Search results for: data reduction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 28909

Search results for: data reduction

27679 Genetic Data of Deceased People: Solving the Gordian Knot

Authors: Inigo de Miguel Beriain

Abstract:

Genetic data of deceased persons are of great interest for both biomedical research and clinical use. This is due to several reasons. On the one hand, many of our diseases have a genetic component; on the other hand, we share genes with a good part of our biological family. Therefore, it would be possible to improve our response considerably to these pathologies if we could use these data. Unfortunately, at the present moment, the status of data on the deceased is far from being satisfactorily resolved by the EU data protection regulation. Indeed, the General Data Protection Regulation has explicitly excluded these data from the category of personal data. This decision has given rise to a fragmented legal framework on this issue. Consequently, each EU member state offers very different solutions. For instance, Denmark considers the data as personal data of the deceased person for a set period of time while some others, such as Spain, do not consider this data as such, but have introduced some specifically focused regulations on this type of data and their access by relatives. This is an extremely dysfunctional scenario from multiple angles, not least of which is scientific cooperation at the EU level. This contribution attempts to outline a solution to this dilemma through an alternative proposal. Its main hypothesis is that, in reality, health data are, in a sense, a rara avis within data in general because they do not refer to one person but to several. Hence, it is possible to think that all of them can be considered data subjects (although not all of them can exercise the corresponding rights in the same way). When the person from whom the data were obtained dies, the data remain as personal data of his or her biological relatives. Hence, the general regime provided for in the GDPR may apply to them. As these are personal data, we could go back to thinking in terms of a general prohibition of data processing, with the exceptions provided for in Article 9.2 and on the legal bases included in Article 6. This may be complicated in practice, given that, since we are dealing with data that refer to several data subjects, it may be complex to refer to some of these bases, such as consent. Furthermore, there are theoretical arguments that may oppose this hypothesis. In this contribution, it is shown, however, that none of these objections is of sufficient substance to delegitimize the argument exposed. Therefore, the conclusion of this contribution is that we can indeed build a general framework on the processing of personal data of deceased persons in the context of the GDPR. This would constitute a considerable improvement over the current regulatory framework, although it is true that some clarifications will be necessary for its practical application.

Keywords: collective data conceptual issues, data from deceased people, genetic data protection issues, GDPR and deceased people

Procedia PDF Downloads 155
27678 FEM for Stress Reduction by Optimal Auxiliary Holes in a Uniaxially Loaded Plate

Authors: Basavaraj R. Endigeri, Shriharsh Desphande

Abstract:

Optimization and reduction of stress concentration around holes in a uniaxially loaded plate is one of the important design criteria in many of the engineering applications. These stress risers will lead to failure of the component at the region of high stress concentration which has to be avoided by means of providing auxiliary holes on either side of the parent hole. By literature survey it is known that till date, there is no analytical solution documented to reduce the stress concentration by providing auxiliary holes expect for fever geometries. In the present work, plate with a hole subjected to uniaxial load is analyzed with the numerical method to determine the optimum sizes and locations for the auxillary holes for different center hole diameter to plate width ratios. The introduction of auxiliary holes at a optimum location and radii with its effect on stress concentration is also represented graphically. The finite element analysis package ANSYS 8.0 is used to carry out analysis and optimization is performed to determine the location and radii for optimum values of auxiliary holes to reduce stress concentration. All the results for different diameter to plate width ratio are presented graphically. It is found from the work that introduction of auxiliary holes on either side of central circular hole will reduce stress concentration factor by a factor of 19 to 21 percentage.

Keywords: finite element method, optimization, stress concentration factor, auxiliary holes

Procedia PDF Downloads 441
27677 DG Allocation to Reduce Production Cost by Reducing Losses in Radial Distribution Systems Using Fuzzy

Authors: G. V. Siva Krishna Rao, B. Srinivasa Rao

Abstract:

Electrical energy is vital in every aspect of day-to-day life. Keen interest is taken on all possible sources of energy from which it can be generated and this led to the encouragement of generating electrical power using renewable energy resources such as solar, tidal waves and wind energy. Due to the increasing interest on renewable sources in recent times, the studies on integration of distributed generation to the power grid have rapidly increased. Distributed Generation (DG) is a promising solution to many power system problems such as voltage regulation, power loss and reduction in operational cost, etc. To reduce production cost, it is important to minimize the losses by determining the location and size of local generators to be placed in the radial distribution systems. In this paper, reduction of production cost by optimal size of DG unit operated at optimal power factor is dealt. The optimal size of the DG unit is calculated analytically using approximate reasoning suitable nodes and DG placement to minimize production cost with minimum loss is determined by fuzzy technique. Total Cost of Power generation is compared with and without DG unit for 1 year duration. The suggested method is programmed under MATLAB software and is tested on IEEE 33 bus system and the results are presented.

