Search results for: discrete event simulation (DES)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6622

Search results for: discrete event simulation (DES)

5392 Case Scenario Simulation concerning Eventual Ship Sourced Oil Spill, Expansion and Response Process in Istanbul Strait

Authors: Cihat Aşan

Abstract:

Istanbul Strait is a crucial and narrow waterway, not only having a role in linking two continents but also has a crossover mission for the petroleum, which is the biggest energy resource, between its supply and demand sources. Besides its substantial features, sensitivities like around 18 million populations in surroundings, military facilities, ports, oil lay down areas etc. also brings the high risk to use of Istanbul Strait. Based on the statistics of Turkish Ministry of Transportation, Maritime and Communication, although the number of vessel passage in Istanbul Strait is declining, tonnage of hazardous and flammable cargo like oil and chemical transportation is increasing and subsequently the risk of oil pollution, loss of life and property is also rising. Based on the mentioned above; it is crucial to be prepared for the initial and subsequent response to eventual ship sourced oil spill which may cause to block the Strait for an unbearable duration. In this study; preconditioned Istanbul Strait sensitive areas studies has been taken into account and possible oil spill scenario is loaded to PISCES 2 (Potential Incident Simulation Control and Evaluation System) decision support system for the determined specific sea area. Consequences of the simulation like oil expanding process, required number and types of assets to response, had in hand and evaluated.

Keywords: Istanbul strait, oil spill, PISCES simulator, initial response

Procedia PDF Downloads 344
5391 A Distributed Mobile Agent Based on Intrusion Detection System for MANET

Authors: Maad Kamal Al-Anni

Abstract:

This study is about an algorithmic dependence of Artificial Neural Network on Multilayer Perceptron (MPL) pertaining to the classification and clustering presentations for Mobile Adhoc Network vulnerabilities. Moreover, mobile ad hoc network (MANET) is ubiquitous intelligent internetworking devices in which it has the ability to detect their environment using an autonomous system of mobile nodes that are connected via wireless links. Security affairs are the most important subject in MANET due to the easy penetrative scenarios occurred in such an auto configuration network. One of the powerful techniques used for inspecting the network packets is Intrusion Detection System (IDS); in this article, we are going to show the effectiveness of artificial neural networks used as a machine learning along with stochastic approach (information gain) to classify the malicious behaviors in simulated network with respect to different IDS techniques. The monitoring agent is responsible for detection inference engine, the audit data is collected from collecting agent by simulating the node attack and contrasted outputs with normal behaviors of the framework, whenever. In the event that there is any deviation from the ordinary behaviors then the monitoring agent is considered this event as an attack , in this article we are going to demonstrate the  signature-based IDS approach in a MANET by implementing the back propagation algorithm over ensemble-based Traffic Table (TT), thus the signature of malicious behaviors or undesirable activities are often significantly prognosticated and efficiently figured out, by increasing the parametric set-up of Back propagation algorithm during the experimental results which empirically shown its effectiveness  for the ratio of detection index up to 98.6 percentage. Consequently it is proved in empirical results in this article, the performance matrices are also being included in this article with Xgraph screen show by different through puts like Packet Delivery Ratio (PDR), Through Put(TP), and Average Delay(AD).

Keywords: Intrusion Detection System (IDS), Mobile Adhoc Networks (MANET), Back Propagation Algorithm (BPA), Neural Networks (NN)

Procedia PDF Downloads 196
5390 An Agent-Based Modeling and Simulation of Human Muscle

Authors: Sina Saadati, Mohammadreza Razzazi

Abstract:

In this article, we have tried to present an agent-based model of human muscle. A suitable model of muscle is necessary for the analysis of mankind's movements. It can be used by clinical researchers who study the influence of motion sicknesses, like Parkinson's disease. It is also useful in the development of a prosthesis that receives the electromyography signals and generates force as a reaction. Since we have focused on computational efficiency in this research, the model can compute the calculations very fast. As far as it concerns prostheses, the model can be known as a charge-efficient method. In this paper, we are about to illustrate an agent-based model. Then, we will use it to simulate the human gait cycle. This method can also be done reversely in the analysis of gait in motion sicknesses.

Keywords: agent-based modeling and simulation, human muscle, gait cycle, motion sickness

Procedia PDF Downloads 117
5389 A Study on Net Profit Associated with Queueing System Subject to Catastrophical Events

Authors: M. Reni Sagayaraj, S. Anand Gnana Selvam, R. Reynald Susainathan

Abstract:

In this paper we study that the catastrophic events arrive independently at the service facility according to a Poisson process with rate λ. The nature of a catastrophic event is that upon its arrival at a service station, it destroys all the customers there waiting and in the service. We will derive the net profit associated with queuing system and obtain its probability of the busy period.

