Search results for: key agreement
353 A Decadal Flood Assessment Using Time-Series Satellite Data in Cambodia
Authors: Nguyen-Thanh Son
Abstract:
Flood is among the most frequent and costliest natural hazards. The flood disasters especially affect the poor people in rural areas, who are heavily dependent on agriculture and have lower incomes. Cambodia is identified as one of the most climate-vulnerable countries in the world, ranked 13th out of 181 countries most affected by the impacts of climate change. Flood monitoring is thus a strategic priority at national and regional levels because policymakers need reliable spatial and temporal information on flood-prone areas to form successful monitoring programs to reduce possible impacts on the country’s economy and people’s likelihood. This study aims to develop methods for flood mapping and assessment from MODIS data in Cambodia. We processed the data for the period from 2000 to 2017, following three main steps: (1) data pre-processing to construct smooth time-series vegetation and water surface indices, (2) delineation of flood-prone areas, and (3) accuracy assessment. The results of flood mapping were verified with the ground reference data, indicating the overall accuracy of 88.7% and a Kappa coefficient of 0.77, respectively. These results were reaffirmed by close agreement between the flood-mapping area and ground reference data, with the correlation coefficient of determination (R²) of 0.94. The seasonally flooded areas observed for 2010, 2015, and 2016 were remarkably smaller than other years, mainly attributed to the El Niño weather phenomenon exacerbated by impacts of climate change. Eventually, although several sources potentially lowered the mapping accuracy of flood-prone areas, including image cloud contamination, mixed-pixel issues, and low-resolution bias between the mapping results and ground reference data, our methods indicated the satisfactory results for delineating spatiotemporal evolutions of floods. The results in the form of quantitative information on spatiotemporal flood distributions could be beneficial to policymakers in evaluating their management strategies for mitigating the negative effects of floods on agriculture and people’s likelihood in the country.Keywords: MODIS, flood, mapping, Cambodia
Procedia PDF Downloads 126352 Development and Validation of the Circular Economy Scale
Authors: Yu Fang Chen, Jeng Fung Hung
Abstract:
This study aimed to develop a circular economy scale to assess the level of recognition among high-level executives in businesses regarding the circular economy. The circular economy is crucial for global ESG sustainable development and poses a challenge for corporate social responsibility. The aim of promoting the circular economy is to reduce resource consumption, move towards sustainable development, reduce environmental impact, maintain ecological balance, increase economic value, and promote employment. This study developed a 23-item Circular Economy Scale, which includes three subscales: "Understanding of Circular Economy by Enterprises" (8 items), "Attitudes" (9 items), and "Behaviors" (6 items). The Likert 5-point scale was used to measure responses, with higher scores indicating higher levels of agreement among senior executives with regard to the circular economy. The study tested 105 senior executives and used a structural equation model (SEM) as a measurement indicator to determine the extent to which potential variables were measured. The standard factor loading of the measurement indicator needs to be higher than 0.7, and the average variance explained (AVE) represents the index of convergent validity, which should be greater than 0.5 or at least 0.45 to be acceptable. Out of the 23 items, 12 did not meet the standard, so they were removed, leaving 5 items, 3 items, and 3 items for each of the three subscales, respectively, all with a factor loading greater than 0.7. The AVE for all three subscales was greater than 0.45, indicating good construct validity. The Cronbach's α reliability values for the three subscales were 0.887, 0.787, and 0.734, respectively, and the total scale was 0.860, all of which were higher than 0.7, indicating good reliability. The Circular Economy Scale developed in this study measures three conceptual components that align with the theoretical framework of the literature review and demonstrate good reliability and validity. It can serve as a measurement tool for evaluating the degree of acceptance of the circular economy among senior executives in enterprises. In the future, this scale can be used by senior executives in enterprises as an evaluation tool to further explore its impact on sustainable development and to promote circular economy and sustainable development based on the reference provided.Keywords: circular economy, corporate social responsibility, scale development, structural equation model
Procedia PDF Downloads 83351 An Iberian Study about Location of Parking Areas for Dangerous Goods
Authors: María Dolores Caro, Eugenio M. Fedriani, Ángel F. Tenorio
Abstract:
When lorries transport dangerous goods, there exist some legal stipulations in the European Union for assuring the security of the rest of road users as well as of those goods being transported. At this respect, lorry drivers cannot park in usual parking areas, because they must use parking areas with special conditions, including permanent supervision of security personnel. Moreover, drivers are compelled to satisfy additional regulations about resting and driving times, which involve in the practical possibility of reaching the suitable parking areas under these time parameters. The “European Agreement concerning the International Carriage of Dangerous Goods by Road” (ADR) is the basic regulation on transportation of dangerous goods imposed under the recommendations of the United Nations Economic Commission for Europe. Indeed, nowadays there are no enough parking areas adapted for dangerous goods and no complete study have suggested the best locations to build new areas or to adapt others already existing to provide the areas being necessary so that lorry drivers can follow all the regulations. The goal of this paper is to show how many additional parking areas should be built in the Iberian Peninsula to allow that lorry drivers may park in such areas under their restrictions in resting and driving time. To do so, we have modeled the problem via graph theory and we have applied a new efficient algorithm which determines an optimal solution for the problem of locating new parking areas to complement those already existing in the ADR for the Iberian Peninsula. The solution can be considered minimal since the number of additional parking areas returned by the algorithm is minimal in quantity. Obviously, graph theory is a natural way to model and solve the problem here proposed because we have considered as nodes: the already-existing parking areas, the loading-and-unloading locations and the bifurcations of roads; while each edge between two nodes represents the existence of a road between both nodes (the distance between nodes is the edge's weight). Except for bifurcations, all the nodes correspond to parking areas already existing and, hence, the problem corresponds to determining the additional nodes in the graph such that there are less up to 100 km between two nodes representing parking areas. (maximal distance allowed by the European regulations).Keywords: dangerous goods, parking areas, Iberian peninsula, graph-based modeling
Procedia PDF Downloads 581350 Physics-Based Earthquake Source Models for Seismic Engineering: Analysis and Validation for Dip-Slip Faults
Authors: Percy Galvez, Anatoly Petukhin, Paul Somerville, Ken Miyakoshi, Kojiro Irikura, Daniel Peter
Abstract:
Physics-based dynamic rupture modelling is necessary for estimating parameters such as rupture velocity and slip rate function that are important for ground motion simulation, but poorly resolved by observations, e.g. by seismic source inversion. In order to generate a large number of physically self-consistent rupture models, whose rupture process is consistent with the spatio-temporal heterogeneity of past earthquakes, we use multicycle simulations under the heterogeneous rate-and-state (RS) friction law for a 45deg dip-slip fault. We performed a parametrization study by fully dynamic rupture modeling, and then, a set of spontaneous source models was generated in a large magnitude range (Mw > 7.0). In order to validate rupture models, we compare the source scaling relations vs. seismic moment Mo for the modeled rupture area S, as well as average slip Dave and the slip asperity area Sa, with similar scaling relations from the source inversions. Ground motions were also computed from our models. Their peak ground velocities (PGV) agree well with the GMPE values. We obtained good agreement of the permanent surface offset values with empirical relations. From the heterogeneous rupture models, we analyzed parameters, which are critical for ground motion simulations, i.e. distributions of slip, slip rate, rupture initiation points, rupture velocities, and source time functions. We studied cross-correlations between them and with the friction weakening distance Dc value, the only initial heterogeneity parameter in our modeling. The main findings are: (1) high slip-rate areas coincide with or are located on an outer edge of the large slip areas, (2) ruptures have a tendency to initiate in small Dc areas, and (3) high slip-rate areas correlate with areas of small Dc, large rupture velocity and short rise-time.Keywords: earthquake dynamics, strong ground motion prediction, seismic engineering, source characterization
Procedia PDF Downloads 144349 Study of Morning-Glory Spillway Structure in Hydraulic Characteristics by CFD Model
Authors: Mostafa Zandi, Ramin Mansouri
Abstract:
Spillways are one of the most important hydraulic structures of dams that provide the stability of the dam and downstream areas at the time of flood. Morning-Glory spillway is one of the common spillways for discharging the overflow water behind dams, these kinds of spillways are constructed in dams with small reservoirs. In this research, the hydraulic flow characteristics of a morning-glory spillways are investigated with CFD model. Two dimensional unsteady RANS equations were solved numerically using Finite Volume Method. The PISO scheme was applied for the velocity-pressure coupling. The mostly used two-equation turbulence models, k- and k-, were chosen to model Reynolds shear stress term. The power law scheme was used for discretization of momentum, k , and equations. The VOF method (geometrically reconstruction algorithm) was adopted for interface simulation. The results show that the fine computational grid, the input speed condition for the flow input boundary, and the output pressure for the boundaries that are in contact with the air provide the best possible results. Also, the standard wall function is chosen for the effect of the wall function, and the turbulent model k -ε (Standard) has the most consistent results with experimental results. When the jet is getting closer to end of basin, the computational results increase with the numerical results of their differences. The lower profile of the water jet has less sensitivity to the hydraulic jet profile than the hydraulic jet profile. In the pressure test, it was also found that the results show that the numerical values of the pressure in the lower landing number differ greatly in experimental results. The characteristics of the complex flows over a Morning-Glory spillway were studied numerically using a RANS solver. Grid study showed that numerical results of a 57512-node grid had the best agreement with the experimental values. The desired downstream channel length was preferred to be 1.5 meter, and the standard k-ε turbulence model produced the best results in Morning-Glory spillway. The numerical free-surface profiles followed the theoretical equations very well.Keywords: morning-glory spillway, CFD model, hydraulic characteristics, wall function
Procedia PDF Downloads 77348 An Empirical Study of Performance Management System: Implementation of Performance Management Cycle to Achieve High-Performance Culture at Pertamina Company, Indonesia
Authors: Arif Budiman
Abstract:
Any organization or company that wishes to achieve vision, mission, and goals of the organization is required to implement a performance management system or known as the Performance Management System (PMS) in every part of the whole organization. PMS is a tool to help visualize the direction and work program of the organization to achieve the goal. The challenge is PMS should not stop merely as a visualization tool to achieve the vision and mission of the organization, but PMS should also be able to create a high-performance culture that is inherent in each individual of the organization. Establishment of a culture within an organization requires the support of top leaders and also requires a system or governance that encourages every individual in the organization to be involved in any work program of the organization. Keywords of creating a high-performance culture are the formation of communication pattern involving the whole individual, either vertically or horizontally, and performed consistently and persistently by all individuals in each line of the organization. PT Pertamina (Persero) as the state-owned national energy company holds a system to internalize the culture of high performance through a system called Performance Management System Cycle (PMS Cycle). This system has 7 stages of the cycle, those are: (1) defining vision, mission and strategic plan of the company, (2) defining key performance indicator of each line and the individual (‘expectation setting conversation’), (3) defining performance target and performance agreement, (4) monitoring performance on a monthly regular basis (‘pulse check’), (5) implementing performance dialogue between leaders and staffs periodically every 3 months (‘performance dialogue’), (6) defining rewards and consequences based on the achievement of the performance of each line and the individual, and (7) calculating the final performance value achieved by each line and individual from one period of the current year. Perform PMS is a continual communication running throughout the year, that is why any three performance discussion that should be performed, include expectation setting conversations, pulse check and performance dialogue. In addition, another significant point and necessary undertaken to complete the assessment of individual performance assessment is soft competencies through 360-degree assessment by leaders, staffs, and peers.Keywords: 360-degree assessment, expectation setting conversation, performance management system cycle, performance dialogue, pulse check
Procedia PDF Downloads 440347 Behavior Adoption on Marine Habitat Conservation in Indonesia
Authors: Muhammad Yayat Afianto, Darmawan, Agung Putra Utama, Hari Kushardanto
Abstract:
Fish Forever, Rare’s innovative coastal fisheries program, combined community-based conservation management approach with spatial management to restore and protect Indonesia’s small-scale fisheries by establishing Fishing Managed Access Area. A ‘TURF-Reserve’ is a fishery management approach that positions fishers at the center of fisheries management, empowering them to take care of and make decisions about the future of their fishery. After two years of the program, social marketing campaigns succeeded in changing their behavior by adopting the new conservation behavior. The Pride-TURF-R campaigns developed an overarching hypothesis of impact that captured the knowledge, attitude and behavior changes needed to reduce threats and achieve conservation results. Rare help Batu Belah fishers to develop their group, developed with their roles, sustainable fisheries plan, and the budget plan. On 12th February 2017, the Head of Loka Kawasan Konservasi Perairan Nasional (LKKPN) which is a Technical Implementation Unit for National Marine Conservation Areas directly responsible to the Directorate General for Marine Spatial Management in the Ministry of Marine Affairs and Fisheries had signed a Partnership Agreement with the Head of Batu Belah Village to manage a TURF+Reserve area as wide as 909 hectares. The fishers group have been collecting the catch and submitting the report monthly, initiated the installation of the buoy markers for the No Take Zone, and formed the Pokmaswas (community-based surveillance group). Prior to this behavior adoption, they don’t have any fisheries data, no group of fishers, and they have still fishing inside the No Take Zone. This is really a new behavior adoption for them. This paper will show the process and success story of the social marketing campaign to conserve marine habitat in Anambas through Pride-TURF-R program.Keywords: behavior adoption, community participation, no take zone, pride-TURF-R