Keywords: distributed generation, operational cost, exact loss formula, optimum size, optimum location

Procedia PDF Downloads 485
27676 Antimicrobial Efficacy of 0.75% Metronidazole and 2% Chlorhexidine Gel Applied in Implant Screw Hole: A Clinical Trial

Authors: Mostafa Solati

Abstract:

Objectives: Considering the gap of information regarding the optimal antimicrobial efficacy of metronidazole for application in the implant screw hole, this study aimed to compare the antimicrobial efficacy of 0.75% metronidazole and 2% chlorhexidine (CHX) gel applied in the implant screw hole. Materials and Methods: This randomized controlled clinical trial evaluated 60 implants (20 patients, each requiring three implants) in three groups (n=20). In group 1, 0.75% metronidazole gel was applied to the implant screw hole. In group 2, 2% CHX gel was applied, and in group 3, no material was used. Microbial samples were collected from the screw holes after three months, and the microbial colonies were counted. Data were analyzed using ANOVA. Results: The number of bacteria in the control group was significantly higher than that in 0.75% metronidazole gel and 2% CHX groups (P<0.05). The CHX group caused the maximum reduction in colony count with no significant difference from the metronidazole group (P>0.05). Conclusion: The application of 0.75% metronidazole gel and 2% CHX can effectively decrease the colony count in the implant screw hole and can probably play a role in the preservation of peri-implant tissue health.

Keywords: dental implant, metronidazole, CHX, screw hole

Procedia PDF Downloads 70
27675 Steps towards the Development of National Health Data Standards in Developing Countries

Authors: Abdullah I. Alkraiji, Thomas W. Jackson, Ian Murray

Abstract:

The proliferation of health data standards today is somewhat overlapping and conflicting, resulting in market confusion and leading to increasing proprietary interests. The government role and support in standardization for health data are thought to be crucial in order to establish credible standards for the next decade, to maximize interoperability across the health sector, and to decrease the risks associated with the implementation of non-standard systems. The normative literature missed out the exploration of the different steps required to be undertaken by the government towards the development of national health data standards. Based on the lessons learned from a qualitative study investigating the different issues to the adoption of health data standards in the major tertiary hospitals in Saudi Arabia and the opinions and feedback from different experts in the areas of data exchange and standards and medical informatics in Saudi Arabia and UK, a list of steps required towards the development of national health data standards was constructed. Main steps are the existence of: a national formal reference for health data standards, an agreed national strategic direction for medical data exchange, a national medical information management plan and a national accreditation body, and more important is the change management at the national and organizational level. The outcome of this study can be used by academics and practitioners to develop the planning of health data standards, and in particular those in developing countries.

Keywords: interoperabilty, medical data exchange, health data standards, case study, Saudi Arabia

Procedia PDF Downloads 340
27674 Finite-Sum Optimization: Adaptivity to Smoothness and Loopless Variance Reduction

Authors: Bastien Batardière, Joon Kwon

Abstract:

For finite-sum optimization, variance-reduced gradient methods (VR) compute at each iteration the gradient of a single function (or of a mini-batch), and yet achieve faster convergence than SGD thanks to a carefully crafted lower-variance stochastic gradient estimator that reuses past gradients. Another important line of research of the past decade in continuous optimization is the adaptive algorithms such as AdaGrad, that dynamically adjust the (possibly coordinate-wise) learning rate to past gradients and thereby adapt to the geometry of the objective function. Variants such as RMSprop and Adam demonstrate outstanding practical performance that have contributed to the success of deep learning. In this work, we present AdaLVR, which combines the AdaGrad algorithm with loopless variance-reduced gradient estimators such as SAGA or L-SVRG that benefits from a straightforward construction and a streamlined analysis. We assess that AdaLVR inherits both good convergence properties from VR methods and the adaptive nature of AdaGrad: in the case of L-smooth convex functions we establish a gradient complexity of O(n + (L + √ nL)/ε) without prior knowledge of L. Numerical experiments demonstrate the superiority of AdaLVR over state-of-the-art methods. Moreover, we empirically show that the RMSprop and Adam algorithm combined with variance-reduced gradients estimators achieve even faster convergence.

Keywords: convex optimization, variance reduction, adaptive algorithms, loopless

Procedia PDF Downloads 71
27673 A Proposal for U-City (Smart City) Service Method Using Real-Time Digital Map

Authors: SangWon Han, MuWook Pyeon, Sujung Moon, DaeKyo Seo

Abstract:

Recently, technologies based on three-dimensional (3D) space information are being developed and quality of life is improving as a result. Research on real-time digital map (RDM) is being conducted now to provide 3D space information. RDM is a service that creates and supplies 3D space information in real time based on location/shape detection. Research subjects on RDM include the construction of 3D space information with matching image data, complementing the weaknesses of image acquisition using multi-source data, and data collection methods using big data. Using RDM will be effective for space analysis using 3D space information in a U-City and for other space information utilization technologies.

