashi, K. Shiba, T. Kaburagi, Y. Kurihara
Abstract:
For the elderly living alone, falls can be a serious problem encountered in daily life. Some elderly people are unable to stand up without the assistance of a caregiver. They may become unconscious after a fall, which can lead to serious aftereffects such as hypothermia, dehydration, and sometimes even death. We treat the subject as an inverted pendulum and model its angle from the equilibrium position and its angular velocity. As the model is non-linear, we implement the filtering method with a particle filter which can estimate true states of the non-linear model. In order to evaluate the accuracy of the particle filter estimation results, we calculate the root mean square error (RMSE) between the estimated angle/angular velocity and the true values generated by the simulation. The experimental results give the highest accuracy RMSE of 0.0141 rad and 0.1311 rad/s for the angle and angular velocity, respectively.Keywords: fall, microwave Doppler sensor, non-linear dynamics model, particle filter
Procedia PDF Downloads 22118426 Loss of Function of Only One of Two CPR5 Paralogs Causes Resistance Against Rice Yellow Mottle Virus
Authors: Yugander Arra, Florence Auguy, Melissa Stiebner, Sophie Chéron, Michael M. Wudick, Van Schepler-Luu, Sébastien Cunnac, Wolf B. Frommer, Laurence Albar
Abstract:
Rice yellow mottle virus (RYMV) is one of the most important diseases affecting rice in Africa. The most promising strategy to reduce yield losses is the use of highly resistant varieties. The resistance gene RYMV2 is homolog of the Arabidopsis constitutive expression of pathogenesis related protein-5 (AtCPR5) nucleoporin gene. Resistance alleles are originating from African cultivated rice Oryza glaberrima, rarely cultivated, and are characterized by frameshifts or early stop codons, leading to a non-functional or truncated protein. Rice possesses two paralogs of CPR5 and function of these genes are unclear. Here, we evaluated the role of the two rice candidate nucleoporin paralogs OsCPR5.1 (pathogenesis-related gene 5; RYMV2) and OsCPR5.2 by CRISPR/Cas9 genome editing. Despite striking sequence and structural similarity, only loss-of-function of OsCPR5.1 led to full resistance, while loss-of-function oscpr5.2 mutants remained susceptible. Short N-terminal deletions in OsCPR5.1 also did not lead to resistance. In contrast to Atcpr5 mutants, neither OsCPR5.1 nor OsCPR5.2 knock out mutants showed substantial growth defects. Taken together, the candidate nucleoporin OsCPR5.1, but not its close homolog OsCPR5.2, plays a specific role for the susceptibility to RYMV, possibly by impairing the import of viral RNA or protein into the nucleus. Whereas gene introgression from O. glaberrima to high yielding O. sativa varieties is impaired by strong sterility barriers and the negative impact of linkage drag, genome editing of OsCPR5.1, while maintaining OsCPR5.2 activity, thus provides a promising strategy to generate O. sativa elite lines that are resistant to RYMV.Keywords: CRISPR Cas9, genome editing, knock out mutant, recessive resistance, rice yellow mottle virus
Procedia PDF Downloads 12318425 Study of The Ballistic Impact at Low Speed on Angle-Ply Fibrous Structures
Authors: Daniel Barros, Carlos Mota, Raul Fangueiro, Pedro Rosa, Gonçalo Domingos, Alfredo Passanha, Norberto Almeida
Abstract:
The main aim of the work was to compare the ballistic performance of developed composites using different types of fiber woven fabrics [0,90] and different layers orientation (Angle-ply). The ballistic laminate composites were developed using E-glass, S-glass and aramid fabrics impregnated with thermosetting epoxy resin and using different layers orientation (0,0)º and (0,15)º. The idea of the study is to compare the ballistic performance of each laminate produced by studying the velocity loss of the fragment fired into the laminate surface. There are present some mechanical properties for laminates produced using the different types of fiber, where tensile, flexural and impact Charpy properties were studied. Overall, the angle-ply laminates produced using orientations of (0,15)º, despite the slight loss of mechanical properties compared to the (0,0)º orientation, presents better ballistic resistance and dissipation of energy, for lower ballistic impact velocities (under 290 m/s-1). After treatment of ballistic impact results, the S-Glass with (0,15)º laminate presents better ballistic perforce compared to the other combinations studied.Keywords: ballistic impact, angle-ply, ballistic composite, s-glass fiber, aramid fiber, fabric fiber, energy dissipation, mechanical performance