Keywords: queueing system, net-profit, busy period, catastrophical events

Procedia PDF Downloads 366
5388 Dynamic Two-Way FSI Simulation for a Blade of a Small Wind Turbine

Authors: Alberto Jiménez-Vargas, Manuel de Jesús Palacios-Gallegos, Miguel Ángel Hernández-López, Rafael Campos-Amezcua, Julio Cesar Solís-Sanchez

Abstract:

An optimal wind turbine blade design must be able of capturing as much energy as possible from the wind source available at the area of interest. Many times, an optimal design means the use of large quantities of material and complicated processes that make the wind turbine more expensive, and therefore, less cost-effective. For the construction and installation of a wind turbine, the blades may cost up to 20% of the outline pricing, and become more important due to they are part of the rotor system that is in charge of transmitting the energy from the wind to the power train, and where the static and dynamic design loads for the whole wind turbine are produced. The aim of this work is the develop of a blade fluid-structure interaction (FSI) simulation that allows the identification of the major damage zones during the normal production situation, and thus better decisions for design and optimization can be taken. The simulation is a dynamic case, since we have a time-history wind velocity as inlet condition instead of a constant wind velocity. The process begins with the free-use software NuMAD (NREL), to model the blade and assign material properties to the blade, then the 3D model is exported to ANSYS Workbench platform where before setting the FSI system, a modal analysis is made for identification of natural frequencies and modal shapes. FSI analysis is carried out with the two-way technic which begins with a CFD simulation to obtain the pressure distribution on the blade surface, then these results are used as boundary condition for the FEA simulation to obtain the deformation levels for the first time-step. For the second time-step, CFD simulation is reconfigured automatically with the next time-step inlet wind velocity and the deformation results from the previous time-step. The analysis continues the iterative cycle solving time-step by time-step until the entire load case is completed. This work is part of a set of projects that are managed by a national consortium called “CEMIE-Eólico” (Mexican Center in Wind Energy Research), created for strengthen technological and scientific capacities, the promotion of creation of specialized human resources, and to link the academic with private sector in national territory. The analysis belongs to the design of a rotor system for a 5 kW wind turbine design thought to be installed at the Isthmus of Tehuantepec, Oaxaca, Mexico.

Keywords: blade, dynamic, fsi, wind turbine

Procedia PDF Downloads 485
5387 Behaviour of an RC Circuit near Extreme Point

Authors: Tribhuvan N. Soorya

Abstract:

Charging and discharging of a capacitor through a resistor can be shown as exponential curve. Theoretically, it takes infinite time to fully charge or discharge a capacitor. The flow of charge is due to electrons having finite and fixed value of charge. If we carefully examine the charging and discharging process after several time constants, the points on q vs t graph become discrete and curve become discontinuous. Moreover for all practical purposes capacitor with charge (q0-e) can be taken as fully charged, as it introduces an error less than one part per million. Similar is the case for discharge of a capacitor, where the capacitor with the last electron (charge e) can be taken as fully discharged. With this, we can estimate the finite value of time for fully charging and discharging a capacitor.

Keywords: charging, discharging, RC Circuit, capacitor

Procedia PDF Downloads 447
5386 Internet of Things Edge Device Power Modelling and Optimization Simulator

Authors: Cian O'Shea, Ross O'Halloran, Peter Haigh

Abstract:

Wireless Sensor Networks (WSN) are Internet of Things (IoT) edge devices. They are becoming widely adopted in many industries, including health care, building energy management, and conditional monitoring. As the scale of WSN deployments increases, the cost and complexity of battery replacement and disposal become more significant and in time may become a barrier to adoption. Harvesting ambient energies provide a pathway to reducing dependence on batteries and in the future may lead to autonomously powered sensors. This work describes a simulation tool that enables the user to predict the battery life of a wireless sensor that utilizes energy harvesting to supplement the battery power. To create this simulator, all aspects of a typical WSN edge device were modelled including, sensors, transceiver, and microcontroller as well as the energy source components (batteries, solar cells, thermoelectric generators (TEG), supercapacitors and DC/DC converters). The tool allows the user to plug and play different pre characterized devices as well as add user-defined devices. The goal of this simulation tool is to predict the lifetime of a device and scope for extension using ambient energy sources.

Keywords: Wireless Sensor Network, IoT, edge device, simulation, solar cells, TEG, supercapacitor, energy harvesting

Procedia PDF Downloads 135
5385 Simulation of Polymeric Precursors Production from Wine Industrial Organic Wastes

Authors: Tanapoom Phuncharoen, Tawiwat Sriwongsa, Kanita Boonruang, Apichit Svang-Ariyaskul

Abstract:

The production of dimethyl acetal, isovaleradehyde, and pyridine were simulated using Aspen Plus simulation. Upgrading cleaning water from wine industrial production is the main objective of the project. The winery waste composes of acetaldehyde, methanol, ethyl acetate, 1-propanol, water, isoamyl alcohol, and isobutanol. The project is separated into three parts; separation, reaction, and purification. Various processes were considered to maximize the profit along with obtaining high purity and recovery of each component with optimum heat duty. The results show a significant value of the product with purity more than 75% and recovery over 98%.

Keywords: dimethyl acetal, pyridine, wine, aspen plus, isovaleradehyde, polymeric precursors

Procedia PDF Downloads 329
5384 Modeling of Electrokinetic Mixing in Lab on Chip Microfluidic Devices

Authors: Virendra J. Majarikar, Harikrishnan N. Unni

Abstract:

This paper sets to demonstrate a modeling of electrokinetic mixing employing electroosmotic stationary and time-dependent microchannel using alternate zeta patches on the lower surface of the micromixer in a lab on chip microfluidic device. Electroosmotic flow is amplified using different 2D and 3D model designs with alternate and geometric zeta potential values such as 25, 50, and 100 mV, respectively, to achieve high concentration mixing in the electrokinetically-driven microfluidic system. The enhancement of electrokinetic mixing is studied using Finite Element Modeling, and simulation workflow is accomplished with defined integral steps. It can be observed that the presence of alternate zeta patches can help inducing microvortex flows inside the channel, which in turn can improve mixing efficiency. Fluid flow and concentration fields are simulated by solving Navier-Stokes equation (implying Helmholtz-Smoluchowski slip velocity boundary condition) and Convection-Diffusion equation. The effect of the magnitude of zeta potential, the number of alternate zeta patches, etc. are analysed thoroughly. 2D simulation reveals that there is a cumulative increase in concentration mixing, whereas 3D simulation differs slightly with low zeta potential as that of the 2D model within the T-shaped micromixer for concentration 1 mol/m3 and 0 mol/m3, respectively. Moreover, 2D model results were compared with those of 3D to indicate the importance of the 3D model in a microfluidic design process.

Keywords: COMSOL Multiphysics®, electrokinetic, electroosmotic, microfluidics, zeta potential

Procedia PDF Downloads 244
5383 Design and Study of a DC/DC Converter for High Power, 14.4 V and 300 A for Automotive Applications

Authors: Júlio Cesar Lopes de Oliveira, Carlos Henrique Gonçalves Treviso

Abstract:

The shortage of the automotive market in relation to options for sources of high power car audio systems, led to development of this work. Thus, we developed a source with stabilized voltage with 4320 W effective power. Designed to the voltage of 14.4 V and a choice of two currents: 30 A load option in battery banks and 300 A at full load. This source can also be considered as a source of general use dedicated commercial with a simple control circuit in analog form based on discrete components. The assembly of power circuit uses a methodology for higher power than the initially stipulated.

Keywords: DC-DC power converters, converters, power conversion, pulse width modulation converters

Procedia PDF Downloads 389
5382 Computational Fluid Dynamics Simulation Study of Flow near Moving Wall of Various Surface Types Using Moving Mesh Method

Authors: Khizir Mohd Ismail, Yu Jun Lim, Tshun Howe Yong

Abstract:

The study of flow behavior in an enclosed volume using Computational Fluid Dynamics (CFD) has been around for decades. However, due to the knowledge limitation of adaptive grid methods, the flow in an enclosed volume near the moving wall using CFD is less explored. A CFD simulation of flow in an enclosed volume near a moving wall was demonstrated and studied by introducing a moving mesh method and was modeled with Unsteady Reynolds-Averaged Navier-Stokes (URANS) approach. A static enclosed volume with controlled opening size in the bottom was positioned against a moving, translational wall with sliding mesh features. Controlled variables such as smoothed, crevices and corrugated wall characteristics, the distance between the enclosed volume to the wall and the moving wall speed against the enclosed chamber were varied to understand how the flow behaves and reacts in between these two geometries. These model simulations were validated against experimental results and provided result confidence when the simulation had shown good agreement with the experimental data. This study had provided better insight into the flow behaving in an enclosed volume when various wall types in motion were introduced within the various distance between each other and create a potential opportunity of application which involves adaptive grid methods in CFD.

Keywords: moving wall, adaptive grid methods, CFD, moving mesh method

Procedia PDF Downloads 150
5381 Groundwater Flow Assessment Based on Numerical Simulation at Omdurman Area, Khartoum State, Sudan

Authors: Adil Balla Elkrail

Abstract:

Visual MODFLOW computer codes were selected to simulate head distribution, calculate the groundwater budgets of the area, and evaluate the effect of external stresses on the groundwater head and to demonstrate how the groundwater model can be used as a comparative technique in order to optimize utilization of the groundwater resource. A conceptual model of the study area, aquifer parameters, boundary, and initial conditions were used to simulate the flow model. The trial-and-error technique was used to calibrate the model. The most important criteria used to check the calibrated model were Root Mean Square error (RMS), Mean Absolute error (AM), Normalized Root Mean Square error (NRMS) and mass balance. The maps of the simulated heads elaborated acceptable model calibration compared to observed heads map. A time length of eight years and the observed heads of the year 2004 were used for model prediction. The predictive simulation showed that the continuation of pumping will cause relatively high changes in head distribution and components of groundwater budget whereas, the low deficit computed (7122 m3/d) between inflows and outflows cannot create a significant drawdown of the potentiometric level. Hence, the area under consideration may represent a high permeability and productive zone and strongly recommended for further groundwater development.

Keywords: aquifers, model simulation, groundwater, calibrations, trail-and- error, prediction

Procedia PDF Downloads 246
5380 Environmental Radioactivity Analysis by a Sequential Approach

Authors: G. Medkour Ishak-Boushaki, A. Taibi, M. Allab

Abstract:

Quantitative environmental radioactivity measurements are needed to determine the level of exposure of a population to ionizing radiations and for the assessment of the associated risks. Gamma spectrometry remains a very powerful tool for the analysis of radionuclides present in an environmental sample but the basic problem in such measurements is the low rate of detected events. Using large environmental samples could help to get around this difficulty but, unfortunately, new issues are raised by gamma rays attenuation and self-absorption. Recently, a new method has been suggested, to detect and identify without quantification, in a short time, a gamma ray of a low count source. This method does not require, as usually adopted in gamma spectrometry measurements, a pulse height spectrum acquisition. It is based on a chronological record of each detected photon by simultaneous measurements of its energy ε and its arrival time τ on the detector, the pair parameters [ε,τ] defining an event mode sequence (EMS). The EMS serials are analyzed sequentially by a Bayesian approach to detect the presence of a given radioactive source. The main object of the present work is to test the applicability of this sequential approach in radioactive environmental materials detection. Moreover, for an appropriate health oversight of the public and of the concerned workers, the analysis has been extended to get a reliable quantification of the radionuclides present in environmental samples. For illustration, we consider as an example, the problem of detection and quantification of 238U. Monte Carlo simulated experience is carried out consisting in the detection, by a Ge(Hp) semiconductor junction, of gamma rays of 63 keV emitted by 234Th (progeny of 238U). The generated EMS serials are analyzed by a Bayesian inference. The application of the sequential Bayesian approach, in environmental radioactivity analysis, offers the possibility of reducing the measurements time without requiring large environmental samples and consequently avoids the attached inconvenient. The work is still in progress.

Keywords: Bayesian approach, event mode sequence, gamma spectrometry, Monte Carlo method

Procedia PDF Downloads 499
5379 Recognising and Managing Haematoma Following Thyroid Surgery: Simulation Teaching is Effective

Authors: Emily Moore, Dora Amos, Tracy Ellimah, Natasha Parrott

Abstract:

Postoperative haematoma is a well-recognised complication of thyroid surgery with an incidence of 1-5%. Haematoma formation causes progressive airway obstruction, necessitating emergency bedside haematoma evacuation in up to ¼ of patients. ENT UK, BAETS and DAS have developed consensus guidelines to improve perioperative care, recommending that all healthcare staff interacting with patients undergoing thyroid surgery should be trained in managing post-thyroidectomy haematoma. The aim was to assess the effectiveness of a hybrid simulation model in improving clinician’s confidence in dealing with this surgical emergency. A hybrid simulation was designed, consisting of a standardised patient wearing a part-task trainer to mimic a post-thyroidectomy haematoma in a real patient. The part-task trainer was an adapted C-spine collar with layers of silicone representing the skin and strap muscles and thickened jelly representing the haematoma. Both the skin and strap muscle layers had to be opened in order to evacuate the haematoma. Boxes have been implemented into the appropriate post operative areas (recovery and surgical wards), which contain a printed algorithm designed to assist in remembering a sequence of steps for haematoma evacuation using the ‘SCOOP’ method (skin exposure, cut sutures, open skin, open muscles, pack wound) along with all the necessary equipment to open the front of the neck. Small-group teaching sessions were delivered by ENT and anaesthetic trainees to members of the multidisciplinary team normally involved in perioperative patient care, which included ENT surgeons, anaesthetists, recovery nurses, HCAs and ODPs. The DESATS acronym of signs and symptoms to recognise (difficulty swallowing, EWS score, swelling, anxiety, tachycardia, stridor) was highlighted. Then participants took part in the hybrid simulation in order to practice this ‘SCOOP’ method of haematoma evacuation. Participants were surveyed using a Likert scale to assess their level of confidence pre- and post teaching session. 30 clinicians took part. Confidence (agreed/strongly agreed) in recognition of post thyroidectomy haematoma improved from 58.6% to 96.5%. Confidence in management improved from 27.5% to 89.7%. All participants successfully decompressed the haematoma. All participants agreed/strongly agreed, that the sessions were useful for their learning. Multidisciplinary team simulation teaching is effective at significantly improving confidence in both the recognition and management of postoperative haematoma. Hybrid simulation sessions are useful and should be incorporated into training for clinicians.

Keywords: thyroid surgery, haematoma, teaching, hybrid simulation

Procedia PDF Downloads 100
5378 Numerical Investigation of Entropy Signatures in Fluid Turbulence: Poisson Equation for Pressure Transformation from Navier-Stokes Equation

Authors: Samuel Ahamefula Mba

Abstract:

Fluid turbulence is a complex and nonlinear phenomenon that occurs in various natural and industrial processes. Understanding turbulence remains a challenging task due to its intricate nature. One approach to gain insights into turbulence is through the study of entropy, which quantifies the disorder or randomness of a system. This research presents a numerical investigation of entropy signatures in fluid turbulence. The work is to develop a numerical framework to describe and analyse fluid turbulence in terms of entropy. This decomposes the turbulent flow field into different scales, ranging from large energy-containing eddies to small dissipative structures, thus establishing a correlation between entropy and other turbulence statistics. This entropy-based framework provides a powerful tool for understanding the underlying mechanisms driving turbulence and its impact on various phenomena. This work necessitates the derivation of the Poisson equation for pressure transformation of Navier-Stokes equation and using Chebyshev-Finite Difference techniques to effectively resolve it. To carry out the mathematical analysis, consider bounded domains with smooth solutions and non-periodic boundary conditions. To address this, a hybrid computational approach combining direct numerical simulation (DNS) and Large Eddy Simulation with Wall Models (LES-WM) is utilized to perform extensive simulations of turbulent flows. The potential impact ranges from industrial process optimization and improved prediction of weather patterns.