Procedia PDF Downloads 271346 Adsorption and Desorption Behavior of Ionic and Nonionic Surfactants on Polymer Surfaces
Authors: Giulia Magi Meconi, Nicholas Ballard, José M. Asua, Ronen Zangi
Abstract:
Experimental and computational studies are combined to elucidate the adsorption proprieties of ionic and nonionic surfactants on hydrophobic polymer surface such us poly(styrene). To present these two types of surfactants, sodium dodecyl sulfate and poly(ethylene glycol)-block-poly(ethylene), commonly utilized in emulsion polymerization, are chosen. By applying quartz crystal microbalance with dissipation monitoring it is found that, at low surfactant concentrations, it is easier to desorb (as measured by rate) ionic surfactants than nonionic surfactants. From molecular dynamics simulations, the effective, attractive force of these nonionic surfactants to the surface increases with the decrease of their concentration, whereas, the ionic surfactant exhibits mildly the opposite trend. The contrasting behavior of ionic and nonionic surfactants critically relies on two observations obtained from the simulations. The first is that there is a large degree of interweavement between head and tails groups in the adsorbed layer formed by the nonionic surfactant (PEO/PE systems). The second is that water molecules penetrate this layer. In the disordered layer, these nonionic surfactants generate at the surface, only oxygens of the head groups present at the interface with the water phase or oxygens next to the penetrating waters can form hydrogen bonds. Oxygens inside this layer lose this favorable energy, with a magnitude that increases with the surfactants density at the interface. This reduced stability of the surfactants diminishes their driving force for adsorption. All that is shown to be in accordance with experimental results on the dynamics of surfactants desorption. Ionic surfactants assemble into an ordered structure and the attraction to the surface was even slightly augmented at higher surfactant concentration, in agreement with the experimentally determined adsorption isotherm. The reason these two types of surfactants behave differently is because the ionic surfactant has a small head group that is strongly hydrophilic, whereas the head groups of the nonionic surfactants are large and only weakly attracted to water.Keywords: emulsion polymerization process, molecular dynamics simulations, polymer surface, surfactants adsorption
Procedia PDF Downloads 343345 Numerical Solution of Steady Magnetohydrodynamic Boundary Layer Flow Due to Gyrotactic Microorganism for Williamson Nanofluid over Stretched Surface in the Presence of Exponential Internal Heat Generation
Authors: M. A. Talha, M. Osman Gani, M. Ferdows
Abstract:
This paper focuses on the study of two dimensional magnetohydrodynamic (MHD) steady incompressible viscous Williamson nanofluid with exponential internal heat generation containing gyrotactic microorganism over a stretching sheet. The governing equations and auxiliary conditions are reduced to a set of non-linear coupled differential equations with the appropriate boundary conditions using similarity transformation. The transformed equations are solved numerically through spectral relaxation method. The influences of various parameters such as Williamson parameter γ, power constant λ, Prandtl number Pr, magnetic field parameter M, Peclet number Pe, Lewis number Le, Bioconvection Lewis number Lb, Brownian motion parameter Nb, thermophoresis parameter Nt, and bioconvection constant σ are studied to obtain the momentum, heat, mass and microorganism distributions. Moment, heat, mass and gyrotactic microorganism profiles are explored through graphs and tables. We computed the heat transfer rate, mass flux rate and the density number of the motile microorganism near the surface. Our numerical results are in better agreement in comparison with existing calculations. The Residual error of our obtained solutions is determined in order to see the convergence rate against iteration. Faster convergence is achieved when internal heat generation is absent. The effect of magnetic parameter M decreases the momentum boundary layer thickness but increases the thermal boundary layer thickness. It is apparent that bioconvection Lewis number and bioconvection parameter has a pronounced effect on microorganism boundary. Increasing brownian motion parameter and Lewis number decreases the thermal boundary layer. Furthermore, magnetic field parameter and thermophoresis parameter has an induced effect on concentration profiles.Keywords: convection flow, similarity, numerical analysis, spectral method, Williamson nanofluid, internal heat generation
Procedia PDF Downloads 183344 Comparison of Patient Satisfaction and Observer Rating of Outpatient Care among Public Hospitals in Shanghai
Authors: Tian Yi Du, Guan Rong Fan, Dong Dong Zou, Di Xue
Abstract:
Background: The patient satisfaction survey is becoming of increasing importance for hospitals or other providers to get more reimbursement and/or more governmental subsidies. However, when the results of patient satisfaction survey are compared among medical institutions, there are some concerns. The primary objectives of this study were to evaluate patient satisfaction in tertiary hospitals of Shanghai and to compare the satisfaction rating on physician services between patients and observers. Methods: Two hundred outpatients were randomly selected for patient satisfaction survey in each of 28 public tertiary hospitals of Shanghai. Four or five volunteers were selected to observe 5 physicians’ practice in each of above hospitals and rated observed physicians’ practice. The outpatients that the volunteers observed their physician practice also filled in the satisfaction questionnaires. The rating scale for outpatient survey and volunteers’ observation was: 1 (very dissatisfied) to 6 (very satisfied). If the rating was equal to or greater than 5, we considered the outpatients and volunteers were satisfied with the services. The validity and reliability of the measure were assessed. Multivariate regressions for each of the 4 dimensions and overall of patient satisfaction were used in analyses. Paired t tests were applied to analyze the rating agreement on physician services between outpatients and volunteers. Results: Overall, 90% of surveyed outpatients were satisfied with outpatient care in the tertiary public hospitals of Shanghai. The lowest three satisfaction rates were seen in the items of ‘Restrooms were sanitary and not crowded’ (81%), ‘It was convenient for the patient to pay medical bills’ (82%), and ‘Medical cost in the hospital was reasonable’ (84%). After adjusting the characteristics of patients, the patient satisfaction in general hospitals was higher than that in specialty hospitals. In addition, after controlling the patient characteristics and number of hospital visits, the hospitals with higher outpatient cost per visit had lower patient satisfaction. Paired t tests showed that the rating on 6 items in the dimension of physician services (total 14 items) was significantly different between outpatients and observers, in which 5 were rated lower by the observers than by the outpatients. Conclusions: The hospital managers and physicians should use patient satisfaction and observers’ evaluation to detect the room for improvement in areas such as social skills cost control, and medical ethics.Keywords: patient satisfaction, observation, quality, hospital
Procedia PDF Downloads 324343 Understanding Ambivalent Behaviors of Social Media Users toward the 'Like' Function: A Social Capital Perspective
Abstract:
The 'Like' function in social media platforms represents the immediate responses of social media users to postings and other users. A large number of 'likes' is often attributed to fame, agreement, and support from others that many users are proud of and happy with. However, what 'like' implies exactly in social media context is still in discussion. Some argue that it is an accurate parameter of the preferences of social media users, whereas others refute that it is merely an instant reaction that is volatile and vague. To address this gap, this study investigates how social media users perceive the 'like' function and behave differently based on their perceptions. This study posits the following arguments. First, 'like' is interpreted as a quantified form of social capital that resides in social media platforms. This incarnated social capital rationalizes the attraction of people to social media and belief that social media platforms bring benefits to their relationships with others. This social capital is then conceptualized into cognitive and emotive dimensions, where social capital in the cognitive dimension represents the awareness of the 'likes' quantitatively, whereas social capital in the emotive dimension represents the receptions of the 'likes' qualitatively. Finally, the ambivalent perspective of the social media users on 'like' (i.e., social capital) is applied. This view rationalizes why social media users appreciate the reception of 'likes' from others but are aware that those 'likes' can distort the actual responses of other users by sending erroneous signals. The rationale on this ambivalence is based on whether users perceive social media as private or public spheres. When social media is more publicized, the ambivalence is more strongly observed. By combining the ambivalence and dimensionalities of the social capital, four types of social media users with different mechanisms on liking behaviors are identified. To validate this work, a survey with 300 social media users is conducted. The analysis results support most of the hypotheses and confirm that people have ambivalent perceptions on 'like' as a social capital and that perceptions influence behavioral patterns. The implication of the study is clear. First, this study explains why social media users exhibit different behaviors toward 'likes' in social media. Although most of the people believe that the number of 'likes' is the simplest and most frank measure of supports from other social media users, this study introduces the users who do not trust the 'likes' as a stable and reliable parameter of social media. In addition, this study links the concept of social media openness to explain the different behaviors of social media users. Social media openness has theoretical significance because it defines the psychological boundaries of social media from the perspective of users.Keywords: ambivalent attitude, like function, social capital, social media
Procedia PDF Downloads 241342 Optimization of Process Parameters and Modeling of Mass Transport during Hybrid Solar Drying of Paddy
Authors: Aprajeeta Jha, Punyadarshini P. Tripathy
Abstract:
Drying is one of the most critical unit operations for prolonging the shelf-life of food grains in order to ensure global food security. Photovoltaic integrated solar dryers can be a sustainable solution for replacing energy intensive thermal dryers as it is capable of drying in off-sunshine hours and provide better control over drying conditions. But, performance and reliability of PV based solar dryers depend hugely on climatic conditions thereby, drastically affecting process parameters. Therefore, to ensure quality and prolonged shelf-life of paddy, optimization of process parameters for solar dryers is critical. Proper moisture distribution within the grains is most detrimental factor to enhance the shelf-life of paddy therefore; modeling of mass transport can help in providing a better insight of moisture migration. Hence, present work aims at optimizing the process parameters and to develop a 3D finite element model (FEM) for predicting moisture profile in paddy during solar drying. Optimization of process parameters (power level, air velocity and moisture content) was done using box Behnken model in Design expert software. Furthermore, COMSOL Multiphysics was employed to develop a 3D finite element model for predicting moisture profile. Optimized model for drying paddy was found to be 700W, 2.75 m/s and 13% wb with optimum temperature, milling yield and drying time of 42˚C, 62%, 86 min respectively, having desirability of 0.905. Furthermore, 3D finite element model (FEM) for predicting moisture migration in single kernel for every time step has been developed. The mean absolute error (MAE), mean relative error (MRE) and standard error (SE) were found to be 0.003, 0.0531 and 0.0007, respectively, indicating close agreement of model with experimental results. Above optimized conditions can be successfully used to dry paddy in PV integrated solar dryer in order to attain maximum uniformity, quality and yield of product to achieve global food and energy securityKeywords: finite element modeling, hybrid solar drying, mass transport, paddy, process optimization
Procedia PDF Downloads 139341 Experimental and Theoretical Mass Transfer Studies of Pure Carbondioxide Absorption in Sodium Hydroxide in Millichannels
Authors: A. Durgadevi, S. Pushpavanam
Abstract:
For the past several decades, CO2 levels have been dramatically increasing in the atmosphere due to the man-made emissions such as fossil fuel-fired power plants. With the increase in CO2 emissions, CO2 concentration in the atmosphere has increased resulting in global warming. This shows the need to study different ways to capture the emitted CO2 directly from the exhausts of power plants or atmosphere. There are several ways to remove CO2, such as absorption into a liquid solvent, adsorption into a solid, cryogenic separation, permeation through membranes and photochemical conversion. In most industries, the absorption of CO2 in chemical solvents (in absorption towers) is used for CO2 capture. In these towers, the mass transfer along with chemical reactions take place between the gas and liquid phase. This helps in the separation of CO2 from other gases. It is important to understand these processes in detail. These flow patterns are difficult to maintain in large scale industrial absorbers. So to get accurate information controlled gas-liquid absorption experiments are carried out in milli-channels in this work under controlled atmosphere. The absorption experiments of CO2 in varying concentrations of sodium hydroxide solution are carried out in T-junction glass milli-channels with a circular cross section (inner diameter of 2mm). The gas and liquid flow rates are controlled by a mass flow controller (MFC) and a Harvard syringe pump respectively. The slug flow in the channel is recorded using a camera and the videos are analysed. The gas slug of pure CO2 is found to decrease in size along the length of the channel due to absorption of gas in the liquid. This is also captured with the model developed and the mass transfer characteristics are studied. The pressure drop across the channel is determined by sum of the pressure drops from the gas slugs and the liquid plugs. A dimensionless correlation for the mass transfer coefficient is developed in terms of Sherwood number and compared with the existing correlations in the literature. They are found to be in close agreement with each other. In this case, due to the presence of chemical reaction, the enhancement of mass transfer is obtained. This is quantified with the help of an enhancement factor.Keywords: absorption, enhancement factor, mass transfer coefficient, Sherwood number
Procedia PDF Downloads 178340 Experimental and Theoratical Methods to Increase Core Damping for Sandwitch Cantilever Beam
Authors: Iyd Eqqab Maree, Moouyad Ibrahim Abbood
Abstract:
The purpose behind this study is to predict damping effect for steel cantilever beam by using two methods of passive viscoelastic constrained layer damping. First method is Matlab Program, this method depend on the Ross, Kerwin and Unger (RKU) model for passive viscoelastic damping. Second method is experimental lab (frequency domain method), in this method used the half-power bandwidth method and can be used to determine the system loss factors for damped steel cantilever beam. The RKU method has been applied to a cantilever beam because beam is a major part of a structure and this prediction may further leads to utilize for different kinds of structural application according to design requirements in many industries. In this method of damping a simple cantilever beam is treated by making sandwich structure to make the beam damp, and this is usually done by using viscoelastic material as a core to ensure the damping effect. The use of viscoelastic layers constrained between elastic layers is known to be effective for damping of flexural vibrations of structures over a wide range of frequencies. The energy dissipated in these arrangements is due to shear deformation in the viscoelastic layers, which occurs due to flexural vibration of the structures. The theory of dynamic stability of elastic systems deals with the study of vibrations induced by pulsating loads that are parametric with respect to certain forms of deformation. There is a very good agreement of the experimental results with the theoretical findings. The main ideas of this thesis are to find the transition region for damped steel cantilever beam (4mm and 8mm thickness) from experimental lab and theoretical prediction (Matlab R2011a). Experimentally and theoretically proved that the transition region for two specimens occurs at modal frequency between mode 1 and mode 2, which give the best damping, maximum loss factor and maximum damping ratio, thus this type of viscoelastic material core (3M468) is very appropriate to use in automotive industry and in any mechanical application has modal frequency eventuate between mode 1 and mode 2.Keywords: 3M-468 material core, loss factor and frequency, domain method, bioinformatics, biomedicine, MATLAB
Procedia PDF Downloads 271339 Pistacia Lentiscus: A Plant With Multiple Virtues for Human Health
Authors: Djebbar Atmani, Aghiles Karim Aissat, Nadjet Debbache-Benaida, Nassima Chaher-Bazizi, Dina Atmani-Kilani, Meriem Rahmani-Berboucha, Naima Saidene, Malika Benloukil, Lila Azib
Abstract:
Medicinal plants are believed to be an important source for the discovery of potential antioxidant, anti-inflammatory and anti-diabetic substances. The present study was designed to investigate the neuroprotective, anti-inflammatory, anti-diabetic and anti-hyperuricemic potential of Pistacia lentiscus, as well as the identification of active compounds. The antioxidant potential of plant extracts against known radicals was measured using various standard in vitro methods. Anti-inflammatory activity was determined using the paw edema model in mice and by measuring the secretion of the pro-inflammatory cytokine, whereas the anti-diabetic effect was assessed in vivo on streptozotocin-induced diabetic rats and in vitro by inhibition of alpha-amylase. The anti-hyperuricemic activity was evaluated using the xanthine oxidase assay, whereas neuroprotective activity was investigated using an Aluminum-induced toxicity test. Pistacia lentiscus extracts and fractions exhibited high scavenging capacity against DPPH, NO. and ABTS+ radicals in a dose-dependent manner and restored blood glucose levels, in vivo, to normal values, in agreement with the in vitro anti-diabetic effect. Oral administration of plant extracts significantly decreased carrageenan-induced mice paw oedema, similar to the standard drug, diclofenac, was effective in reducing IL-1β levels in cell culture and induced a significant increase in urinary volume in mice, associated to a promising anti-hyperuricemic activity. Plant extracts showed good neuroprotection and restoration of cognitive functions in mice. HPLC-MS and NMR analyses allowed the identification of known and new phenolic compounds that could be responsible for the observed activities. Therefore, Pistacia lentiscus could be beneficial in the treatment of inflammatory conditions and diabetes complications and the enhancement of cognitive functions.Keywords: Pistacia lentiscus, anti-inflammatory, antidiabetic, flavanols, neuroprotective
Procedia PDF Downloads 136338 Response Regimes and Vibration Mitigation in Equivalent Mechanical Model of Strongly Nonlinear Liquid Sloshing
Authors: Maor Farid, Oleg Gendelman
Abstract:
Equivalent mechanical model of liquid sloshing in partially-filled cylindrical vessel is treated in the cases of free oscillations and of horizontal base excitation. The model is designed to cover both the linear and essentially nonlinear sloshing regimes. The latter fluid behaviour might involve hydraulic impacts interacting with the inner walls of the tank. These impulsive interactions are often modeled by high-power potential and dissipation functions. For the sake of analytical description, we use the traditional approach by modeling the impacts with velocity-dependent restitution coefficient. This modelling is similar to vibro-impact nonlinear energy sink (VI NES) which was recently explored for its vibration mitigation performances and nonlinear response regimes. Steady-state periodic regimes and chaotic strongly modulated responses (CSMR) are detected. Those dynamical regimes were described by the system's slow motion on the slow invariant manifold (SIM). There is a good agreement between the analytical results and numerical simulations. Subsequently, Finite-Element (FE) method is used to determine and verify the model parameters and to identify dominant dynamical regimes, natural modes and frequencies. The tank failure modes are identified and critical locations are identified. Mathematical relation is found between degrees-of-freedom (DOFs) motion and the mechanical stress applied in the tank critical section. This is the prior attempt to take under consideration large-amplitude nonlinear sloshing and tank structure elasticity effects for design, regulation definition and resistance analysis purposes. Both linear (tuned mass damper, TMD) and nonlinear (nonlinear energy sink, NES) passive energy absorbers contribution to the overall system mitigation is firstly examined, in terms of both stress reduction and time for vibration decay.Keywords: nonlinear energy sink (NES), reduced-order modelling, liquid sloshing, vibration mitigation, vibro-impact dynamics
Procedia PDF Downloads 145337 Effect of Discharge Pressure Conditions on Flow Characteristics in Axial Piston Pump
Authors: Jonghyuk Yoon, Jongil Yoon, Seong-Gyo Chung
Abstract:
In many kinds of industries which usually need a large amount of power, an axial piston pump has been widely used as a main power source of a hydraulic system. The axial piston pump is a type of positive displacement pump that has several pistons in a circular array within a cylinder block. As the cylinder block and pistons start to rotate, since the exposed ends of the pistons are constrained to follow the surface of the swashed plate, the pistons are driven to reciprocate axially and then a hydraulic power is produced. In the present study, a numerical simulation which has three dimensional full model of the axial piston pump was carried out using a commercial CFD code (Ansys CFX 14.5). In order to take into consideration motion of compression and extension by the reciprocating pistons, the moving boundary conditions were applied as a function of the rotation angle to that region. In addition, this pump using hydraulic oil as working fluid is intentionally designed as a small amount of oil leaks out in order to lubricate moving parts. Since leakage could directly affect the pump efficiency, evaluation of effect of oil-leakage is very important. In order to predict the effect of the oil leakage on the pump efficiency, we considered the leakage between piston-shoe and swash-plate by modeling cylindrical shaped-feature at the end of the cylinder. In order to validate the numerical method used in this study, the numerical results of the flow rate at the discharge port are compared with the experimental data, and good agreement between them was shown. Using the validated numerical method, the effect of the discharge pressure was also investigated. The result of the present study can be useful information of small axial piston pump used in many different manufacturing industries. Acknowledgement: This research was financially supported by the “Next-generation construction machinery component specialization complex development program” through the Ministry of Trade, Industry and Energy (MOTIE) and Korea Institute for Advancement of Technology (KIAT).Keywords: axial piston pump, CFD, discharge pressure, hydraulic system, moving boundary condition, oil leaks
Procedia PDF Downloads 248336 Visibility of the Borders of the Mandibular Canal: A Comparative in Vitro Study Using Digital Panoramic Radiography, Reformatted Panoramic Radiography and Cross Sectional Cone Beam Computed Tomography
Authors: Keerthilatha Pai, Sakshi Kamra
Abstract:
Objectives: Determining the position of the mandibular canal prior to implant placement and surgeries of the posterior mandible are important to avoid the nerve injury. The visibility of the mandibular canal varies according to the imaging modality. Although panoramic radiography is the most common, slowly cone beam computed tomography is replacing it. This study was conducted with an aim to determine and compare the visibility of superior and inferior borders of the mandibular canal in digital panoramic radiograph, reformatted panoramic radiograph and cross-sectional images of cone beam computed tomography. Study design: digital panoramic, reformatted panoramic radiograph and cross sectional CBCT images of 25 human mandibles were evaluated for the visibility of the superior and inferior borders of the mandibular canal according to a 5 point scoring criteria. Also, the canal was evaluated as completely visible, partially visible and not visible. The mean scores and visibility percentage of all the imaging modalities were determined and compared. The interobserver and intraobserver agreement in the visualization of the superior and inferior borders of the mandibular canal were determined. Results: The superior and inferior borders of the mandibular canal were completely visible in 47% of the samples in digital panoramic, 63% in reformatted panoramic and 75.6% in CBCT cross-sectional images. The mandibular canal was invisible in 24% of samples in digital panoramic, 19% in reformatted panoramic and 2% in cross-sectional CBCT images. Maximum visibility was seen in Zone 5 and least visibility in Zone 1. On comparison of all the imaging modalities, CBCT cross-sectional images showed better visibility of superior border in Zones 2,3,4,6 and inferior border in Zones 2,3,4,6. The difference was statistically significant. Conclusion: CBCT cross-sectional images were much superior in the visualization of the mandibular canal in comparison to reformatted and digital panoramic radiographs. The inferior border was better visualized in comparison to the superior border in digital panoramic imaging. The mandibular canal was maximumly visible in posterior one-third region of the mandible and the visibility decreased towards the mental foramen.Keywords: cone beam computed tomography, mandibular canal, reformatted panoramic radiograph, visualization
Procedia PDF Downloads 127335 Performance Assessment of Horizontal Axis Tidal Turbine with Variable Length Blades
Authors: Farhana Arzu, Roslan Hashim
Abstract:
Renewable energy is the only alternative sources of energy to meet the current energy demand, healthy environment and future growth which is considered essential for essential sustainable development. Marine renewable energy is one of the major means to meet this demand. Turbines (both horizontal and vertical) play a vital role for extraction of tidal energy. The influence of swept area on the performance improvement of tidal turbine is a vital factor to study for the reduction of relatively high power generation cost in marine industry. This study concentrates on performance investigation of variable length blade tidal turbine concept that has already been proved as an efficient way to improve energy extraction in the wind industry. The concept of variable blade length utilizes the idea of increasing swept area through the turbine blade extension when the tidal stream velocity falls below the rated condition to maximize energy capture while blade retracts above rated condition. A three bladed horizontal axis variable length blade horizontal axis tidal turbine was modelled by modifying a standard fixed length blade turbine. Classical blade element momentum theory based numerical investigation has been carried out using QBlade software to predict performance. The results obtained from QBlade were compared with the available published results and found very good agreement. Three major performance parameters (i.e., thrust, moment, and power coefficients) and power output for different blade extensions were studied and compared with a standard fixed bladed baseline turbine at certain operational conditions. Substantial improvement in performance coefficient is observed with the increase in swept area of the turbine rotor. Power generation is found to increase in great extent when operating at below rated tidal stream velocity reducing the associated cost per unit electric power generation.Keywords: variable length blade, performance, tidal turbine, power generation
Procedia PDF Downloads 276334 Application and Utility of the Rale Score for Assessment of Clinical Severity in Covid-19 Patients
Authors: Naridchaya Aberdour, Joanna Kao, Anne Miller, Timothy Shore, Richard Maher, Zhixin Liu
Abstract:
Background: COVID-19 has and continues to be a strain on healthcare globally, with the number of patients requiring hospitalization exceeding the level of medical support available in many countries. As chest x-rays are the primary respiratory radiological investigation, the Radiological Assessment of Lung Edema (RALE) score was used to quantify the extent of pulmonary infection on baseline imaging. Assessment of RALE score's reproducibility and associations with clinical outcome parameters were then evaluated to determine implications for patient management and prognosis. Methods: A retrospective study was performed with the inclusion of patients testing positive for COVID-19 on nasopharyngeal swab within a single Local Health District in Sydney, Australia and baseline x-ray imaging acquired between January to June 2020. Two independent Radiologists viewed the studies and calculated the RALE scores. Clinical outcome parameters were collected and statistical analysis was performed to assess RALE score reproducibility and possible associations with clinical outcomes. Results: A total of 78 patients met inclusion criteria with the age range of 4 to 91 years old. RALE score concordance between the two independent Radiologists was excellent (interclass correlation coefficient = 0.93, 95% CI = 0.88-0.95, p<0.005). Binomial logistics regression identified a positive correlation with hospital admission (1.87 OR, 95% CI= 1.3-2.6, p<0.005), oxygen requirement (1.48 OR, 95% CI= 1.2-1.8, p<0.005) and invasive ventilation (1.2 OR, 95% CI= 1.0-1.3, p<0.005) for each 1-point increase in RALE score. For each one year increased in age, there was a negative correlation with recovery (0.05 OR, 95% CI= 0.92-1.0, p<0.01). RALE scores above three were positively associated with hospitalization (Youden Index 0.61, sensitivity 0.73, specificity 0.89) and above six were positively associated with ICU admission (Youden Index 0.67, sensitivity 0.91, specificity 0.78). Conclusion: The RALE score can be used as a surrogate to quantify the extent of COVID-19 infection and has an excellent inter-observer agreement. The RALE score could be used to prognosticate and identify patients at high risk of deterioration. Threshold values may also be applied to predict the likelihood of hospital and ICU admission.Keywords: chest radiography, coronavirus, COVID-19, RALE score
Procedia PDF Downloads 178333 Monte Carlo Simulation of Thyroid Phantom Imaging Using Geant4-GATE
Authors: Parimalah Velo, Ahmad Zakaria
Abstract:
Introduction: Monte Carlo simulations of preclinical imaging systems allow opportunity to enable new research that could range from designing hardware up to discovery of new imaging application. The simulation system which could accurately model an imaging modality provides a platform for imaging developments that might be inconvenient in physical experiment systems due to the expense, unnecessary radiation exposures and technological difficulties. The aim of present study is to validate the Monte Carlo simulation of thyroid phantom imaging using Geant4-GATE for Siemen’s e-cam single head gamma camera. Upon the validation of the gamma camera simulation model by comparing physical characteristic such as energy resolution, spatial resolution, sensitivity, and dead time, the GATE simulation of thyroid phantom imaging is carried out. Methods: A thyroid phantom is defined geometrically which comprises of 2 lobes with 80mm in diameter, 1 hot spot, and 3 cold spots. This geometry accurately resembling the actual dimensions of thyroid phantom. A planar image of 500k counts with 128x128 matrix size was acquired using simulation model and in actual experimental setup. Upon image acquisition, quantitative image analysis was performed by investigating the total number of counts in image, the contrast of the image, radioactivity distributions on image and the dimension of hot spot. Algorithm for each quantification is described in detail. The difference in estimated and actual values for both simulation and experimental setup is analyzed for radioactivity distribution and dimension of hot spot. Results: The results show that the difference between contrast level of simulation image and experimental image is within 2%. The difference in the total count between simulation and actual study is 0.4%. The results of activity estimation show that the relative difference between estimated and actual activity for experimental and simulation is 4.62% and 3.03% respectively. The deviation in estimated diameter of hot spot for both simulation and experimental study are similar which is 0.5 pixel. In conclusion, the comparisons show good agreement between the simulation and experimental data.Keywords: gamma camera, Geant4 application of tomographic emission (GATE), Monte Carlo, thyroid imaging
