Search results for: peak-to-average power ratio
9227 Investigation of Fire Damaged Reinforced Concrete Walls with Axial Force
Authors: Hyun Ah Yoon, Ji Yeon Kang, Hee Sun Kim, Yeong Soo Shin
Abstract:
Reinforced concrete (RC) shear wall system of residential buildings is popular in South Korea. RC walls are subjected to axial forces in common and the effect of axial forces on the strength loss of the fire damaged walls has not been investigated. This paper aims at investigating temperature distribution on fire damaged concrete walls having different axial loads. In the experiments, a variable of specimens is axial force ratio. RC walls are fabricated with 150mm of wall thicknesses, 750mm of lengths and 1,300mm of heights having concrete strength of 24MPa. After curing, specimens are heated on one surface with ISO-834 standard time-temperature curve for 2 hours and temperature distributions during the test are measured using thermocouples inside the walls. The experimental results show that the temperature of the RC walls exposed to fire increases as axial force ratio increases. To verify the experiments, finite element (FE) models are generated for coupled temperature-structure analyses. The analytical results of thermal behaviors are in good agreement with the experimental results. The predicted displacement of the walls decreases when the axial force increases.Keywords: axial force ratio, fire, reinforced concrete wall, residual strength
Procedia PDF Downloads 4599226 Effects of a Simulated Power Cut in Automatic Milking Systems on Dairy Cows Heart Activity
Authors: Anja Gräff, Stefan Holzer, Manfred Höld, Jörn Stumpenhausen, Heinz Bernhardt
Abstract:
In view of the increasing quantity of 'green energy' from renewable raw materials and photovoltaic facilities, it is quite conceivable that power supply variations may occur, so that constantly working machines like automatic milking systems (AMS) may break down temporarily. The usage of farm-made energy is steadily increasing in order to keep energy costs as low as possible. As a result, power cuts are likely to happen more frequently. Current work in the framework of the project 'stable 4.0' focuses on possible stress reactions by simulating power cuts up to four hours in dairy farms. Based on heart activity it should be found out whether stress on dairy cows increases under these circumstances. In order to simulate a power cut, 12 random cows out of 2 herds were not admitted to the AMS for at least two hours on three consecutive days. The heart rates of the cows were measured and the collected data evaluated with HRV Program Kubios Version 2.1 on the basis of eight parameters (HR, RMSSD, pNN50, SD1, SD2, LF, HF and LF/HF). Furthermore, stress reactions were examined closely via video analysis, milk yield, ruminant activity, pedometer and measurements of cortisol metabolites. Concluding it turned out, that during the test only some animals were suffering from minor stress symptoms, when they tried to get into the AMS at their regular milking time, but couldn´t be milked because the system was manipulated. However, the stress level during a regular “time-dependent milking rejection” was just as high. So the study comes to the conclusion, that the low psychological stress level in the case of a 2-4 hours failure of an AMS does not have any impact on animal welfare and health.Keywords: dairy cow, heart activity, power cut, stable 4.0
Procedia PDF Downloads 3109225 Distributed Energy Storage as a Potential Solution to Electrical Network Variance
Authors: V. Rao, A. Bedford
Abstract:
As the efficient performance of national grid becomes increasingly important to maintain the electrical network stability, the balance between the generation and the demand must be effectively maintained. To do this, any losses that occur in the power network must be reduced by compensating for it. In this paper, one of the main cause for the losses in the network is identified as the variance, which hinders the grid’s power carrying capacity. The reason for the variance in the grid is investigated and identified as the rise in the integration of renewable energy sources (RES) such as wind and solar power. The intermittent nature of these RES along with fluctuating demands gives rise to variance in the electrical network. The losses that occur during this process is estimated by analyzing the network’s power profiles. Whilst researchers have identified different ways to tackle this problem, little consideration is given to energy storage. This paper seeks to redress this by considering the role of energy storage systems as potential solutions to reduce variance in the network. The implementation of suitable energy storage systems based on different applications is presented in this paper as part of variance reduction method and thus contribute towards maintaining a stable and efficient grid operation.Keywords: energy storage, electrical losses, national grid, renewable energy, variance
Procedia PDF Downloads 3159224 A Modified Periodic 2D Cellular Re-Entrant Honeycomb Model to Enhance the Auxetic Elastic Properties
Authors: Sohaib Z. Khan, Farrukh Mustahsan, Essam R. I. Mahmoud, S. H. Masood
Abstract:
Materials or structures that contract laterally on the application of a compressive load and vice versa are said to be Auxetic materials which exhibit Negative Poisson’s Ratio (NPR). Numerous auxetic structures are proposed in the literature. One of the most studied periodic auxetic structure is the re-entrant honeycomb model. In this paper, a modified re-entrant model is proposed to enhance the auxetic behavior. The paper aimed to investigate the elastic behaviour of the proposed model to improve Young’s modulus and NPR by evaluating the analytical model. Finite Element Analysis (FEA) is also conducted to support the analytical results. A significant increment in Young’s modulus and NPR can be achieved in one of the two orthogonal directions of the loading at the cost of compromising these values in other direction. The proposed modification resulted in lower relative densities when compared to the existing re-entrant honeycomb structure. A trade-off in the elastic properties in one direction at low relative density makes the proposed model suitable for uni-direction applications where higher stiffness and NPR is required, and strength to weight ratio is important.Keywords: 2D model, auxetic materials, re-entrant honeycomb, negative Poisson's ratio
Procedia PDF Downloads 1369223 The Effect of Microgrid on Power System Oscillatory Stability
Authors: Burak Yildirim, Muhsin Tunay Gencoglu
Abstract:
This publication shows the effects of Microgrid (MG) integration on the power systems oscillating stability. Generated MG model power systems were applied to the IEEE 14 bus test system which is widely used in stability studies. Stability studies were carried out with the help of eigenvalue analysis over linearized system models. In addition, Hopf bifurcation point detection was performed to show the effect of MGs on the system loadability margin. In the study results, it is seen that MGs affect system stability positively by increasing system loadability margin and has a damper effect on the critical modes of the system and the electromechanical local modes, but they make the damping amount of the electromechanical interarea modes reduce.Keywords: Eigenvalue analysis, microgrid, Hopf bifurcation, oscillatory stability
Procedia PDF Downloads 2899222 Evaluating the Feasibility of Magnetic Induction to Cross an Air-Water Boundary
Authors: Mark Watson, J.-F. Bousquet, Adam Forget
Abstract:
A magnetic induction based underwater communication link is evaluated using an analytical model and a custom Finite-Difference Time-Domain (FDTD) simulation tool. The analytical model is based on the Sommerfeld integral, and a full-wave simulation tool evaluates Maxwell’s equations using the FDTD method in cylindrical coordinates. The analytical model and FDTD simulation tool are then compared and used to predict the system performance for various transmitter depths and optimum frequencies of operation. To this end, the system bandwidth, signal to noise ratio, and the magnitude of the induced voltage are used to estimate the expected channel capacity. The models show that in seawater, a relatively low-power and small coils may be capable of obtaining a throughput of 40 to 300 kbps, for the case where a transmitter is at depths of 1 to 3 m and a receiver is at a height of 1 m.Keywords: magnetic induction, FDTD, underwater communication, Sommerfeld
Procedia PDF Downloads 1239221 Heat Sink Optimization for a High Power Wearable Thermoelectric Module
Authors: Zohreh Soleimani, Sally Salome Shahzad, Stamatis Zoras
Abstract:
As a result of current energy and environmental issues, the human body is known as one of the promising candidate for converting wasted heat to electricity (Seebeck effect). Thermoelectric generator (TEG) is one of the most prevalent means of harvesting body heat and converting that to eco-friendly electrical power. However, the uneven distribution of the body heat and its curvature geometry restrict harvesting adequate amount of energy. To perfectly transform the heat radiated by the body into power, the most direct solution is conforming the thermoelectric generators (TEG) with the arbitrary surface of the body and increase the temperature difference across the thermoelectric legs. Due to this, a computational survey through COMSOL Multiphysics is presented in this paper with the main focus on the impact of integrating a flexible wearable TEG with a corrugated shaped heat sink on the module power output. To eliminate external parameters (temperature, air flow, humidity), the simulations are conducted within indoor thermal level and when the wearer is stationary. The full thermoelectric characterization of the proposed TEG fabricated by a wavy shape heat sink has been computed leading to a maximum power output of 25µW/cm2 at a temperature gradient nearly 13°C. It is noteworthy that for the flexibility of the proposed TEG and heat sink, the applicability and efficiency of the module stay high even on the curved surfaces of the body. As a consequence, the results demonstrate the superiority of such a TEG to the most state of the art counterparts fabricated with no heat sink and offer a new train of thought for the development of self-sustained and unobtrusive wearable power suppliers which generate energy from low grade dissipated heat from the body.Keywords: device simulation, flexible thermoelectric module, heat sink, human body heat
Procedia PDF Downloads 1509220 Investigation of Pu-238 Heat Source Modifications to Increase Power Output through (α,N) Reaction-Induced Fission
Authors: Alex B. Cusick
Abstract:
The objective of this study is to improve upon the current ²³⁸PuO₂ fuel technology for space and defense applications. Modern RTGs (radioisotope thermoelectric generators) utilize the heat generated from the radioactive decay of ²³⁸Pu to create heat and electricity for long term and remote missions. Application of RTG technology is limited by the scarcity and expense of producing the isotope, as well as the power output which is limited to only a few hundred watts. The scarcity and expense make the efficient use of ²³⁸Pu absolutely necessary. By utilizing the decay of ²³⁸Pu, not only to produce heat directly but to also indirectly induce fission in ²³⁹Pu (which is already present within currently used fuel), it is possible to see large increases in temperature which allows for a more efficient conversion to electricity and a higher power-to-weight ratio. This concept can reduce the quantity of ²³⁸Pu necessary for these missions, potentially saving millions on investment, while yielding higher power output. Current work investigating radioisotope power systems have focused on improving efficiency of the thermoelectric components and replacing systems which produce heat by virtue of natural decay with fission reactors. The technical feasibility of utilizing (α,n) reactions to induce fission within current radioisotopic fuels has not been investigated in any appreciable detail, and our study aims to thoroughly investigate the performance of many such designs, develop those with highest capabilities, and facilitate experimental testing of these designs. In order to determine the specific design parameters that maximize power output and the efficient use of ²³⁸Pu for future RTG units, MCNP6 simulations have been used to characterize the effects of modifying fuel composition, geometry, and porosity, as well as introducing neutron moderating, reflecting, and shielding materials to the system. Although this project is currently in the preliminary stages, the final deliverables will include sophisticated designs and simulation models that define all characteristics of multiple novel RTG fuels, detailed enough to allow immediate fabrication and testing. Preliminary work has consisted of developing a benchmark model to accurately represent the ²³⁸PuO₂ pellets currently in use by NASA; this model utilizes the alpha transport capabilities of MCNP6 and agrees well with experimental data. In addition, several models have been developed by varying specific parameters to investigate their effect on (α,n) and (n,fi ssion) reaction rates. Current practices in fuel processing are to exchange out the small portion of naturally occurring ¹⁸O and ¹⁷O to limit (α,n) reactions and avoid unnecessary neutron production. However, we have shown that enriching the oxide in ¹⁸O introduces a sufficient (α,n) reaction rate to support significant fission rates. For example, subcritical fission rates above 10⁸ f/cm³-s are easily achievable in cylindrical ²³⁸PuO₂ fuel pellets with a ¹⁸O enrichment of 100%, given an increase in size and a ⁹Be clad. Many viable designs exist and our intent is to discuss current results and future endeavors on this project.Keywords: radioisotope thermoelectric generators (RTG), Pu-238, subcritical reactors, (alpha, n) reactions