Keywords: RDM, multi-source data, big data, U-City

Procedia PDF Downloads 434
27672 Enhancing Industrial Wastewater Treatment through Fe3o4 Nanoparticles-loaded Activated Charcoal: Design and Optimization for Sustainable Development

Authors: Komal Verma, V. S. Moholkar

Abstract:

This paper reports investigations in the mineralization of industrial wastewater (COD = 3246 mg/L, TOC = 2500 mg/L) using a ternary (ultrasound + Fenton + adsorption) hybrid advanced oxidation process. Fe3O4 decorated activated charcoal (Fe3O4@AC) nanocomposites (surface area = 538.88 m2/g; adsorption capacity = 294.31 mg/g) were synthesized using co-precipitation. The wastewater treatment process was optimized using central composite statistical design. At optimum conditions, viz. pH = 4.2, H2O2 loading = 0.71 M, adsorbent dose = 0.34 g/L, reduction in COD and TOC of wastewater were 94.75% and 89%, respectively. This result is essentially a consequence of synergistic interactions among the adsorption of pollutants onto activated charcoal and surface Fenton reactions induced due to the leaching of Fe2+/Fe3+ ions from the Fe3O4 nanoparticles. Microconvection generated due to sonication assisted faster mass transport (adsorption/desorption) of pollutants between Fe₃O₄@AC nanocomposite and the solution. The net result of this synergism was high interactions and reactions among and radicals and pollutants that resulted in the effective mineralization of wastewater The Fe₃O₄@AC showed excellent recovery (> 90 wt%) and reusability (> 90% COD removal) in 5 successive cycles of treatment. LC-MS analysis revealed effective (> 50%) degradation of more than 25 significant contaminants (in the form of herbicides and pesticides) after the treatment with ternary hybrid AOP. Similarly, the toxicity analysis test using the seed germination technique revealed ~ 60% reduction in the toxicity of the wastewater after treatment.

Keywords: Fe₃O₄@AC nanocomposite, RSM, COD;, LC-MS, Toxicity

Procedia PDF Downloads 116
27671 Agile Methodology for Modeling and Design of Data Warehouses -AM4DW-

Authors: Nieto Bernal Wilson, Carmona Suarez Edgar

Abstract:

The organizations have structured and unstructured information in different formats, sources, and systems. Part of these come from ERP under OLTP processing that support the information system, however these organizations in OLAP processing level, presented some deficiencies, part of this problematic lies in that does not exist interesting into extract knowledge from their data sources, as also the absence of operational capabilities to tackle with these kind of projects.  Data Warehouse and its applications are considered as non-proprietary tools, which are of great interest to business intelligence, since they are repositories basis for creating models or patterns (behavior of customers, suppliers, products, social networks and genomics) and facilitate corporate decision making and research. The following paper present a structured methodology, simple, inspired from the agile development models as Scrum, XP and AUP. Also the models object relational, spatial data models, and the base line of data modeling under UML and Big data, from this way sought to deliver an agile methodology for the developing of data warehouses, simple and of easy application. The methodology naturally take into account the application of process for the respectively information analysis, visualization and data mining, particularly for patterns generation and derived models from the objects facts structured.

Keywords: data warehouse, model data, big data, object fact, object relational fact, process developed data warehouse

Procedia PDF Downloads 412
27670 Making of Alloy Steel by Direct Alloying with Mineral Oxides during Electro-Slag Remelting

Authors: Vishwas Goel, Kapil Surve, Somnath Basu

Abstract:

In-situ alloying in steel during the electro-slag remelting (ESR) process has already been achieved by the addition of necessary ferroalloys into the electro-slag remelting mold. However, the use of commercially available ferroalloys during ESR processing is often found to be financially less favorable, in comparison with the conventional alloying techniques. However, a process of alloying steel with elements like chromium and manganese using the electro-slag remelting route is under development without any ferrochrome addition. The process utilizes in-situ reduction of refined mineral chromite (Cr₂O₃) and resultant enrichment of chromium in the steel ingot produced. It was established in course of this work that this process can become more advantageous over conventional alloying techniques, both economically and environmentally, for applications which inherently demand the use of the electro-slag remelting process, such as manufacturing of superalloys. A key advantage is the lower overall CO₂ footprint of this process relative to the conventional route of production, storage, and the addition of ferrochrome. In addition to experimentally validating the feasibility of the envisaged reactions, a mathematical model to simulate the reduction of chromium (III) oxide and transfer to chromium to the molten steel droplets was also developed as part of the current work. The developed model helps to correlate the amount of chromite input and the magnitude of chromium alloying that can be achieved through this process. Experiments are in progress to validate the predictions made by this model and to fine-tune its parameters.