Keywords: turbulence, Navier-Stokes equation, Poisson pressure equation, numerical investigation, Chebyshev-finite difference, hybrid computational approach, large Eddy simulation with wall models, direct numerical simulation

Procedia PDF Downloads 98
5377 Virtual Assessment of Measurement Error in the Fractional Flow Reserve

Authors: Keltoum Chahour, Mickael Binois

Abstract:

Due to a lack of standardization during the invasive fractional flow reserve (FFR) procedure, the index is subject to many sources of uncertainties. In this paper, we investigate -through simulation- the effect of the (FFR) device position and configuration on the obtained value of the (FFR) fraction. For this purpose, we use computational fluid dynamics (CFD) in a 3D domain corresponding to a diseased arterial portion. The (FFR) pressure captor is introduced inside it with a given length and coefficient of bending to capture the (FFR) value. To get over the computational limitations, basically, the time of the simulation is about 2h 15min for one (FFR) value; we generate a Gaussian Process (GP) model for (FFR) prediction. The (GP) model indicates good accuracy and demonstrates the effective error in the measurement created by the random configuration of the pressure captor.

Keywords: fractional flow reserve, Gaussian processes, computational fluid dynamics, drift

Procedia PDF Downloads 143
5376 Coronary Artery Calcium Score and Statin Treatment Effect on Myocardial Infarction and Major Adverse Cardiovascular Event of Atherosclerotic Cardiovascular Disease: A Systematic Review and Meta-Analysis

Authors: Yusra Pintaningrum, Ilma Fahira Basyir, Sony Hilal Wicaksono, Vito A. Damay

Abstract:

Background: Coronary artery calcium (CAC) scores play an important role in improving prognostic accuracy and can be selectively used to guide the allocation of statin therapy for atherosclerotic cardiovascular disease outcomes and potentially associated with the occurrence of MACE (Major Adverse Cardiovascular Event) and MI (Myocardial Infarction). Objective: This systematic review and meta-analysis aim to analyze the findings of a study about CAC Score and statin treatment effect on MI and MACE risk. Methods: Search for published scientific articles using the PRISMA (Preferred Reporting, Items for Systematic Reviews and Meta-Analysis) method conducted on PubMed, Cochrane Library, and Medline databases published in the last 20 years on “coronary artery calcium” AND “statin” AND “cardiovascular disease” Further systematic review and meta-analysis using RevMan version 5.4 were performed based on the included published scientific articles. Results: Based on 11 studies included with a total of 1055 participants, we performed a meta-analysis and found that individuals with CAC score > 0 increased risk ratio of MI 8.48 (RR = 9.48: 95% CI: 6.22 – 14.45) times and MACE 2.48 (RR = 3.48: 95% CI: 2.98 – 4.05) times higher than CAC score 0 individual. Statin compared against non-statin treatment showed a statistically insignificant overall effect on the risk of MI (P = 0.81) and MACE (P = 0.89) in an individual with elevated CAC score 1 – 100 (P = 0.65) and > 100 (P = 0.11). Conclusions: This study found that an elevated CAC scores individual has a higher risk of MI and MACE than a non-elevated CAC score individual. There is no significant effect of statin compared against non-statin treatment to reduce MI and MACE in elevated CAC score individuals of 1 – 100 or > 100.

Keywords: coronary artery calcium, statin, cardiovascular disease, myocardial infarction, MACE

Procedia PDF Downloads 105
5375 Study of a Developed Model Describing a Vacuum Membrane Distillation Unit Coupled to Solar Energy

Authors: Fatma Khaled, Khaoula Hidouri, Bechir Chaouachi

Abstract:

Desalination using solar energy coupled with membrane techniques such as vacuum membrane distillation (VMD) is considered as an interesting alternative for the production of pure water. During this work, a developed model of a polytetrafluoroethylene (PTFE) hollow fiber membrane module of a VMD unit of seawater was carried out. This simulation leads to establishing a comparison between the effects of two different equations of the vaporization latent heat on the membrane surface temperature and on the unit productivity. Besides, in order to study the effect of putting membrane modules in series on the outlet fluid temperature and on the productivity of the process, a simulation was executed.

Keywords: vacuum membrane distillation, membrane module, membrane temperature, productivity

Procedia PDF Downloads 197
5374 Electrocardiogram Signal Denoising Using a Hybrid Technique

Authors: R. Latif, W. Jenkal, A. Toumanari, A. Hatim

Abstract:

This paper presents an efficient method of electrocardiogram signal denoising based on a hybrid approach. Two techniques are brought together to create an efficient denoising process. The first is an Adaptive Dual Threshold Filter (ADTF) and the second is the Discrete Wavelet Transform (DWT). The presented approach is based on three steps of denoising, the DWT decomposition, the ADTF step and the highest peaks correction step. This paper presents some application of the approach on some electrocardiogram signals of the MIT-BIH database. The results of these applications are promising compared to other recently published techniques.

Keywords: hybrid technique, ADTF, DWT, thresholding, ECG signal

Procedia PDF Downloads 325
5373 Thermomechanical Damage Modeling of F114 Carbon Steel

Authors: A. El Amri, M. El Yakhloufi Haddou, A. Khamlichi

Abstract:

The numerical simulation based on the Finite Element Method (FEM) is widely used in academic institutes and in the industry. It is a useful tool to predict many phenomena present in the classical manufacturing forming processes such as fracture. But, the results of such numerical model depend strongly on the parameters of the constitutive behavior model. The influences of thermal and mechanical loads cause damage. The temperature and strain rate dependent materials’ properties and their modelling are discussed. A Johnson-Cook Model of damage has been selected for the numerical simulations. Virtual software called the ABAQUS 6.11 is used for finite element analysis. This model was introduced in order to give information concerning crack initiation during thermal and mechanical loads.