Procedia PDF Downloads 1709219 Optical Signal-To-Noise Ratio Monitoring Based on Delay Tap Sampling Using Artificial Neural Network
Authors: Feng Wang, Shencheng Ni, Shuying Han, Shanhong You
Abstract:
With the development of optical communication, optical performance monitoring (OPM) has received more and more attentions. Since optical signal-to-noise ratio (OSNR) is directly related to bit error rate (BER), it is one of the important parameters in optical networks. Recently, artificial neural network (ANN) has been greatly developed. ANN has strong learning and generalization ability. In this paper, a method of OSNR monitoring based on delay-tap sampling (DTS) and ANN has been proposed. DTS technique is used to extract the eigenvalues of the signal. Then, the eigenvalues are input into the ANN to realize the OSNR monitoring. The experiments of 10 Gb/s non-return-to-zero (NRZ) on–off keying (OOK), 20 Gb/s pulse amplitude modulation (PAM4) and 20 Gb/s return-to-zero (RZ) differential phase-shift keying (DPSK) systems are demonstrated for the OSNR monitoring based on the proposed method. The experimental results show that the range of OSNR monitoring is from 15 to 30 dB and the root-mean-square errors (RMSEs) for 10 Gb/s NRZ-OOK, 20 Gb/s PAM4 and 20 Gb/s RZ-DPSK systems are 0.36 dB, 0.45 dB and 0.48 dB respectively. The impact of chromatic dispersion (CD) on the accuracy of OSNR monitoring is also investigated in the three experimental systems mentioned above.Keywords: artificial neural network (ANN), chromatic dispersion (CD), delay-tap sampling (DTS), optical signal-to-noise ratio (OSNR)
Procedia PDF Downloads 1129218 Role of Energy Storage in Renewable Electricity Systems in The Gird of Ethiopia
Authors: Dawit Abay Tesfamariam
Abstract:
Ethiopia’s Climate- Resilient Green Economy (ECRGE) strategy focuses mainly on generating and proper utilization of renewable energy (RE). Nonetheless, the current electricity generation of the country is dominated by hydropower. The data collected in 2016 by Ethiopian Electric Power (EEP) indicates that the intermittent RE sources from solar and wind energy were only 8 %. On the other hand, the EEP electricity generation plan in 2030 indicates that 36.1 % of the energy generation share will be covered by solar and wind sources. Thus, a case study was initiated to model and compute the balance and consumption of electricity in three different scenarios: 2016, 2025, and 2030 using the EnergyPLAN Model (EPM). Initially, the model was validated using the 2016 annual power-generated data to conduct the EnergyPLAN (EP) analysis for two predictive scenarios. The EP simulation analysis using EPM for 2016 showed that there was no significant excess power generated. Thus, the EPM was applied to analyze the role of energy storage in RE in Ethiopian grid systems. The results of the EP simulation analysis showed there will be excess production of 402 /7963 MW average and maximum, respectively, in 2025. The excess power was in the three rainy months of the year (June, July, and August). The outcome of the model also showed that in the dry seasons of the year, there would be excess power production in the country. Consequently, based on the validated outcomes of EP indicates, there is a good reason to think about other alternatives for the utilization of excess energy and storage of RE. Thus, from the scenarios and model results obtained, it is realistic to infer that if the excess power is utilized with a storage system, it can stabilize the grid system and be exported to support the economy. Therefore, researchers must continue to upgrade the current and upcoming storage system to synchronize with potentials that can be generated from renewable energy.Keywords: renewable energy, power, storage, wind, energy plan
Procedia PDF Downloads 779217 Integrated Power Saving for Multiple Relays and UEs in LTE-TDD
Authors: Chun-Chuan Yang, Jeng-Yueng Chen, Yi-Ting Mai, Chen-Ming Yang
Abstract:
In this paper, the design of integrated sleep scheduling for relay nodes and user equipments under a Donor eNB (DeNB) in the mode of Time Division Duplex (TDD) in LTE-A is presented. The idea of virtual time is proposed to deal with the discontinuous pattern of the available radio resource in TDD, and based on the estimation of the traffic load, three power saving schemes in the top-down strategy are presented. Associated mechanisms in each scheme including calculation of the virtual subframe capacity, the algorithm of integrated sleep scheduling, and the mapping mechanisms for the backhaul link and the access link are presented in the paper. Simulation study shows the advantage of the proposed schemes in energy saving over the standard DRX scheme.Keywords: LTE-A, relay, TDD, power saving
Procedia PDF Downloads 5139216 A Deep Learning Approach to Calculate Cardiothoracic Ratio From Chest Radiographs
Authors: Pranav Ajmera, Amit Kharat, Tanveer Gupte, Richa Pant, Viraj Kulkarni, Vinay Duddalwar, Purnachandra Lamghare
Abstract:
The cardiothoracic ratio (CTR) is the ratio of the diameter of the heart to the diameter of the thorax. An abnormal CTR, that is, a value greater than 0.55, is often an indicator of an underlying pathological condition. The accurate prediction of an abnormal CTR from chest X-rays (CXRs) aids in the early diagnosis of clinical conditions. We propose a deep learning-based model for automatic CTR calculation that can assist the radiologist with the diagnosis of cardiomegaly and optimize the radiology flow. The study population included 1012 posteroanterior (PA) CXRs from a single institution. The Attention U-Net deep learning (DL) architecture was used for the automatic calculation of CTR. A CTR of 0.55 was used as a cut-off to categorize the condition as cardiomegaly present or absent. An observer performance test was conducted to assess the radiologist's performance in diagnosing cardiomegaly with and without artificial intelligence (AI) assistance. The Attention U-Net model was highly specific in calculating the CTR. The model exhibited a sensitivity of 0.80 [95% CI: 0.75, 0.85], precision of 0.99 [95% CI: 0.98, 1], and a F1 score of 0.88 [95% CI: 0.85, 0.91]. During the analysis, we observed that 51 out of 1012 samples were misclassified by the model when compared to annotations made by the expert radiologist. We further observed that the sensitivity of the reviewing radiologist in identifying cardiomegaly increased from 40.50% to 88.4% when aided by the AI-generated CTR. Our segmentation-based AI model demonstrated high specificity and sensitivity for CTR calculation. The performance of the radiologist on the observer performance test improved significantly with AI assistance. A DL-based segmentation model for rapid quantification of CTR can therefore have significant potential to be used in clinical workflows.Keywords: cardiomegaly, deep learning, chest radiograph, artificial intelligence, cardiothoracic ratio
Procedia PDF Downloads 969215 Simulation and Control of the Flywheel System in the Rotor of a Wind Turbine Using Simulink and OpenFAST for Assessing the Effect on the Mechanical Loads
Authors: Chinazo Onyeka Eziuzo
Abstract:
This work presents the simulation and control of the flywheel system in the rotor of a wind turbine using Simulink and OpenFAST for assessing the effect on the mechanical loads. This concept allows the flywheel system to serve two main tasks: supporting the power system and mitigating the mechanical loads in the wind turbine. These tasks are grouped into four control scenarios; scenario 1 represents steadying the power infeed in the Flywheel, scenario 2 represents steadying power with FW and grid loss, scenario 3 represents mitigating excitations from gravity, and scenario 4 represents damping in-plane blade vibrations. The s-function of the OpenFAST model was used to substitute the given 1st Eigen mode model of the WT. After that, the simulations were run for the above-listed scenarios. Additionally, the effects of the control options on the mechanical loads were assessed, and it was established that the FW system assists in steadying infeed power and mechanical load mitigation.Keywords: simulation, control, wind turbine, OpenFAST
Procedia PDF Downloads 1259214 Energy-Efficient Internet of Things Communications: A Comparative Study of Long-Term Evolution for Machines and Narrowband Internet of Things Technologies
Authors: Nassim Labdaoui, Fabienne Nouvel, Stéphane Dutertre
Abstract:
The Internet of Things (IoT) is emerging as a crucial communication technology for the future. Many solutions have been proposed, and among them, licensed operators have put forward LTE-M and NB-IoT. However, implementing these technologies requires a good understanding of the device energy requirements, which can vary depending on the coverage conditions. In this paper, we investigate the power consumption of LTE-M and NB-IoT devices using Ublox SARA-R422S modules based on relevant standards from two French operators. The measurements were conducted under different coverage conditions, and we also present an empirical consumption model based on the different states of the radio modem as per the RRC protocol specifications. Our findings indicate that these technologies can achieve a 5 years operational battery life under certain conditions. Moreover, we conclude that the size of transmitted data does not have a significant impact on the total power consumption of the device under favorable coverage conditions. However, it can quickly influence the battery life of the device under harsh coverage conditions. Overall, this paper offers insights into the power consumption of LTE-M and NBIoT devices and provides useful information for those considering the use of these technologies.Keywords: internet of things, LTE-M, NB-IoT, MQTT, cellular IoT, power consumption
Procedia PDF Downloads 1399213 Simulation of Wind Generator with Fixed Wind Turbine under Matlab-Simulink
Authors: Mahdi Motahari, Mojtaba Farzaneh, Armin Parsian Nejad
Abstract:
The rapidly growing wind industry is highly expressing the need for education and training worldwide, particularly on the system level. Modelling and simulating wind generator system using Matlab-Simulink provides expert help in understanding wind systems engineering and system design. Working under Matlab-Simulink we present the integration of the developed WECS model with public electrical grid. A test of the calculated power and Cp related to the experimental equivalent data, using statistical analysis is performed. The statistical indicators of accuracy show better results of the presented method with RMSE: 21%, 22%, MBE : 0.77%, 0.12 % and MAE :3%, 4%.On the other hand we study its behavior when integrated in whole power system. Three level of wind speeds have been chosen: low with 5m/s as the mean value, medium with 8m/s as the mean value and high speed with 12m/s as the mean value. These allowed predicting and supervising the active power produced by the system, characterized respectively by the middle powers of -150 kW, -250kW and -480 kW which will be injected directly into the public electrical grid and the reactive power, characterized respectively by the middle powers of 60 kW, 180 kW and 320 kW and will be consumed by the wind generator.Keywords: modelling, simulation, wind generator, fixed speed wind turbine, Matlab-Simulink
Procedia PDF Downloads 6259212 Power Circuit Schemes in AC Drive is Made by Condition of the Minimum Electric Losses
Authors: M. A. Grigoryev, A. N. Shishkov, D. A. Sychev
Abstract:
The article defines the necessity of choosing the optimal power circuits scheme of the electric drive with field regulated reluctance machine. The specific weighting factors are calculation, the linear regression dependence of specific losses in semiconductor frequency converters are presented depending on the values of the rated current. It is revealed that with increase of the carrier frequency PWM improves the output current waveform, but increases the loss, so you will need depending on the task in a certain way to choose from the carrier frequency. For task of optimization by criterion of the minimum electrical losses regression dependence of the electrical losses in the frequency converter circuit at a frequency of a PWM signal of 0 Hz. The surface optimization criterion is presented depending on the rated output torque of the motor and number of phases. In electric drives with field regulated reluctance machine with at low output power optimization criterion appears to be the worst for multiphase circuits. With increasing output power this trend hold true, but becomes insignificantly different optimal solutions for three-phase and multiphase circuits. This is explained to the linearity of the dependence of the electrical losses from the current.Keywords: field regulated reluctance machine, the electrical losses, multiphase power circuit, the surface optimization criterion