Keywords: alloying element, chromite, electro-slag remelting, ferrochrome

Procedia PDF Downloads 223
27669 Selective Synthesis of Pyrrolic Nitrogen-Doped Carbon Nanotubes Its Physicochemical Properties and Application as Pd Nanoparticles Support

Authors: L. M. Ombaka, R. S. Oosthuizen, P. G. Ndungu, V. O. Nyamori

Abstract:

Understanding the role of nitrogen species on the catalytic properties of nitrogen-doped carbon nanotubes (N-CNTs) as catalysts supports is critical as nitrogen species influence the support’s properties. To evaluate the influence of pyrrolic nitrogen on the physicochemical properties and catalytic activity of N-CNTs supported Pd (Pd/N-CNTs); N-CNTs containing varying pyrrolic contents were synthesized. The catalysts were characterised by the use of transmission electron microscope (TEM), scanning electron microscope, X-ray photoelectron spectroscopy (XPS), X-ray diffraction, Fourier transform infrared spectroscopy, and temperature programmed reduction. TEM analysis showed that the Pd nanoparticles were mainly located along the defect sites on N-CNTs. XPS analysis revealed that the abundance of Pd0 decreased while that of Pd2+ increased as the quantity of pyrrolic nitrogen increased. The increase of Pd2+ species was accredited to the formation of stable Pd-N coordination complexes which prevented further reduction of Pd2+ to Pd0 during synthesis. The formed Pd-N complexes increased the stability and dispersion of Pd2+ nanoparticles. The selective hydrogenation of nitrobenzophenone to aminobenzophenone over Pd/N-CNTs was compared to that of Pd on carbon nanotubes (Pd/CNTs). Pd/N-CNTs showed a higher catalytic activity and selectivity compared with Pd/CNTs. Pyrrolic nitrogen functional groups significantly promoted the selectivity towards aminobenzophenone formation.

Keywords: pyrrolic N-CNTs, hydrogenation reactions, chemical vapour deposition technique

Procedia PDF Downloads 358
27668 Identifying Model to Predict Deterioration of Water Mains Using Robust Analysis

Authors: Go Bong Choi, Shin Je Lee, Sung Jin Yoo, Gibaek Lee, Jong Min Lee

Abstract:

In South Korea, it is difficult to obtain data for statistical pipe assessment. In this paper, to address these issues, we find that various statistical model presented before is how data mixed with noise and are whether apply in South Korea. Three major type of model is studied and if data is presented in the paper, we add noise to data, which affects how model response changes. Moreover, we generate data from model in paper and analyse effect of noise. From this we can find robustness and applicability in Korea of each model.

Keywords: proportional hazard model, survival model, water main deterioration, ecological sciences

Procedia PDF Downloads 744
27667 Automated Testing to Detect Instance Data Loss in Android Applications

Authors: Anusha Konduru, Zhiyong Shan, Preethi Santhanam, Vinod Namboodiri, Rajiv Bagai

Abstract:

Mobile applications are increasing in a significant amount, each to address the requirements of many users. However, the quick developments and enhancements are resulting in many underlying defects. Android apps create and handle a large variety of 'instance' data that has to persist across runs, such as the current navigation route, workout results, antivirus settings, or game state. Due to the nature of Android, an app can be paused, sent into the background, or killed at any time. If the instance data is not saved and restored between runs, in addition to data loss, partially-saved or corrupted data can crash the app upon resume or restart. However, it is difficult for the programmer to manually test this issue for all the activities. This results in the issue of data loss that the data entered by the user are not saved when there is any interruption. This issue can degrade user experience because the user needs to reenter the information each time there is an interruption. Automated testing to detect such data loss is important to improve the user experience. This research proposes a tool, DroidDL, a data loss detector for Android, which detects the instance data loss from a given android application. We have tested 395 applications and found 12 applications with the issue of data loss. This approach is proved highly accurate and reliable to find the apps with this defect, which can be used by android developers to avoid such errors.

Keywords: Android, automated testing, activity, data loss

Procedia PDF Downloads 237
27666 Big Data: Appearance and Disappearance

Authors: James Moir

Abstract:

The mainstay of Big Data is prediction in that it allows practitioners, researchers, and policy analysts to predict trends based upon the analysis of large and varied sources of data. These can range from changing social and political opinions, patterns in crimes, and consumer behaviour. Big Data has therefore shifted the criterion of success in science from causal explanations to predictive modelling and simulation. The 19th-century science sought to capture phenomena and seek to show the appearance of it through causal mechanisms while 20th-century science attempted to save the appearance and relinquish causal explanations. Now 21st-century science in the form of Big Data is concerned with the prediction of appearances and nothing more. However, this pulls social science back in the direction of a more rule- or law-governed reality model of science and away from a consideration of the internal nature of rules in relation to various practices. In effect Big Data offers us no more than a world of surface appearance and in doing so it makes disappear any context-specific conceptual sensitivity.