Keywords: thermo-mechanical fatigue, failure, numerical simulation, fracture, damage

Procedia PDF Downloads 395
5372 Numerical Solution of 1-D Shallow Water Equations at Junction for Sub-Critical and Super-Critical Flow

Authors: Mohamed Elshobaki, Alessandro Valiani, Valerio Caleffi

Abstract:

In this paper, we solve 1-D shallow water equation for sub-critical and super-critical water flow at junction. The water flow at junction has been studied for the last 50 years from the physical-hydraulic point of views and for numerical computations need more attention. For numerical simulation, we need to establish an inner boundary condition at the junction to avoid an oscillation which rise from the waves interactions at the junction. Indeed, we introduce a new boundary condition at the junction based on the mass conservation, total head, and the admissible wave relations between the flow parameters in the three branches to predict the water depths and discharges at the junction. These boundary conditions are valid for sub-critical flow and super-critical flow.

Keywords: numerical simulation, junction flow, sub-critical flow, super-critical flow

Procedia PDF Downloads 512
5371 Different Sampling Schemes for Semi-Parametric Frailty Model

Authors: Nursel Koyuncu, Nihal Ata Tutkun

Abstract:

Frailty model is a survival model that takes into account the unobserved heterogeneity for exploring the relationship between the survival of an individual and several covariates. In the recent years, proposed survival models become more complex and this feature causes convergence problems especially in large data sets. Therefore selection of sample from these big data sets is very important for estimation of parameters. In sampling literature, some authors have defined new sampling schemes to predict the parameters correctly. For this aim, we try to see the effect of sampling design in semi-parametric frailty model. We conducted a simulation study in R programme to estimate the parameters of semi-parametric frailty model for different sample sizes, censoring rates under classical simple random sampling and ranked set sampling schemes. In the simulation study, we used data set recording 17260 male Civil Servants aged 40–64 years with complete 10-year follow-up as population. Time to death from coronary heart disease is treated as a survival-time and age, systolic blood pressure are used as covariates. We select the 1000 samples from population using different sampling schemes and estimate the parameters. From the simulation study, we concluded that ranked set sampling design performs better than simple random sampling for each scenario.

Keywords: frailty model, ranked set sampling, efficiency, simple random sampling

Procedia PDF Downloads 214
5370 Event-Related Potentials and Behavioral Reactions during Native and Foreign Languages Comprehension in Bilingual Inhabitants of Siberia

Authors: Tatiana N. Astakhova, Alexander E. Saprygin, Tatyana A. Golovko, Alexander N. Savostyanov, Mikhail S. Vlasov, Natalia V. Borisova, Alexandera G. Karpova, Urana N. Kavai-ool, Elena D. Mokur-ool, Nikolay A. Kolchanov, Lubomir I. Aftanas

Abstract:

The study is dedicated to the research of brain activity in bilingual inhabitants of Siberia. We compared behavioral reactions and event-related potentials in Turkic-speaking inhabitants of Siberia (Tuvinians and Yakuts) and Russians. 63 healthy aboriginals of the Tyva Republic, 29 inhabitants of the Sakha (Yakutia) Republic, and 55 Russians from Novosibirsk participated in the study. All the healthy and right-handed participants, matched on age and sex, were students of different universities. EEG’s were recorded during the solving of linguistic tasks. In these tasks, participants had to find a syntax error in the written sentences. There were four groups of sentences: Russian, English, Tuvinian, and Yakut. All participants completed the tasks in Russian and English. Additionally, Tuvinians and Yakuts completed the tasks in Tuvinian or Yakut respectively. For Russians, EEG's were recorded using 128-channels according to the extended International 10-10 system, and the signals were amplified using “Neuroscan (USA)” amplifiers. For Tuvinians and Yakuts, EEG's were recorded using 64-channels and amplifiers Brain Products, Germany. In all groups, 0.3-100 Hz analog filtering and sampling rate 1000 Hz were used. As parameters of behavioral reactions, response speed and the accuracy of recognition were used. Event-related potentials (ERP) responses P300 and P600 were used as indicators of brain activity. The behavioral reactions showed that in Russians, the response speed for Russian was faster than for English. Also, the accuracy of solving tasks was higher for Russian than for English. The peak P300 in Russians were higher for English, the peak P600 in the left temporal cortex were higher for the Russian language. Both Tuvinians and Yakuts have no difference in accuracy of solving tasks in Russian and in their respective national languages. However, the response speed was faster for tasks in Russian than for tasks in their national language. Tuvinians and Yakuts showed bad accuracy in English, but the response speed was higher for English than for Russian and the national languages. This can be explained by the fact that they did not think carefully and gave a random answer for English. In Tuvinians, The P300 and P600 amplitudes and cortical topology were the same for Russian and Tuvinian and different for English. In Yakuts, the P300 and P600 amplitudes and topology of ERP for Russian were the same as what Russians had for Russian. In Yakuts, brain reactions during Yakut and English comprehension had no difference, and were reflected to foreign language comprehension - while the Russian language comprehension was reflected to native language comprehension. We found out that the Tuvinians recognized both Russian and Tuvinian as native languages, and English as a foreign language. The Yakuts recognized both English and Yakut as a foreign language, and only Russian as a native language. According to the inquirer, both Tuvinians and Yakuts use the national language as a spoken language, whereas they don’t use it for writing. It can well be a reason that Yakuts perceive the Yakut writing language as a foreign language while writing Russian as their native.