Procedia PDF Downloads 2939211 Power Recovery from Waste Air of Mine Ventilation Fans Using Wind Turbines
Authors: Soumyadip Banerjee, Tanmoy Maity
Abstract:
The recovery of power from waste air generated by mine ventilation fans presents a promising avenue for enhancing energy efficiency in mining operations. This abstract explores the feasibility and benefits of utilizing turbine generators to capture the kinetic energy present in waste air and convert it into electrical power. By integrating turbine generator systems into mine ventilation infrastructures, the potential to harness and utilize the previously untapped energy within the waste air stream is realized. This study examines the principles underlying turbine generator technology and its application within the context of mine ventilation systems. The process involves directing waste air from ventilation fans through specially designed turbines, where the kinetic energy of the moving air is converted into rotational motion. This mechanical energy is then transferred to connected generators, which convert it into electrical power. The recovered electricity can be employed for various on-site applications, including powering mining equipment, lighting, and control systems. The benefits of power recovery from waste air using turbine generators are manifold. Improved energy efficiency within the mining environment results in reduced dependence on external power sources and associated cost savings. Additionally, this approach contributes to environmental sustainability by utilizing a previously wasted resource for power generation. Resource conservation is further enhanced, aligning with modern principles of sustainable mining practices. However, successful implementation requires careful consideration of factors such as waste air characteristics, turbine design, generator efficiency, and integration into existing mine infrastructure. Maintenance and monitoring protocols are necessary to ensure consistent performance and longevity of the turbine generator systems. While there is an initial investment associated with equipment procurement, installation, and integration, the long-term benefits of reduced energy costs and environmental impact make this approach economically viable. In conclusion, the recovery of power from waste air from mine ventilation fans using turbine generators offers a tangible solution to enhance energy efficiency and sustainability within mining operations. By capturing and converting the kinetic energy of waste air into usable electrical power, mines can optimize resource utilization, reduce operational costs, and contribute to a greener future for the mining industry.Keywords: waste to energy, wind power generation, exhaust air, power recovery
Procedia PDF Downloads 329210 Comparison of Different Intraocular Lens Power Calculation Formulas in People With Very High Myopia
Authors: Xia Chen, Yulan Wang
Abstract:
purpose: To compare the accuracy of Haigis, SRK/T, T2, Holladay 1, Hoffer Q, Barrett Universal II, Emmetropia Verifying Optical (EVO) and Kane for intraocular lens power calculation in patients with axial length (AL) ≥ 28 mm. Methods: In this retrospective single-center study, 50 eyes of 41 patients with AL ≥ 28 mm that underwent uneventful cataract surgery were enrolled. The actual postoperative refractive results were compared to the predicted refraction calculated with different formulas (Haigis, SRK/T, T2, Holladay 1, Hoffer Q, Barrett Universal II, EVO and Kane). The mean absolute prediction errors (MAE) 1 month postoperatively were compared. Results: The MAE of different formulas were as follows: Haigis (0.509), SRK/T (0.705), T2 (0.999), Holladay 1 (0.714), Hoffer Q (0.583), Barrett Universal II (0.552), EVO (0.463) and Kane (0.441). No significant difference was found among the different formulas (P = .122). The Kane and EVO formulas achieved the lowest level of mean prediction error (PE) and median absolute error (MedAE) (p < 0.05). Conclusion: The Kane and EVO formulas had a better success rate than others in predicting IOL power in high myopic eyes with AL longer than 28 mm in this study.Keywords: cataract, power calculation formulas, intraocular lens, long axial length
Procedia PDF Downloads 829209 Economic and Technical Study for Hybrid (PV/Wind) Power System in the North East of Algeria
Authors: Nabila Louai, Fouad Khaldi, Houria Benharchache
Abstract:
In this paper, the case of meeting a household’s electrical energy demand with hybrid systems has been examined. The objective is to study technological feasibility and economic viability of the electrification project by a hybrid system (PV/ wind) of a residential home located in Batna-Algeria and to reduce the emissions from traditional power by using renewable energy. An autonomous hybrid wind/photovoltaic (PV)/battery power system and a PV/Wind grid connected system, has been carried out using Hybrid Optimization Model for Electric Renewable (HOMER) simulation software. As a result, it has been found that electricity from the grid can be supplied at a lower price than electricity from renewable energy at this moment.Keywords: batna, household, hybrid system, renewable energy, techno-economy
Procedia PDF Downloads 5989208 Optimization of Biomass Production and Lipid Formation from Chlorococcum sp. Cultivation on Dairy and Paper-Pulp Wastewater
Authors: Emmanuel C. Ngerem
Abstract:
The ever-increasing depletion of the dominant global form of energy (fossil fuels) calls for the development of sustainable and green alternative energy sources such as bioethanol, biohydrogen, and biodiesel. The production of the major biofuels relies on biomass feedstocks that are mainly derived from edible food crops and some inedible plants. One suitable feedstock with great potential as raw material for biofuel production is microalgal biomass. Despite the tremendous attributes of microalgae as a source of biofuel, their cultivation requires huge volumes of freshwater, thus posing a serious threat to commercial-scale production and utilization of algal biomass. In this study, a multi-media wastewater mixture for microalgae growth was formulated and optimized. Moreover, the obtained microalgae biomass was pre-treated to reduce sugar recovery and was compared with previous studies on microalgae biomass pre-treatment. The formulated and optimized mixed wastewater media for biomass and lipid accumulation was established using the simplex lattice mixture design. Based on the superposition approach of the potential results, numerical optimization was conducted, followed by the analysis of biomass concentration and lipid accumulation. The coefficients of regression (R²) of 0.91 and 0.98 were obtained for biomass concentration and lipid accumulation models, respectively. The developed optimization model predicted optimal biomass concentration and lipid accumulation of 1.17 g/L and 0.39 g/g, respectively. It suggested 64.69% dairy wastewater (DWW) and 35.31% paper and pulp wastewater (PWW) mixture for biomass concentration, 34.21% DWW, and 65.79% PWW for lipid accumulation. Experimental validation generated 0.94 g/L and 0.39 g/g of biomass concentration and lipid accumulation, respectively. The obtained microalgae biomass was pre-treated, enzymatically hydrolysed, and subsequently assessed for reducing sugars. The optimization of microwave pre-treatment of Chlorococcum sp. was achieved using response surface methodology (RSM). Microwave power (100 – 700 W), pre-treatment time (1 – 7 min), and acid-liquid ratio (1 – 5%) were selected as independent variables for RSM optimization. The optimum conditions were achieved at microwave power, pre-treatment time, and acid-liquid ratio of 700 W, 7 min, and 32.33:1, respectively. These conditions provided the highest amount of reducing sugars at 10.73 g/L. Process optimization predicted reducing sugar yields of 11.14 g/L on microwave-assisted pre-treatment of 2.52% HCl for 4.06 min at 700 watts. Experimental validation yielded reducing sugars of 15.67 g/L. These findings demonstrate that dairy wastewater and paper and pulp wastewater that could pose a serious environmental nuisance. They could be blended to form a suitable microalgae growth media, consolidating the potency of microalgae as a viable feedstock for fermentable sugars. Also, the outcome of this study supports the microalgal wastewater biorefinery concept, where wastewater remediation is coupled with bioenergy production.Keywords: wastewater cultivation, mixture design, lipid, biomass, nutrient removal, microwave, Chlorococcum, raceway pond, fermentable sugar, modelling, optimization
Procedia PDF Downloads 389207 Desing of PSS and SVC to Improve Power System Stability
Authors: Mahmoud Samkan
Abstract:
In this paper, the design and assessment of new coordination between Power System Stabilizers (PSSs) and Static Var Compensator (SVC) in a multimachine power system via statistical method are proposed. The coordinated design problem of PSSs and SVC over a wide range of loading conditions is handled as an optimization problem. The Bacterial Swarming Optimization (BSO), which synergistically couples the Bacterial Foraging (BF) with the Particle Swarm Optimization (PSO), is employed to seek for optimal controllers parameters. By minimizing the proposed objective function, in which the speed deviations between generators are involved; stability performance of the system is enhanced. To compare the capability of PSS and SVC, both are designed independently, and then in a coordinated manner. Simultaneous tuning of the BSO based coordinated controller gives robust damping performance over wide range of operating conditions and large disturbance in compare to optimized PSS controller based on BSO (BSOPSS) and optimized SVC controller based on BSO (BSOSVC). Moreover, a statistical T test is executed to validate the robustness of coordinated controller versus uncoordinated one.Keywords: SVC, PSSs, multimachine power system, coordinated design, bacteria swarm optimization, statistical assessment
Procedia PDF Downloads 3739206 Micro-Droplet Formation in a Microchannel under the Effect of an Electric Field: Experiment
Authors: Sercan Altundemir, Pinar Eribol, A. Kerem Uguz
Abstract:
Microfluidics systems allow many-large scale laboratory applications to be miniaturized on a single device in order to reduce cost and advance fluid control. Moreover, such systems enable to generate and control droplets which have a significant role on improved analysis for many chemical and biological applications. For example, they can be employed as the model for cells in microfluidic systems. In this work, the interfacial instability of two immiscible Newtonian liquids flowing in a microchannel is investigated. When two immiscible liquids are in laminar regime, a flat interface is formed between them. If a direct current electric field is applied, the interface may deform, i.e. may become unstable and it may be ruptured and form micro-droplets. First, the effect of thickness ratio, total flow rate, viscosity ratio of the silicone oil and ethylene glycol liquid couple on the critical voltage at which the interface starts to destabilize is investigated. Then the droplet sizes are measured under the effect of these parameters at various voltages. Moreover, the effect of total flow rate on the time elapsed for the interface to be ruptured to form droplets by hitting the wall of the channel is analyzed. It is observed that an increase in the viscosity or the thickness ratio of the silicone oil to the ethylene glycol has a stabilizing effect, i.e. a higher voltage is needed while the total flow rate has no effect on it. However, it is observed that an increase in the total flow rate results in shortening of the elapsed time for the interface to hit the wall. Moreover, the droplet size decreases down to 0.1 μL with an increase in the applied voltage, the viscosity ratio or the total flow rate or a decrease in the thickness ratio. In addition to these observations, two empirical models for determining the critical electric number, i.e., the dimensionless voltage and the droplet size and another model which is a combination of both models, for determining the droplet size at the critical voltage are established.Keywords: droplet formation, electrohydrodynamics, microfluidics, two-phase flow
Procedia PDF Downloads 1739205 Wind Turbines Optimization: Shield Structure for a High Wind Speed Conditions
Authors: Daniyar Seitenov, Nazim Mir-Nasiri
Abstract:
Optimization of horizontal axis semi-exposed wind turbine has been performed using a shield protection that automatically protects the generator shaft at extreme wind speeds from over speeding, mechanical damage and continues generating electricity during the high wind speed conditions. A semi-exposed to wind generator has been designed and its structure has been described in this paper. The simplified point-force dynamic load model on the blades has been derived for normal and extreme wind conditions with and without shield involvement. Numerical simulation has been conducted at different values of wind speed to study the efficiency of shield application. The obtained results show that the maximum power generated by the wind turbine with shield does not exceed approximately the rated value of the generator, where shield serves as an automatic break for extreme wind speed values of 15 m/sec and above. Meantime the wind turbine without shield produced a power that is much larger than the rated value. The optimized horizontal axis semi-exposed wind turbine with shield protection is suitable for low and medium power generation when installed on the roofs of high rise buildings for harvesting wind energy. Wind shield works automatically with no power consumption. The structure of the generator with the protection, math simulation of kinematics and dynamics of power generation has been described in details in this paper.Keywords: renewable energy, wind turbine, wind turbine optimization, high wind speed
Procedia PDF Downloads 1779204 Advanced Simulation of Power Consumption of Electric Vehicles
Authors: Ilya Kavalchuk, Hayrettin Arisoy, Alex Stojcevski, Aman Maun Than Oo
Abstract:
Electric vehicles are one of the most complicated electric devices to simulate due to the significant number of different processes involved in electrical structure of it. There are concurrent processes of energy consumption and generation with different onboard systems, which make simulation tasks more complicated to perform. More accurate simulation on energy consumption can provide a better understanding of all energy management for electric transport. As a result of all those processes, electric transport can allow for a more sustainable future and become more convenient in relation to the distance range and recharging time. This paper discusses the problems of energy consumption simulations for electric vehicles using different software packages to provide ideas on how to make this process more precise, which can help engineers create better energy management strategies for electric vehicles.Keywords: electric vehicles, EV, power consumption, power management, simulation
Procedia PDF Downloads 5139203 Effect of Shape and Size of Concrete Specimen and Strength of Concrete Mixture in the Absence and Presence of Fiber
Authors: Sultan Husein Bayqra, Ali Mardani Aghabaglou, Zia Ahmad Faqiri, Hassane Amidou Ouedraogo
Abstract:
In this study, the effect of shape and size of the concrete specimen on the compressive and splitting tensile strength of the concrete mixtures in the absence and presence of steel fiber was investigated. For this aim, ten different concrete mixtures having w/c ratio of 0.3, 0.4, 0.5, 0.6 and 0.7 with and without fiber were prepared. In the mixtures containing steel fibers having aspect ratio (L/D) of 64 were used by 1% of the total mixture volume. In all concrete mixtures, CEM I 42,5R type Portland cement and crushed Lime-stone aggregates having different aggregate size fractions were used. The combined aggregate was obtained by mixing %40 0-5 mm, %30 5-12 mm and %30 12-22 mm aggregate size fraction. The slump values of concrete mixtures were kept constant as 17 ± 2 cm. To provide the desired slump value, a polycarboxylate ether-based high range water reducing admixture was used. In order to investigate the effect of size and shape of concrete specimen on strength properties 10 cm, 15 cm cubic specimens and 10×20 cm, 15×30 cm cylindrical specimens were prepared for each mixture. The specimens were cured under standard conditions until testing days. The 7- and 28-day compressive and splitting tensile strengths of mixtures were determined. The results obtained from the experimental study showed that the strength ratio between the cylinder and the cube specimens increased with the increase of the strength of the concrete. Regardless of the fiber utilization and specimen shape, strength values of concrete mixtures were increased by decreasing specimen size. However, the mentioned behaviour was not observed for the case that the mixtures having high W/C ratio and containing fiber. The compressive strength of cube specimens containing fiber was less affected by the size of the specimen compared to that of cube specimens containing no fibers.Keywords: compressive strength, splitting tensile strength, fiber reinforced concrete, size effect, shape effect
Procedia PDF Downloads 1749202 Analysis of Formation Methods of Range Profiles for an X-Band Coastal Surveillance Radar
Authors: Nguyen Van Loi, Le Thanh Son, Tran Trung Kien
Abstract:
The paper deals with the problem of the formation of range profiles (RPs) for an X-band coastal surveillance radar. Two popular methods, the difference operator method, and the window-based method, are reviewed and analyzed via two tests with different datasets. The test results show that although the original window-based method achieves a better performance than the difference operator method, it has three main drawbacks that are the use of 3 or 4 peaks of an RP for creating the windows, the extension of the window size using the power sum of three adjacent cells in the left and the right sides of the windows and the same threshold applied for all types of vessels to finish the formation process of RPs. These drawbacks lead to inaccurate RPs due to the low signal-to-clutter ratio. Therefore, some suggestions are proposed to improve the original window-based method.Keywords: range profile, difference operator method, window-based method, automatic target recognition
Procedia PDF Downloads 1259201 A Method for Solid-Liquid Separation of Cs+ from Radioactive Waste by Using Ionic Liquids and Extractants
Authors: J. W. Choi, S. Y. Cho, H. J. Lee, W. Z. Oh, S. J. Choi
Abstract:
Ionic liquids (ILs), which is alternative to conventional organic solvent, were used for extraction of Cs ions. ILs, as useful environment friendly green solvents, have been recently applied as replacement for traditional volatile organic compounds (VOCs) in liquid/liquid extraction of heavy metal ions as well as organic and inorganic species and pollutants. Thus, Ionic liquids were used for extraction of Cs ions from the liquid radioactive waste. In most cases, Cs ions present in radioactive wastes in very low concentration, approximately less than 1ppm. Therefore, unlike established extraction system the required amount of ILs as extractant is comparatively very small. This extraction method involves cation exchange mechanism in which Cs ion transfers to the organic phase and binds to one crown ether by chelation in exchange of single ILs cation, IL_cation+, transfer to the aqueous phase. In this extraction system showed solid-liquid separation in which the Ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonly)imide (C2mimTf2N) and the crown ether Dicyclohexano-18-crown-6 (DCH18C6) both were used here in very little amount as solvent and as extractant, respectively. 30 mM of CsNO3 was used as simulated waste solution cesium ions. Generally, in liquid-liquid extraction, the molar ratio of CE:Cs+:ILs was 1:5~10:>100, while our applied molar ratio of CE:Cs+:ILs was 1:2:1~10. The quantity of CE and Cs ions were fixed to 0.6 and 1.2 mmol, respectively. The phenomenon of precipitation showed two kinds of separation: solid-liquid separation in the ratio of 1:2:1 and 1:2:2; solid-liquid-liquid separation (3 phase) in the ratio of 1:2:5 and 1:2:10. In the last system, 3 phases were precipitate-ionic liquids-aqueous. The precipitate was verified to consist of Cs+, DCH18C6, Tf2N- based on the cation exchange mechanism. We analyzed precipitate using scanning electron microscopy with X-ray microanalysis (SEM-EDS), an elemental analyser, Fourier transform infrared spectroscopy (FT-IR) and differential scanning calorimetry (DSC). The experimental results showed an easy extraction method and confirmed the composition of solid precipitate. We also obtained information that complex formation ratio of Cs+ to DCH18C6 is 0.88:1 regardless of C2mimTf2N quantities.Keywords: extraction, precipitation, solid-liquid seperation, ionic liquid, precipitate
Procedia PDF Downloads 4189200 Harmonic Assessment and Mitigation in Medical Diagonesis Equipment
Authors: S. S. Adamu, H. S. Muhammad, D. S. Shuaibu
Abstract:
Poor power quality in electrical power systems can lead to medical equipment at healthcare centres to malfunction and present wrong medical diagnosis. Equipment such as X-rays, computerized axial tomography, etc. can pollute the system due to their high level of harmonics production, which may cause a number of undesirable effects like heating, equipment damages and electromagnetic interferences. The conventional approach of mitigation uses passive inductor/capacitor (LC) filters, which has some drawbacks such as, large sizes, resonance problems and fixed compensation behaviours. The current trends of solutions generally employ active power filters using suitable control algorithms. This work focuses on assessing the level of Total Harmonic Distortion (THD) on medical facilities and various ways of mitigation, using radiology unit of an existing hospital as a case study. The measurement of the harmonics is conducted with a power quality analyzer at the point of common coupling (PCC). The levels of measured THD are found to be higher than the IEEE 519-1992 standard limits. The system is then modelled as a harmonic current source using MATLAB/SIMULINK. To mitigate the unwanted harmonic currents a shunt active filter is developed using synchronous detection algorithm to extract the fundamental component of the source currents. Fuzzy logic controller is then developed to control the filter. The THD without the active power filter are validated using the measured values. The THD with the developed filter show that the harmonics are now within the recommended limits.Keywords: power quality, total harmonics distortion, shunt active filters, fuzzy logic
Procedia PDF Downloads 4779199 Cosmic Muon Tomography at the Wylfa Reactor Site Using an Anti-Neutrino Detector
Authors: Ronald Collins, Jonathon Coleman, Joel Dasari, George Holt, Carl Metelko, Matthew Murdoch, Alexander Morgan, Yan-Jie Schnellbach, Robert Mills, Gareth Edwards, Alexander Roberts
Abstract:
At the Wylfa Magnox Power Plant between 2014–2016, the VIDARR prototype anti-neutrino detector was deployed. It is comprised of extruded plastic scintillating bars measuring 4 cm × 1 cm × 152 cm and utilised wavelength shifting fibres (WLS) and multi-pixel photon counters (MPPCs) to detect and quantify radiation. During deployment, it took cosmic muon data in accidental coincidence with the anti-neutrino measurements with the power plant site buildings obscuring the muon sky. Cosmic muons have a significantly higher probability of being attenuated and/or absorbed by denser objects, and so one-sided cosmic muon tomography was utilised to image the reactor site buildings. In order to achieve clear building outlines, a control data set was taken at the University of Liverpool from 2016 – 2018, which had minimal occlusion of the cosmic muon flux by dense objects. By taking the ratio of these two data sets and using GEANT4 simulations, it is possible to perform a one-sided cosmic muon tomography analysis. This analysis can be used to discern specific buildings, building heights, and features at the Wylfa reactor site, including the reactor core/reactor core shielding using ∼ 3 hours worth of cosmic-ray detector live time. This result demonstrates the feasibility of using cosmic muon analysis to determine a segmented detector’s location with respect to surrounding buildings, assisted by aerial photography or satellite imagery.Keywords: anti-neutrino, GEANT4, muon, tomography, occlusion
Procedia PDF Downloads 1849198 A Digital Pulse-Width Modulation Controller for High-Temperature DC-DC Power Conversion Application
Authors: Jingjing Lan, Jun Yu, Muthukumaraswamy Annamalai Arasu
Abstract:
This paper presents a digital non-linear pulse-width modulation (PWM) controller in a high-voltage (HV) buck-boost DC-DC converter for the piezoelectric transducer of the down-hole acoustic telemetry system. The proposed design controls the generation of output signal with voltage higher than the supply voltage and is targeted to work under high temperature. To minimize the power consumption and silicon area, a simple and efficient design scheme is employed to develop the PWM controller. The proposed PWM controller consists of serial to parallel (S2P) converter, data assign block, a mode and duty cycle controller (MDC), linearly PWM (LPWM) and noise shaper, pulse generator and clock generator. To improve the reliability of circuit operation at higher temperature, this design is fabricated with the 1.0-μm silicon-on-insulator (SOI) CMOS process. The implementation results validated that the proposed design has the advantages of smaller size, lower power consumption and robust thermal stability.Keywords: DC-DC power conversion, digital control, high temperatures, pulse-width modulation
Procedia PDF Downloads 393