Keywords: big data, appearance, disappearance, surface, epistemology

Procedia PDF Downloads 422
27665 From Data Processing to Experimental Design and Back Again: A Parameter Identification Problem Based on FRAP Images

Authors: Stepan Papacek, Jiri Jablonsky, Radek Kana, Ctirad Matonoha, Stefan Kindermann

Abstract:

FRAP (Fluorescence Recovery After Photobleaching) is a widely used measurement technique to determine the mobility of fluorescent molecules within living cells. While the experimental setup and protocol for FRAP experiments are usually fixed, data processing part is still under development. In this paper, we formulate and solve the problem of data selection which enhances the processing of FRAP images. We introduce the concept of the irrelevant data set, i.e., the data which are almost not reducing the confidence interval of the estimated parameters and thus could be neglected. Based on sensitivity analysis, we both solve the problem of the optimal data space selection and we find specific conditions for optimizing an important experimental design factor, e.g., the radius of bleach spot. Finally, a theorem announcing less precision of the integrated data approach compared to the full data case is proven; i.e., we claim that the data set represented by the FRAP recovery curve lead to a larger confidence interval compared to the spatio-temporal (full) data.

Keywords: FRAP, inverse problem, parameter identification, sensitivity analysis, optimal experimental design

Procedia PDF Downloads 278
27664 Assessment of the Impact of Traffic Safety Policy in Barcelona, 2010-2019

Authors: Lluís Bermúdez, Isabel Morillo

Abstract:

Road safety involves carrying out a determined and explicit policy to reduce accidents. In the city of Barcelona, through the Local Road Safety Plan 2013-2018, in line with the framework that has been established at the European and state level, a series of preventive, corrective and technical measures are specified, with the priority objective of reducing the number of serious injuries and fatalities. In this work, based on the data from the accidents managed by the local police during the period 2010-2019, an analysis is carried out to verify whether the measures established in the Plan to reduce the accident rate have had an effect or not and to what extent. The analysis focuses on the type of accident and the type of vehicles involved. Different count regression models have been fitted, from which it can be deduced that the number of serious and fatal victims of the accidents that have occurred in the city of Barcelona has been reduced as the measures approved by the authorities.

Keywords: accident reduction, count regression models, road safety, urban traffic

Procedia PDF Downloads 133
27663 Exploring the Feasibility of Utilizing Blockchain in Cloud Computing and AI-Enabled BIM for Enhancing Data Exchange in Construction Supply Chain Management

Authors: Tran Duong Nguyen, Marwan Shagar, Qinghao Zeng, Aras Maqsoodi, Pardis Pishdad, Eunhwa Yang

Abstract:

Construction supply chain management (CSCM) involves the collaboration of many disciplines and actors, which generates vast amounts of data. However, inefficient, fragmented, and non-standardized data storage often hinders this data exchange. The industry has adopted building information modeling (BIM) -a digital representation of a facility's physical and functional characteristics to improve collaboration, enhance transmission security, and provide a common data exchange platform. Still, the volume and complexity of data require tailored information categorization, aligning with stakeholders' preferences and demands. To address this, artificial intelligence (AI) can be integrated to handle this data’s magnitude and complexities. This research aims to develop an integrated and efficient approach for data exchange in CSCM by utilizing AI. The paper covers five main objectives: (1) Investigate existing framework and BIM adoption; (2) Identify challenges in data exchange; (3) Propose an integrated framework; (4) Enhance data transmission security; and (5) Develop data exchange in CSCM. The proposed framework demonstrates how integrating BIM and other technologies, such as cloud computing, blockchain, and AI applications, can significantly improve the efficiency and accuracy of data exchange in CSCM.

Keywords: construction supply chain management, BIM, data exchange, artificial intelligence

Procedia PDF Downloads 31
27662 Representation Data without Lost Compression Properties in Time Series: A Review

Authors: Nabilah Filzah Mohd Radzuan, Zalinda Othman, Azuraliza Abu Bakar, Abdul Razak Hamdan

Abstract:

Uncertain data is believed to be an important issue in building up a prediction model. The main objective in the time series uncertainty analysis is to formulate uncertain data in order to gain knowledge and fit low dimensional model prior to a prediction task. This paper discusses the performance of a number of techniques in dealing with uncertain data specifically those which solve uncertain data condition by minimizing the loss of compression properties.

Keywords: compression properties, uncertainty, uncertain time series, mining technique, weather prediction

Procedia PDF Downloads 430
27661 Data Mining As A Tool For Knowledge Management: A Review

Authors: Maram Saleh

Abstract:

Knowledge has become an essential resource in today’s economy and become the most important asset of maintaining competition advantage in organizations. The importance of knowledge has made organizations to manage their knowledge assets and resources through all multiple knowledge management stages such as: Knowledge Creation, knowledge storage, knowledge sharing and knowledge use. Researches on data mining are continues growing over recent years on both business and educational fields. Data mining is one of the most important steps of the knowledge discovery in databases process aiming to extract implicit, unknown but useful knowledge and it is considered as significant subfield in knowledge management. Data miming have the great potential to help organizations to focus on extracting the most important information on their data warehouses. Data mining tools and techniques can predict future trends and behaviors, allowing businesses to make proactive, knowledge-driven decisions. This review paper explores the applications of data mining techniques in supporting knowledge management process as an effective knowledge discovery technique. In this paper, we identify the relationship between data mining and knowledge management, and then focus on introducing some application of date mining techniques in knowledge management for some real life domains.