Procedia PDF Downloads 21318424 Study on Security and Privacy Issues of Mobile Operating Systems Based on Malware Attacks
Authors: Huang Dennis, Aurelio Aziel, Burra Venkata Durga Kumar
Abstract:
Nowadays, smartphones and mobile operating systems have been popularly widespread in our daily lives. As people use smartphones, they tend to store more private and essential data on their devices, because of this it is very important to develop more secure mobile operating systems and cloud storage to secure the data. However, several factors can cause security risks in mobile operating systems such as malware, malicious app, phishing attacks, ransomware, and more, all of which can cause a big problem for users as they can access the user's private data. Those problems can cause data loss, financial loss, identity theft, and other serious consequences. Other than that, during the pandemic, people will use their mobile devices more and do all sorts of transactions online, which may lead to more victims of online scams and inexperienced users being the target. With the increase in attacks, researchers have been actively working to develop several countermeasures to enhance the security of operating systems. This study aims to provide an overview of the security and privacy issues in mobile operating systems, identifying the potential risk of operating systems, and the possible solutions. By examining these issues, we want to provide an easy understanding to users and researchers to improve knowledge and develop more secure mobile operating systems.Keywords: mobile operating system, security, privacy, Malware
Procedia PDF Downloads 9318423 A Gastro-Intestinal Model for a Rational Design of in vitro Systems to Study Drugs Bioavailability
Authors: Pompa Marcello, Mauro Capocelli, Vincenzo Piemonte
Abstract:
This work focuses on a mathematical model able to describe the gastro-intestinal physiology and providing a rational tool for the design of an artificial gastro-intestinal system. This latter is mainly devoted to analyse the absorption and bioavailability of drugs and nutrients through in vitro tests in order to overcome (or, at least, to partially replace) in vivo trials. The provided model realizes a conjunction ring (with extended prediction capability) between in vivo tests and mechanical-laboratory models emulating the human body. On this basis, no empirical equations controlling the gastric emptying are implemented in this model as frequent in the cited literature and all the sub-unit and the related system of equations are physiologically based. More in detail, the model structure consists of six compartments (stomach, duodenum, jejunum, ileum, colon and blood) interconnected through pipes and valves. Paracetamol, Ketoprofen, Irbesartan and Ketoconazole are considered and analysed in this work as reference drugs. The mathematical model has been validated against in vivo literature data. Results obtained show a very good model reliability and highlight the possibility to realize tailored simulations for different couples patient-drug, including food adsorption dynamics.Keywords: gastro-intestinal model, drugs bioavailability, paracetamol, ketoprofen
Procedia PDF Downloads 17318422 Wind Turbine Wake Prediction and Validation under a Stably-Stratified Atmospheric Boundary Layer
Authors: Yilei Song, Linlin Tian, Ning Zhao
Abstract:
Turbulence energetics and structures in the wake of large-scale wind turbines under the stably-stratified atmospheric boundary layer (SABL) can be complicated due to the presence of low-level jets (LLJs), a region of higher wind speeds than the geostrophic wind speed. With a modified one-k-equation, eddy viscosity model specified for atmospheric flows as the sub-grid scale (SGS) model, a realistic atmospheric state of the stable ABL is well reproduced by large-eddy simulation (LES) techniques. Corresponding to the precursor stably stratification, the detailed wake properties of a standard 5-MW wind turbine represented as an actuator line model are provided. An engineering model is proposed for wake prediction based on the simulation statistics and gets validated. Results confirm that the proposed wake model can provide good predictions for wind turbines under the SABL.Keywords: large-eddy simulation, stably-stratified atmospheric boundary layer, wake model, wind turbine wake