Keywords: EEG, ERP, native and foreign languages comprehension, Siberian inhabitants

Procedia PDF Downloads 564
5369 Design of Neural Predictor for Vibration Analysis of Drilling Machine

Authors: İkbal Eski

Abstract:

This investigation is researched on design of robust neural network predictors for analyzing vibration effects on moving parts of a drilling machine. Moreover, the research is divided two parts; first part is experimental investigation, second part is simulation analysis with neural networks. Therefore, a real time the drilling machine is used to vibrations during working conditions. The measured real vibration parameters are analyzed with proposed neural network. As results: Simulation approaches show that Radial Basis Neural Network has good performance to adapt real time parameters of the drilling machine.

Keywords: artificial neural network, vibration analyses, drilling machine, robust

Procedia PDF Downloads 398
5368 Retrofitting Cement Plants with Oxyfuel Technology for Carbon Capture

Authors: Peloriadi Konstantina, Fakis Dimitris, Grammelis Panagiotis

Abstract:

Methods for carbon capture and storage (CCS) can play a key role in the reduction of industrial CO₂ emissions, especially in the cement industry, which accounts for 7% of global emissions. Cement industries around the world have committed to address this problem by reaching carbon neutrality by the year 2050. The aim of the work to be presented was to contribute to the decarbonization strategy by integrating the 1st generation oxyfuel technology in cement production plants. This technology has been shown to improve fuel efficiency while providing one of the most cost-effective solutions when compared to other capture methods. A validated simulation of the cement plant was thus used as a basis to develop an oxyfuel retrofitted cement process. The process model for the oxyfuel technology is developed on the ASPEN (Advanced System for Process Engineering) PLUSTM simulation software. This process consists of an Air Separation Unit (ASU), an oxyfuel cement plant with coal and alternative solid fuel (ASF) as feedstock, and a carbon dioxide processing unit (CPU). A detailed description and analysis of the CPU will be presented, including the findings of a literature review and simulation results, regarding the effects of flue gas impurities during operation. Acknowledgment: This research has been conducted in the framework of the EU funded AC2OCEM project, which investigates first and the second generation oxyfuel concepts.

Keywords: oxyfuel technology, carbon capture and storage, CO₂ processing unit, cement, aspen plus

Procedia PDF Downloads 199
5367 Tribologycal Design by Molecular Dynamics Simulation- The Influence of Porous Surfaces on Wall Slip and Bulk Shear

Authors: Seyedmajid Mehrnia, Maximilan Kuhr, Peter F. Pelz

Abstract:

Molecular Dynamics (MD) simulation is a proven method to inspect behaviours of lubricant oils in nano-scale gaps. However, most MD simulations on tribology have been performed with atomically smooth walls to determine wall slip and friction properties. This study will investigate the effect of porosity, specifically nano-porous walls, on wall slip properties of hydrocarbon oils confined between two walls in a Couette flow. Different pore geometries will be modelled to investigate the effect on wall slip and bulk shear. In this paper, the Polyalphaolefin (PAO) molecules are confined to a stationary and a moving wall. A hybrid force field consisting of different potential energy functions was employed in this MD simulation. Newton’s law defines how those forces will influence the atoms' movements. The interactions among surface atoms were simulated with an Embedded Atom Method (EAM) potential function which can represent the characteristics of metallic arrangements very strongly. We implemented NERD forcefield for intramolecular potential energy function. Also, Lennard-Jones potential was employed for nonbonded intermolecular interaction.

Keywords: slip length, molecular dynamics, critical shear rate, Couette flow

Procedia PDF Downloads 136
5366 Application of Complete Ensemble Empirical Mode Decomposition with Adaptive Noise and Multipoint Optimal Minimum Entropy Deconvolution in Railway Bearings Fault Diagnosis

Authors: Yao Cheng, Weihua Zhang

Abstract:

Although the measured vibration signal contains rich information on machine health conditions, the white noise interferences and the discrete harmonic coming from blade, shaft and mash make the fault diagnosis of rolling element bearings difficult. In order to overcome the interferences of useless signals, a new fault diagnosis method combining Complete Ensemble Empirical Mode Decomposition with adaptive noise (CEEMDAN) and Multipoint Optimal Minimum Entropy Deconvolution (MOMED) is proposed for the fault diagnosis of high-speed train bearings. Firstly, the CEEMDAN technique is applied to adaptively decompose the raw vibration signal into a series of finite intrinsic mode functions (IMFs) and a residue. Compared with Ensemble Empirical Mode Decomposition (EEMD), the CEEMDAN can provide an exact reconstruction of the original signal and a better spectral separation of the modes, which improves the accuracy of fault diagnosis. An effective sensitivity index based on the Pearson's correlation coefficients between IMFs and raw signal is adopted to select sensitive IMFs that contain bearing fault information. The composite signal of the sensitive IMFs is applied to further analysis of fault identification. Next, for propose of identifying the fault information precisely, the MOMED is utilized to enhance the periodic impulses in composite signal. As a non-iterative method, the MOMED has better deconvolution performance than the classical deconvolution methods such Minimum Entropy Deconvolution (MED) and Maximum Correlated Kurtosis Deconvolution (MCKD). Third, the envelope spectrum analysis is applied to detect the existence of bearing fault. The simulated bearing fault signals with white noise and discrete harmonic interferences are used to validate the effectiveness of the proposed method. Finally, the superiorities of the proposed method are further demonstrated by high-speed train bearing fault datasets measured from test rig. The analysis results indicate that the proposed method has strong practicability.