Keywords: Data Mining, Knowledge management, Knowledge discovery, Knowledge creation.

Procedia PDF Downloads 210
27660 Early-Age Cracking of Low Carbon Concrete Incorporating Ferronickel Slag as Supplementary Cementitious Material

Authors: Mohammad Khan, Arnaud Castel

Abstract:

Concrete viscoelastic properties such as shrinkage, creep, and associated relaxation are important in assessing the risk of cracking during the first few days after placement. This paper investigates the early-age mechanical and viscoelastic properties, restrained shrinkage-induced cracking and time to cracking of concrete incorporating ferronickel slag (FNS) as supplementary cementitious material. Compressive strength, indirect tensile strength and elastic modulus were measured. Tensile creep and drying shrinkage was measured on dog-bone shaped specimens. Restrained shrinkage induced stresses and concrete cracking age were assessed by using the ring test. Results revealed that early-age strength development of FNS blended concrete is lower than that of the corresponding ordinary Portland cement (OPC) concrete. FNS blended concrete showed significantly higher tensile creep. The risk of early-age cracking for the restrained specimens depends on the development of concrete tensile stress considering both restrained shrinkage and tensile creep and the development of the tensile strength. FNS blended concrete showed only 20% reduction in time to cracking compared to reference OPC concrete, and this reduction is significantly lower compared to fly ash and ground granulated blast furnace slag blended concretes at similar replacement level.

Keywords: ferronickel slag, restraint shrinkage, tensile creep, time to cracking

Procedia PDF Downloads 187
27659 Safe School Program in Indonesia: Questioning Whether It Is Too Hard to Succeed

Authors: Ida Ngurah

Abstract:

Indonesia is one of the most prone disaster countries, which has earthquake, tsunami or high wave, flood and landslide as well as volcano eruption and drought. Disaster risk reduction has been developing extensively and comprehensively, particularly after tsunami hit in 2004. Yet, saving people live including children and youth from disaster risk is still far from succeed. Poor management of environment, poor development of policy and high level of corruption has become challenges for Indonesia to save its people from disaster impact. Indonesia is struggling to ensure its future best investment, children and youth to have better protection when disaster strike in school hours and have basic knowledge on disaster risk reduction. The program of safe school is being initiated and developed by Plan Indonesia since 2010, yet this effort still needs to be elaborated. This paper is reviewing sporadic safe school programs that have been implemented or currently being implemented Plan Indonesia in few areas of Indonesia, including both rural and urban setting. Methods used are in-depth interview with dedicated person for the program from Plan Indonesia and its implementing patners and analysis of project documents. The review includes program’s goal and objectives, implementation activity, result and achievement as well as its monitoring and evaluation scheme. Moreover, paper will be showing challenges, lesson learned and best practices of the program. Eventually, paper will come up with recommendation for strategy for better implementation of safe school program in Indonesia.

Keywords: disaster impact, safe school, programs, children, youth

Procedia PDF Downloads 370
27658 Anomaly Detection Based Fuzzy K-Mode Clustering for Categorical Data

Authors: Murat Yazici

Abstract:

Anomalies are irregularities found in data that do not adhere to a well-defined standard of normal behavior. The identification of outliers or anomalies in data has been a subject of study within the statistics field since the 1800s. Over time, a variety of anomaly detection techniques have been developed in several research communities. The cluster analysis can be used to detect anomalies. It is the process of associating data with clusters that are as similar as possible while dissimilar clusters are associated with each other. Many of the traditional cluster algorithms have limitations in dealing with data sets containing categorical properties. To detect anomalies in categorical data, fuzzy clustering approach can be used with its advantages. The fuzzy k-Mode (FKM) clustering algorithm, which is one of the fuzzy clustering approaches, by extension to the k-means algorithm, is reported for clustering datasets with categorical values. It is a form of clustering: each point can be associated with more than one cluster. In this paper, anomaly detection is performed on two simulated data by using the FKM cluster algorithm. As a significance of the study, the FKM cluster algorithm allows to determine anomalies with their abnormality degree in contrast to numerous anomaly detection algorithms. According to the results, the FKM cluster algorithm illustrated good performance in the anomaly detection of data, including both one anomaly and more than one anomaly.