Procedia PDF Downloads 17718421 Basic One-Dimensional Modelica®-Model for Simulation of Gas-Phase Adsorber Dynamics
Authors: Adrian Rettig, Silvan Schneider, Reto Tamburini, Mirko Kleingries, Ulf Christian Muller
Abstract:
Industrial adsorption processes are, mainly due to si-multaneous heat and mass transfer, characterized by a high level of complexity. The conception of such processes often does not take place systematically; instead scale-up/down respectively number-up/down methods based on existing systems are used. This paper shows how Modelica® can be used to develop a transient model enabling a more systematic design of such ad- and desorption components and processes. The core of this model is a lumped-element submodel of a single adsorbent grain, where the thermodynamic equilibria and the kinetics of the ad- and desorption processes are implemented and solved on the basis of mass-, momentum and energy balances. For validation of this submodel, a fixed bed adsorber, whose characteristics are described in detail in the literature, was modeled and simulated. The simulation results are in good agreement with the experimental results from the literature. Therefore, the model development will be continued, and the extended model will be applied to further adsorber types like rotor adsorbers and moving bed adsorbers.Keywords: adsorption, desorption, linear driving force, dynamic model, Modelica®, integral equation approach
Procedia PDF Downloads 37618420 Forecasting Stock Prices Based on the Residual Income Valuation Model: Evidence from a Time-Series Approach
Authors: Chen-Yin Kuo, Yung-Hsin Lee
Abstract:
Previous studies applying residual income valuation (RIV) model generally use panel data and single-equation model to forecast stock prices. Unlike these, this paper uses Taiwan longitudinal data to estimate multi-equation time-series models such as Vector Autoregressive (VAR), Vector Error Correction Model (VECM), and conduct out-of-sample forecasting. Further, this work assesses their forecasting performance by two instruments. In favor of extant research, the major finding shows that VECM outperforms other three models in forecasting for three stock sectors over entire horizons. It implies that an error correction term containing long-run information contributes to improve forecasting accuracy. Moreover, the pattern of composite shows that at longer horizon, VECM produces the greater reduction in errors, and performs substantially better than VAR.Keywords: residual income valuation model, vector error correction model, out of sample forecasting, forecasting accuracy
Procedia PDF Downloads 32118419 Cranioplasty with Custom Implant Realized Using 3D Printing Technology
Authors: Trad Khodja Rafik, Mahtout Amine, Ghoul Rachid, Benbouali Amine, Boulahlib Amine, Hariza Abdelmalik
Abstract:
Cranioplasty with custom implant realized using 3D printing technology. Cranioplasty is a surgical act that aims restoring cranial bone losses in order to protect the brain from external aggressions and to improve the patient aesthetic appearance. This objective can be achieved with taking advantage of the current technological development in computer science and biomechanics. The objective of this paper it to present an approach for the realization of high precision biocompatible cranial implants using new 3D printing technologies at the lowest cost. The proposed method is to reproduce the missing part of the skull by referring to its healthy contralateral part. Once the model is validated by the neurosurgeons, a mold is 3D printed for the production of a biocompatible implant in Poly-Methyl-Methacrylate (PMMA) acrylic cement. Using this procedure four patients underwent this procedure with excellent aesthetic results.Keywords: cranioplasty, cranial bone loss, 3D printing technology, custom-made implants, PMMA
Procedia PDF Downloads 11518418 Comparative Analysis of Biodegradation on Polythene and Plastics Buried in Fadama Soil Amended With Organic and Inorganic Fertilizer
Authors: Baba John, Abdullahi Mohammed
Abstract:
The aim of this research is to compare the analysis of biodegradation on polythene and plastics buried in fadama soil amended with Organic and Inorganic fertilizer. Physico- chemical properties of the samples were determined. Bacteria and Fungi implicated in the biodegradation were identified and enumerated. Physico- chemical properties before the analysis indicated pH range of the samples from 4.28 – 5.80 , While the percentage Organic carbon and Organic matter was highest in cow dung samples with 3.89% and 6.69% respectively. The total Nitrogen percentage was recorded to be highest in Chicken dropping (0.68), while the availability of Phosphorus (P), Sodium (Na), Pottasium (K), and Magnessium (mg) was recorded to be highest in F – soil (Control), with values to be 37ppm, 1.63 Cmolkg-1, 0.35 Cmolkg-1 and 1.18 Cmolkg-1 respectively, except for calcium which was recorded to be highest in Cow dung (5.80 Cmolkg-1). However, physico – chemical properties of the samples after analysis indicated pH range of 4.6 – 5.80, Percentage Organic carbon and Organic matter was highest in Fadama soil mixed with fertilizer, having 0.7% and 1.2% respectively. Total Percentage Nitrogen content was found to be highest (0.56) in Fadama soil mixed with poultry dropping. Availability of Sodium (Na), Pottasium (K), and Calcium (Ca) was recorded to be highest in Fadama Soil mixed with Cow dung with values to be 0.64 Cmolkg-1, 2.07 Cmolkg-1 and 3.36 Cmolkg-1 respectively. The percentage weight loss of polythene and plastic bags after nine months in fadama soil mixed with poultry dropping was 11.9% for polythene and 6.0% for plastics. Weight loss in fadama soil mixed with cow dung was 18.1% for polythene and 4.7% for plastics. Weight loss of polythene and plastic in fadama soil mixed with fertilizer (NPK) was 7.4% for polythene and 3.3% for plastics. While, the percentage weight loss of polythene and plastics after nine months of burial in fadama soil (control) was 3.5% and 0.0% respectively. The bacteria species isolated from Fadama soil, organic and inorganic fertilizers before amendments include: S. aureus, Micrococcus sp, Streptococcus. pyogenes, Psuedomonas aeruginosa Bacillus subtilis and Bacillus cereus. The fungi species include: Aspergillus niger, Aspergillus fumigatus, Aspergillus flavus, Fusarium sp, Mucor sp Penicillium sp and Candida sp. The bacteria species isolated and characterized after nine months of seeding include: S. aureus, Micrococcus sp, S. pyogenes, P. aeruginosa and B. subtilis. The fungi species are: A. niger A. flavus, A. fumigatus, Mucor sp, Penicillium sp and Fusarium sp. The result of this study indicated that plastic materials can be degraded in the fadama soil irrespective of whether the soil is amended or not. The Period of composting also has a significant impact on the rate at which polythene and plastics are degraded.Keywords: Fadama, fertilizer, plastic and polythene, biodegradation
Procedia PDF Downloads 54918417 Management Problems in a Patient With Long-term Undiagnosed Permanent Hypoparathyroidism
Authors: Babarina Maria, Andropova Margarita
Abstract:
Introduction: Hypoparathyroidism (HypoPT) is a rare endocrine disorder with an estimated prevalence of 0.25 per 1000 individuals. The most common cause of HypoPT is the loss of active parathyroid tissue following thyroid or parathyroid surgery. Sometimes permanent postoperative HypoPT occures, manifested by hypocalcemia in combination with low levels of PTH during 6 months or more after surgery. Cognitive impairments in patients with hypocalcemia due to chronic HypoPT are observed, and this can lead to problems and challenges in everyday living: memory loss and impaired concentration, that may be the cause of poor compliance. Clinical case: Patient K., 66 years old, underwent thyroidectomy in 2013 (at the age of 55) because of papillary thyroid cancer T1NxMx, histopathology findings confirmed the diagnosis. 