Keywords: bearing, complete ensemble empirical mode decomposition with adaptive noise, fault diagnosis, multipoint optimal minimum entropy deconvolution

Procedia PDF Downloads 377
5365 Frailty Models for Modeling Heterogeneity: Simulation Study and Application to Quebec Pension Plan

Authors: Souad Romdhane, Lotfi Belkacem

Abstract:

When referring to actuarial analysis of lifetime, only models accounting for observable risk factors have been developed. Within this context, Cox proportional hazards model (CPH model) is commonly used to assess the effects of observable covariates as gender, age, smoking habits, on the hazard rates. These covariates may fail to fully account for the true lifetime interval. This may be due to the existence of another random variable (frailty) that is still being ignored. The aim of this paper is to examine the shared frailty issue in the Cox proportional hazard model by including two different parametric forms of frailty into the hazard function. Four estimated methods are used to fit them. The performance of the parameter estimates is assessed and compared between the classical Cox model and these frailty models through a real-life data set from the Quebec Pension Plan and then using a more general simulation study. This performance is investigated in terms of the bias of point estimates and their empirical standard errors in both fixed and random effect parts. Both the simulation and the real dataset studies showed differences between classical Cox model and shared frailty model.

Keywords: life insurance-pension plan, survival analysis, risk factors, cox proportional hazards model, multivariate failure-time data, shared frailty, simulations study

Procedia PDF Downloads 361
5364 Optimization of Heat Insulation Structure and Heat Flux Calculation Method of Slug Calorimeter

Authors: Zhu Xinxin, Wang Hui, Yang Kai

Abstract:

Heat flux is one of the most important test parameters in the ground thermal protection test. Slug calorimeter is selected as the main sensor measuring heat flux in arc wind tunnel test due to the convenience and low cost. However, because of excessive lateral heat transfer and the disadvantage of the calculation method, the heat flux measurement error of the slug calorimeter is large. In order to enhance measurement accuracy, the heat insulation structure and heat flux calculation method of slug calorimeter were improved. The heat transfer model of the slug calorimeter was built according to the energy conservation principle. Based on the heat transfer model, the insulating sleeve of the hollow structure was designed, which helped to greatly decrease lateral heat transfer. And the slug with insulating sleeve of hollow structure was encapsulated using a package shell. The improved insulation structure reduced heat loss and ensured that the heat transfer characteristics were almost the same when calibrated and tested. The heat flux calibration test was carried out in arc lamp system for heat flux sensor calibration, and the results show that test accuracy and precision of slug calorimeter are improved greatly. In the meantime, the simulation model of the slug calorimeter was built. The heat flux values in different temperature rise time periods were calculated by the simulation model. The results show that extracting the data of the temperature rise rate as soon as possible can result in a smaller heat flux calculation error. Then the different thermal contact resistance affecting calculation error was analyzed by the simulation model. The contact resistance between the slug and the insulating sleeve was identified as the main influencing factor. The direct comparison calibration correction method was proposed based on only heat flux calibration. The numerical calculation correction method was proposed based on the heat flux calibration and simulation model of slug calorimeter after the simulation model was solved by solving the contact resistance between the slug and the insulating sleeve. The simulation and test results show that two methods can greatly reduce the heat flux measurement error. Finally, the improved slug calorimeter was tested in the arc wind tunnel. And test results show that the repeatability accuracy of improved slug calorimeter is less than 3%. The deviation of measurement value from different slug calorimeters is less than 3% in the same fluid field. The deviation of measurement value between slug calorimeter and Gordon Gage is less than 4% in the same fluid field.

Keywords: correction method, heat flux calculation, heat insulation structure, heat transfer model, slug calorimeter

Procedia PDF Downloads 124
5363 Artificial Intelligence in Penetration Testing of a Connected and Autonomous Vehicle Network

Authors: Phillip Garrad, Saritha Unnikrishnan

Abstract:

The recent popularity of connected and autonomous vehicles (CAV) corresponds with an increase in the risk of cyber-attacks. These cyber-attacks have been instigated by both researchers or white-coat hackers and cyber-criminals. As Connected Vehicles move towards full autonomy, the impact of these cyber-attacks also grows. The current research details challenges faced in cybersecurity testing of CAV, including access and cost of the representative test setup. Other challenges faced are lack of experts in the field. Possible solutions to how these challenges can be overcome are reviewed and discussed. From these findings, a software simulated CAV network is established as a cost-effective representative testbed. Penetration tests are then performed on this simulation, demonstrating a cyber-attack in CAV. Studies have shown Artificial Intelligence (AI) to improve runtime, increase efficiency and comprehensively cover all the typical test aspects in penetration testing in other industries. There is an attempt to introduce similar AI models to the software simulation. The expectation from this implementation is to see similar improvements in runtime and efficiency for the CAV model. If proven to be an effective means of penetration test for CAV, this methodology may be used on a full CAV test network.

Keywords: cybersecurity, connected vehicles, software simulation, artificial intelligence, penetration testing

Procedia PDF Downloads 113