Keywords: fuzzy k-mode clustering, anomaly detection, noise, categorical data

Procedia PDF Downloads 55
27657 An Experimental Study on the Effect of Operating Parameters during the Micro-Electro-Discharge Machining of Ni Based Alloy

Authors: Asma Perveen, M. P. Jahan

Abstract:

Ni alloys have managed to cover wide range of applications such as automotive industries, oil gas industries, and aerospace industries. However, these alloys impose challenges while using conventional machining technologies. On the other hand, Micro-Electro-Discharge machining (micro-EDM) is a non-conventional machining method that uses controlled sparks energy to remove material irrespective of the materials hardness. There has been always a huge interest from the industries for developing optimum methodology and parameters in order to enhance the productivity of micro-EDM in terms of reducing machining time and tool wear for different alloys. Therefore, the aims of this study are to investigate the effects of the micro-EDM process parameters, in order to find their optimal values. The input process parameters include voltage, capacitance, and electrode rotational speed, whereas the output parameters considered are machining time, entrance diameter of hole, overcut, tool wear, and crater size. The surface morphology and element characterization are also investigated with the use of SEM and EDX analysis. The experimental result indicates the reduction of machining time with the increment of discharge energy. Discharge energy also contributes to the enlargement of entrance diameter as well as overcut. In addition, tool wears show reduction with the increase of discharge energy. Moreover, crater size is found to be increased in size along with the increment of discharge energy.

Keywords: micro holes, micro EDM, Ni Alloy, discharge energy

Procedia PDF Downloads 275
27656 Calcitriol Improves Plasma Lipoprotein Profile by Decreasing Plasma Total Cholesterol and Triglyceride in Hypercholesterolemic Golden Syrian Hamsters

Authors: Xiaobo Wang, Zhen-Yu Chen

Abstract:

Higher plasma total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) are independent risk factors of cardiovascular disease while high-density lipoprotein cholesterol (HDL-C) is protective. Vitamin D is well-known for its regulatory role in calcium homeostasis. Its potential important role in cardiovascular disease has recently attracted much attention. This study was conducted to investigate effects of different dosage of calcitriol on plasma lipoprotein profile and the underlying mechanism. Sixty male Syrian Golden hamsters were randomly divided into 6 groups: no-cholesterol control (NCD), high-cholesterol control (HCD), groups with calcitriol supplementation at 10/20/40/80ng/kg body weight (CA, CB, CC, CD), respectively. Calcitriol in medium-chain triacylglycerol (MCT) oil was delivered to four experimental groups via oral gavage every other day, while NCD and HCD received MCT oil in the equivalent amount. NCD hamsters were fed with non-cholesterol diet while other five groups were maintained on diet containing 0.2% cholesterol to induce a hypercholesterolemic condition. The treatment lasts for 6 weeks followed by sample collection after hamsters sacrificed. Four experimental groups experienced a reduction in average food intake around 11% compared to HCD with slight decrease in body weight (not exceeding 10%). This reduction reflects on the deceased relative weights of testis, epididymal and perirenal adipose tissue in a dose-dependent manner. Plasma calcitriol levels were measured and was corresponding to oral gavage. At the end of week 6, lipoprotein profiles were improved with calcitriol supplementation with TC, non-HDL-C and plasma triglyceride (TG) decreased in a dose-dependent manner (TC: r=0.373, p=0.009, non-HDL-C: r=0.479, p=0.001, TG: r=0.405, p=0.004). Since HDL-C of four experiment groups showed no significant difference compared to HCD, the ratio of nHDL-C to HDL-C and HDL-C to TC had been restored in a dose-dependent manner. For hamsters receiving the highest level of calcitriol (80ng/kg) showed a reduction of TC by 11.5%, nHDL-C by 24.1% and TG by 31.25%. Little difference was found among six groups on the acetylcholine-induced endothelium-dependent relaxation or contraction of thoracic aorta. To summarize, calcitriol supplementation in hamster at maximum 80ng/kg body weight for 6 weeks lead to an overall improvement in plasma lipoprotein profile with decreased TC and TG level. The molecular mechanism of its effects is under investigation.

Keywords: cholesterol, vitamin D, calcitriol, hamster

Procedia PDF Downloads 238
27655 Big Data Analytics and Data Security in the Cloud via Fully Homomorphic Encyption Scheme

Authors: Victor Onomza Waziri, John K. Alhassan, Idris Ismaila, Noel Dogonyara

Abstract:

This paper describes the problem of building secure computational services for encrypted information in the Cloud. Computing without decrypting the encrypted data; therefore, it meets the yearning of computational encryption algorithmic aspiration model that could enhance the security of big data for privacy or confidentiality, availability and integrity of the data and user’s security. The cryptographic model applied for the computational process of the encrypted data is the Fully Homomorphic Encryption Scheme. We contribute a theoretical presentations in a high-level computational processes that are based on number theory that is derivable from abstract algebra which can easily be integrated and leveraged in the Cloud computing interface with detail theoretic mathematical concepts to the fully homomorphic encryption models. This contribution enhances the full implementation of big data analytics based on cryptographic security algorithm.