5 years after the surgery, she was followed up on an outpatient basis, TSH levelsonly were monitored, and the dose of levothyroxine was adjusted. In 2018 due to, increasing complaints include tingling and cramps in the arms and legs, memory loss, sleep disorder, fatigue, anxiety, hair loss, muscle pain, tachycardia, positive Chvostek, and Trousseau signs were diagnosed during examination, also in blood analyses: total Ca 1.86 mmol/l (2.15-2.55), Ca++ 0.96 mmol/l (1.12-1.3), P 1.55 mmol/l (0.74-1.52), Mg 0.79 mmol/l (0.66-1.07) - chronic postoperative HypoPT was diagnosed. Therapy was initiated: alfacalcidol 0.5 mcg per day, calcium carbonate 2000 mg per day, cholecalciferol 1000 IU per day, magnesium orotate 3000 mg per day. During the case follow-up, hypocalcemia, hyperphosphatemia persisted, hypercalciuria15.7 mmol/day (2.5-6.5) was diagnosed. Dietary recommendations were given because of the high content of phosphorus rich foods, and therapy was adjusted: the dose of alfacalcidol was increased to 2.5 mcg per day, and the dose of calcium carbonate was reduced to 1500 mg per day. As part of the screening for complications of hypoPT, data for cataracts, Fahr syndrome, nephrocalcinosis, and kidney stone disease were not obtained. However, HypoPT compensation was not achieved, and therefore hydrochlorothiazide 25 mg was initiated, the dose of alfacalcidol was increased to 3 mcg per day, calcium carbonate to 3000 mg per day, magnesium orotate and cholecalciferol were continued at the same doses. Therapeutic goals were achieved: calcium phosphate product <4.4 mmol2/l2, there were no episodes of hypercalcemia, twenty-four-hour urinary calcium excretion was significantly reduced. Conclusion: Timely prescription, careful explanation of drugs usage rules, and monitoring and maintaining blood and urine parameters within the target contribute to the prevention of HypoPT complications development and life-threatening events.Keywords: hypoparathyroidism, hypocalcemia, hyperphosphatemia, hypercalciuria
Procedia PDF Downloads 11218416 Optimal Capacitors Placement and Sizing Improvement Based on Voltage Reduction for Energy Efficiency
Authors: Zilaila Zakaria, Muhd Azri Abdul Razak, Muhammad Murtadha Othman, Mohd Ainor Yahya, Ismail Musirin, Mat Nasir Kari, Mohd Fazli Osman, Mohd Zaini Hassan, Baihaki Azraee
Abstract:
Energy efficiency can be realized by minimizing the power loss with a sufficient amount of energy used in an electrical distribution system. In this report, a detailed analysis of the energy efficiency of an electric distribution system was carried out with an implementation of the optimal capacitor placement and sizing (OCPS). The particle swarm optimization (PSO) will be used to determine optimal location and sizing for the capacitors whereas energy consumption and power losses minimization will improve the energy efficiency. In addition, a certain number of busbars or locations are identified in advance before the PSO is performed to solve OCPS. In this case study, three techniques are performed for the pre-selection of busbar or locations which are the power-loss-index (PLI). The particle swarm optimization (PSO) is designed to provide a new population with improved sizing and location of capacitors. The total cost of power losses, energy consumption and capacitor installation are the components considered in the objective and fitness functions of the proposed optimization technique. Voltage magnitude limit, total harmonic distortion (THD) limit, power factor limit and capacitor size limit are the parameters considered as the constraints for the proposed of optimization technique. In this research, the proposed methodologies implemented in the MATLAB® software will transfer the information, execute the three-phase unbalanced load flow solution and retrieve then collect the results or data from the three-phase unbalanced electrical distribution systems modeled in the SIMULINK® software. Effectiveness of the proposed methods used to improve the energy efficiency has been verified through several case studies and the results are obtained from the test systems of IEEE 13-bus unbalanced electrical distribution system and also the practical electrical distribution system model of Sultan Salahuddin Abdul Aziz Shah (SSAAS) government building in Shah Alam, Selangor.Keywords: particle swarm optimization, pre-determine of capacitor locations, optimal capacitors placement and sizing, unbalanced electrical distribution system
Procedia PDF Downloads 43618415 Application of Fractional Model Predictive Control to Thermal System
Authors: Aymen Rhouma, Khaled Hcheichi, Sami Hafsi
Abstract:
The article presents an application of Fractional Model Predictive Control (FMPC) to a fractional order thermal system using Controlled Auto Regressive Integrated Moving Average (CARIMA) model obtained by discretization of a continuous fractional differential equation. Moreover, the output deviation approach is exploited to design the K -step ahead output predictor, and the corresponding control law is obtained by solving a quadratic cost function. Experiment results onto a thermal system are presented to emphasize the performances and the effectiveness of the proposed predictive controller.Keywords: fractional model predictive control, fractional order systems, thermal system, predictive control
Procedia PDF Downloads 41518414 Modelling Sudden Deaths from Myocardial Infarction and Stroke
Authors: Y. S. Yusoff, G. Streftaris, H. R Waters
Abstract:
Death within 30 days is an important factor to be looked into, as there is a significant risk of deaths immediately following or soon after, Myocardial Infarction (MI) or stroke. In this paper, we will model the deaths within 30 days following a Myocardial Infarction (MI) or stroke in the UK. We will see how the probabilities of sudden deaths from MI or stroke have changed over the period 1981-2000. We will model the sudden deaths using a Generalized Linear Model (GLM), fitted using the R statistical package, under a Binomial distribution for the number of sudden deaths. We parameterize our model using the extensive and detailed data from the Framingham Heart Study, adjusted to match UK rates. The results show that there is a reduction for the sudden deaths following a MI over time but no significant improvement for sudden deaths following a stroke.Keywords: sudden deaths, myocardial infarction, stroke, ischemic heart disease
Procedia PDF Downloads 29218413 3D Modelling and Numerical Analysis of Human Inner Ear by Means of Finite Elements Method
Authors: C. Castro-Egler, A. Durán-Escalante, A. García-González
Abstract:
This paper presents a method to generate a finite element model of the human auditory inner ear system. The geometric model has been realized using 2D images from a virtual model of temporal bones. A point cloud has been gotten manually from those images to construct a whole mesh with hexahedral elements. The main difference with the predecessor models is the spiral shape of the cochlea with its three scales completely defined: scala tympani, scala media and scala vestibuli; which are separate by basilar membrane and Reissner membrane. To validate this model, numerical simulations have been realised with two models: an isolated inner ear and a whole model of human auditory system. Ideal conditions of displacement are applied over the oval window in the isolated Inner Ear model. The whole model is made up of the outer auditory channel, the tympani, the ossicular chain, and the inner ear. The boundary condition for the whole model is 1Pa over the auditory channel entrance. The numerical simulations by FEM have been done using a harmonic analysis with a frequency range between 100-10.000 Hz with an interval of 100Hz. The following results have been carried out: basilar membrane displacement; the scala media pressure according to the cochlea length and the transfer function of the middle ear normalized with the pressure in the tympanic membrane. The basilar membrane displacements and the pressure in the scala media make it possible to validate the response in frequency of the basilar membrane.Keywords: finite elements method, human auditory system model, numerical analysis, 3D modelling cochlea
Procedia PDF Downloads 36718412 Documents Emotions Classification Model Based on TF-IDF Weighting Measure
Authors: Amr Mansour Mohsen, Hesham Ahmed Hassan, Amira M. Idrees
Abstract:
Emotions classification of text documents is applied to reveal if the document expresses a determined emotion from its writer. As different supervised methods are previously used for emotion documents’ classification, in this research we present a novel model that supports the classification algorithms for more accurate results by the support of TF-IDF measure. Different experiments have been applied to reveal the applicability of the proposed model, the model succeeds in raising the accuracy percentage according to the determined metrics (precision, recall, and f-measure) based on applying the refinement of the lexicon, integration of lexicons using different perspectives, and applying the TF-IDF weighting measure over the classifying features. The proposed model has also been compared with other research to prove its competence in raising the results’ accuracy.Keywords: emotion detection, TF-IDF, WEKA tool, classification algorithms
Procedia PDF Downloads 490