Keywords: big data analytics, security, privacy, bootstrapping, Fully Homomorphic Encryption Scheme

Procedia PDF Downloads 484
27654 Effects of Variation of Centers in the Torsional Analysis of Asymmetrical Buildings by Performing Non Linear Static Analysis

Authors: Md Masihuddin Siddiqui, Abdul Haakim Mohammed

Abstract:

Earthquakes are the most unpredictable and devastating of all natural disasters. The behaviour of a building during an earthquake depends on several factors such as stiffness, adequate lateral strength, ductility, and configurations. The experience from the performance of buildings during past earthquakes has shown that the buildings with regular geometry, uniformly distributed mass and stiffness in plan as well as in elevation suffer much less damage compared to irregular configurations. The three centers namely- centre of mass, centre of strength, centre of stiffness are the torsional parameters which contribute to the strength of the building in case of an earthquake. Inertial forces and resistive forces in a structural system act through the center of mass and center of rigidity respectively which together oppose the forces that are produced during seismic excitation. So these centers of a structural system should be positioned where the structural system is the strongest so that the effects produced due to the earthquake may have a minimal effect on the structure. In this paper, the effects of variation of strength eccentricity and stiffness eccentricity in reducing the torsional responses of the asymmetrical buildings by using pushover analysis are studied. The maximum reduction of base torsion was observed in the case of minimum strength eccentricity, and the least reduction was observed in the case of minimum stiffness eccentricity.

Keywords: strength eccentricity, stiffness eccentricity, asymmetric structure, base torsion, push over analysis

Procedia PDF Downloads 295
27653 Impact of Improved Beehive on Income of Rural Households: Evidence from Bugina District of Northern Ethiopia

Authors: Wondmnew Derebe

Abstract:

Increased adoption of modern beehives improves the livelihood of smallholder farmers whose income largely depends on mixed crop-livestock farming. Improved beehives have been disseminated to farmers in many parts of Ethiopia. However, its impact on income is less investigated. Thus, this study estimates how adopting improved beehives impacts rural households' income. Survey data were collected from 350 randomly selected households' and analyzed using an endogenous switching regression model. The result revealed that the adoption of improved beehives is associated with a higher annual income. On average, improved beehive adopters earned about 6,077 (ETB) more money than their counterparts. However, the impact of adoption would have been larger for actual non-adopters, as reflected in the negative transitional heterogeneity effect of 1792 (ETB). The result also indicated that the decision to adopt or not to adopt improved beehives was subjected to individual self-selection. Improved beehive adoption can increase farmers' income and can be used as an alternative poverty reduction strategy.

Keywords: impact, adoption, endogenous switching regression, income, improved

Procedia PDF Downloads 74
27652 An Approximation of Daily Rainfall by Using a Pixel Value Data Approach

Authors: Sarisa Pinkham, Kanyarat Bussaban

Abstract:

The research aims to approximate the amount of daily rainfall by using a pixel value data approach. The daily rainfall maps from the Thailand Meteorological Department in period of time from January to December 2013 were the data used in this study. The results showed that this approach can approximate the amount of daily rainfall with RMSE=3.343.

Keywords: daily rainfall, image processing, approximation, pixel value data

Procedia PDF Downloads 388
27651 A Next-Generation Blockchain-Based Data Platform: Leveraging Decentralized Storage and Layer 2 Scaling for Secure Data Management

Authors: Kenneth Harper

Abstract:

The rapid growth of data-driven decision-making across various industries necessitates advanced solutions to ensure data integrity, scalability, and security. This study introduces a decentralized data platform built on blockchain technology to improve data management processes in high-volume environments such as healthcare and financial services. The platform integrates blockchain networks using Cosmos SDK and Polkadot Substrate alongside decentralized storage solutions like IPFS and Filecoin, and coupled with decentralized computing infrastructure built on top of Avalanche. By leveraging advanced consensus mechanisms, we create a scalable, tamper-proof architecture that supports both structured and unstructured data. Key features include secure data ingestion, cryptographic hashing for robust data lineage, and Zero-Knowledge Proof mechanisms that enhance privacy while ensuring compliance with regulatory standards. Additionally, we implement performance optimizations through Layer 2 scaling solutions, including ZK-Rollups, which provide low-latency data access and trustless data verification across a distributed ledger. The findings from this exercise demonstrate significant improvements in data accessibility, reduced operational costs, and enhanced data integrity when tested in real-world scenarios. This platform reference architecture offers a decentralized alternative to traditional centralized data storage models, providing scalability, security, and operational efficiency.

Keywords: blockchain, cosmos SDK, decentralized data platform, IPFS, ZK-Rollups

Procedia PDF Downloads 29
27650 The Effect of Measurement Distribution on System Identification and Detection of Behavior of Nonlinearities of Data

Authors: Mohammad Javad Mollakazemi, Farhad Asadi, Aref Ghafouri

Abstract:

In this paper, we considered and applied parametric modeling for some experimental data of dynamical system. In this study, we investigated the different distribution of output measurement from some dynamical systems. Also, with variance processing in experimental data we obtained the region of nonlinearity in experimental data and then identification of output section is applied in different situation and data distribution. Finally, the effect of the spanning the measurement such as variance to identification and limitation of this approach is explained.

Keywords: Gaussian process, nonlinearity distribution, particle filter, system identification

Procedia PDF Downloads 516