Procedia PDF Downloads 271332 Quantification of the Erosion Effect on Small Caliber Guns: Experimental and Numerical Analysis
Authors: Dhouibi Mohamed, Stirbu Bogdan, Chabotier André, Pirlot Marc
Abstract:
Effects of erosion and wear on the performance of small caliber guns have been analyzed throughout numerical and experimental studies. Mainly, qualitative observations were performed. Correlations between the volume change of the chamber and the maximum pressure are limited. This paper focuses on the development of a numerical model to predict the maximum pressure evolution when the interior shape of the chamber changes in the different weapon’s life phases. To fulfill this goal, an experimental campaign, followed by a numerical simulation study, is carried out. Two test barrels, « 5.56x45mm NATO » and « 7.62x51mm NATO,» are considered. First, a Coordinate Measuring Machine (CMM) with a contact scanning probe is used to measure the interior profile of the barrels after each 300-shots cycle until their worn out. Simultaneously, the EPVAT (Electronic Pressure Velocity and Action Time) method with a special WEIBEL radar are used to measure: (i) the chamber pressure, (ii) the action time, (iii) and the bullet velocity in each barrel. Second, a numerical simulation study is carried out. Thus, a coupled interior ballistic model is developed using the dynamic finite element program LS-DYNA. In this work, two different models are elaborated: (i) coupled Eularien Lagrangian method using fluid-structure interaction (FSI) techniques and a coupled thermo-mechanical finite element using a lumped parameter model (LPM) as a subroutine. Those numerical models are validated and checked through three experimental results, such as (i) the muzzle velocity, (ii) the chamber pressure, and (iii) the surface morphology of fired projectiles. Results show a good agreement between experiments and numerical simulations. Next, a comparison between the two models is conducted. The projectile motions, the dynamic engraving resistances and the maximum pressures are compared and analyzed. Finally, using this obtained database, a statistical correlation between the muzzle velocity, the maximum pressure and the chamber volume is established.Keywords: engraving process, finite element analysis, gun barrel erosion, interior ballistics, statistical correlation
Procedia PDF Downloads 215331 Reading Literacy, Storytelling and Cognitive Learning: an Effective Connection in Sustainability Education
Authors: Rosa Tiziana Bruno
Abstract:
The connection between education and sustainability has been posited to have benefit for realizing a social development compatible with environmental protection. However, an educational paradigm based on the passage of information or on the fear of a catastrophe might not favor the acquisition of eco-identity. To build a sustainable world, it is necessary to "become people" in harmony with other human beings, being aware of belonging to the same human community that is part of the natural world. This can only be achieved within an authentic educating community and the most effective tools for building educating communities are reading literacy and storytelling. This paper is the report of a research-action carried out in this direction, in agreement with the sociology department of the University of Salerno, which involved four hundred children and their teachers in a path based on the combination of reading literacy, storytelling, autobiographical writing and outdoor education. The goal of the research was to create an authentic educational community within the school, capable to encourage the acquisition of an eco-identity by the pupils, that is, personal and relational growth in the full realization of the Self, in harmony with the social and natural environment, with a view to an authentic education for sustainability. To ensure reasonable validity and reliability of findings, the inquiry started with participant observation and a process of triangulation has been used including: semi-structured interview, socio-semiotic analysis of the conversation and time budget. Basically, a multiple independent sources of data was used to answer the questions. Observing the phenomenon through multiple "windows" helped to comparing data through a variety of lenses. All teachers had the experience of implementing a socio-didactic strategy called "Fiabadiario" and they had the possibility to use it with approaches that fit their students. The data being collected come from the very students and teachers who are engaged with this strategy. The educational path tested during the research has produced sustainable relationships and conflict resolution within the school system and between school and families, creating an authentic and sustainable learning community.Keywords: educating community, education for sustainability, literature in education, social relations
Procedia PDF Downloads 122330 Investigation of Heat Conduction through Particulate Filled Polymer Composite
Authors: Alok Agrawal, Alok Satapathy
Abstract:
In this paper, an attempt to determine the effective thermal conductivity (keff) of particulate filled polymer composites using finite element method (FEM) a powerful computational technique is made. A commercially available finite element package ANSYS is used for this numerical analysis. Three-dimensional spheres-in-cube lattice array models are constructed to simulate the microstructures of micro-sized particulate filled polymer composites with filler content ranging from 2.35 to 26.8 vol %. Based on the temperature profiles across the composite body, the keff of each composition is estimated theoretically by FEM. Composites with similar filler contents are than fabricated using compression molding technique by reinforcing micro-sized aluminium oxide (Al2O3) in polypropylene (PP) resin. Thermal conductivities of these composite samples are measured according to the ASTM standard E-1530 by using the Unitherm™ Model 2022 tester, which operates on the double guarded heat flow principle. The experimentally measured conductivity values are compared with the numerical values and also with those obtained from existing empirical models. This comparison reveals that the FEM simulated values are found to be in reasonable good agreement with the experimental data. Values obtained from the theoretical model proposed by the authors are also found to be in even closer approximation with the measured values within percolation limit. Further, this study shows that there is gradual enhancement in the conductivity of PP resin with increase in filler percentage and thereby its heat conduction capability is improved. It is noticed that with addition of 26.8 vol % of filler, the keff of composite increases to around 6.3 times that of neat PP. This study validates the proposed model for PP-Al2O3 composite system and proves that finite element analysis can be an excellent methodology for such investigations. With such improved heat conduction ability, these composites can find potential applications in micro-electronics, printed circuit boards, encapsulations etc.Keywords: analytical modelling, effective thermal conductivity, finite element method, polymer matrix composite
Procedia PDF Downloads 322329 Germany – Pakistan Relations (1960 – 2015): An Analytical Study
Authors: Wahid Sharif
Abstract:
Germany is a country that is traditionally highly regarded in the countries of South Asia. The German people and German products are valued and generate a positive response in South Asia. The main objective of this research is to evaluate and analyze various dimensions of a Such Comparative Study of Geography (German & Pakistan). Basically, Germany is located in Central Europe; it has common borders with Denmark, the Netherlands, Belgium, Luxembourg, France, Switzerland, Austria, the Czech Republic and Poland, Its total area is around 356,854 sq km. Pakistan has a strategic geo-political location at the corridor of the world's major maritime oil supply lines and has close proximity to the resource and oil-rich Central Asian countries. Germany and Pakistan enjoy intimately cordial relations. Germany has taken large measures to aid the south Asian countries in its economic and governmental hardship. Commercial trade between Berlin and Islamabad has also been essential as Germany is Pakistan’s fourth largest trade partner, also Germany is home to 35,081 Pakistani immigrants overall, and the two nations have almost always had a friendly bond. The aim of this research is to initiate fruitful discussions about appropriate strategies and actions in the face of the economic and geopolitical challenges faced by Pakistan and the role that societies of each country can play in assisting the region in overcoming its problems. The research would aim to serve as a facilitator for developing collaborative research projects between different institutions and disciplines in the Germany and Pakistan institutions. This is important, as the issues of poverty, illiteracy, unemployment and social inequities need to be understood properly. Though geographically far apart from each other and not having gone through the experience that the Asian states had undergone in their relations with the Portuguese, Dutch, French and English. Pakistan and Germany did not have to forget any unpleasant memories of a colonial past. On the contrary, the freedom fighters of the Indo-Pak subcontinent did not make secret of their sympathy-nay-admiration for Germany, which, though defeated in World War I and World War II by Anglo-French and Anglo-American blocs respectively, had shaken the British and French empires to their foundation in the protracted wars.Keywords: relations, cultural, socio economic, bilateral agreement
Procedia PDF Downloads 39328 Compensation of Bulk Charge Carriers in Bismuth Based Topological Insulators via Swift Heavy Ion Irradiation
Authors: Jyoti Yadav, Rini Singh, Anoop M.D, Nisha Yadav, N. Srinivasa Rao, Fouran Singh, Takayuki Ichikawa, Ankur Jain, Kamlendra Awasthi, Manoj Kumar
Abstract:
Nanocrystalline films exhibit defects and strain induced by its grain boundaries. Defects and strain affect the physical as well as topological insulating properties of the Bi2Te3 thin films by changing their electronic structure. In the present studies, the effect of Ni7+ ion irradiation on the physical and electrical properties of Bi2Te3 thin films was studied. The films were irradiated at five different fluences (5x1011, 1x1012, 3x1012, 5x1012, 1x1013 ions/cm2). Thin films synthesized using the e-beam technique possess a rhombohedral crystal structure with the R-3m space group. The average crystallite size, as determined by x-ray diffraction (XRD) peak broadening, was found to be 18.5 ± 5 (nm). It was also observed that irradiation increases the induced strain. Raman Spectra of the films demonstrate the splitting of A_1u^1 modes originating from the vibrations along the c-axis. This is by the variation in the lattice parameter ‘c,’ as observed through XRD. The atomic force microscopy study indicates the decrease in surface roughness up to the fluence of 3x1012 ions/cm2 and further increasing the fluence increases the roughness. The decrease in roughness may be due to the growth of smaller nano-crystallites on the surface of thin films due to irradiation-induced annealing. X-ray photoelectron spectroscopy studies reveal the composition to be in close agreement to the nominal values i.e. Bi2Te3. The resistivity v/s temperature measurements revealed an increase in resistivity up to the fluence 3x1012 ions/cm2 and a decrease on further increasing the fluence. The variation in electrical resistivity is corroborated with the change in the carrier concentration as studied through low-temperature Hall measurements. A crossover from the n-type to p-type carriers was achieved in the irradiated films. Interestingly, tuning of the Fermi level by compensating the bulk carriers using ion-irradiation could be achieved.Keywords: Annealing, Irradiation, Fermi level, Tuning
Procedia PDF Downloads 138327 Influential Parameters in Estimating Soil Properties from Cone Penetrating Test: An Artificial Neural Network Study
Authors: Ahmed G. Mahgoub, Dahlia H. Hafez, Mostafa A. Abu Kiefa
Abstract:
The Cone Penetration Test (CPT) is a common in-situ test which generally investigates a much greater volume of soil more quickly than possible from sampling and laboratory tests. Therefore, it has the potential to realize both cost savings and assessment of soil properties rapidly and continuously. The principle objective of this paper is to demonstrate the feasibility and efficiency of using artificial neural networks (ANNs) to predict the soil angle of internal friction (Φ) and the soil modulus of elasticity (E) from CPT results considering the uncertainties and non-linearities of the soil. In addition, ANNs are used to study the influence of different parameters and recommend which parameters should be included as input parameters to improve the prediction. Neural networks discover relationships in the input data sets through the iterative presentation of the data and intrinsic mapping characteristics of neural topologies. General Regression Neural Network (GRNN) is one of the powerful neural network architectures which is utilized in this study. A large amount of field and experimental data including CPT results, plate load tests, direct shear box, grain size distribution and calculated data of overburden pressure was obtained from a large project in the United Arab Emirates. This data was used for the training and the validation of the neural network. A comparison was made between the obtained results from the ANN's approach, and some common traditional correlations that predict Φ and E from CPT results with respect to the actual results of the collected data. The results show that the ANN is a very powerful tool. Very good agreement was obtained between estimated results from ANN and actual measured results with comparison to other correlations available in the literature. The study recommends some easily available parameters that should be included in the estimation of the soil properties to improve the prediction models. It is shown that the use of friction ration in the estimation of Φ and the use of fines content in the estimation of E considerable improve the prediction models.Keywords: angle of internal friction, cone penetrating test, general regression neural network, soil modulus of elasticity
Procedia PDF Downloads 415326 Suitability of Satellite-Based Data for Groundwater Modelling in Southwest Nigeria
Authors: O. O. Aiyelokun, O. A. Agbede
Abstract:
Numerical modelling of groundwater flow can be susceptible to calibration errors due to lack of adequate ground-based hydro-metrological stations in river basins. Groundwater resources management in Southwest Nigeria is currently challenged by overexploitation, lack of planning and monitoring, urbanization and climate change; hence to adopt models as decision support tools for sustainable management of groundwater; they must be adequately calibrated. Since river basins in Southwest Nigeria are characterized by missing data, and lack of adequate ground-based hydro-meteorological stations; the need for adopting satellite-based data for constructing distributed models is crucial. This study seeks to evaluate the suitability of satellite-based data as substitute for ground-based, for computing boundary conditions; by determining if ground and satellite based meteorological data fit well in Ogun and Oshun River basins. The Climate Forecast System Reanalysis (CFSR) global meteorological dataset was firstly obtained in daily form and converted to monthly form for the period of 432 months (January 1979 to June, 2014). Afterwards, ground-based meteorological data for Ikeja (1981-2010), Abeokuta (1983-2010), and Oshogbo (1981-2010) were compared with CFSR data using Goodness of Fit (GOF) statistics. The study revealed that based on mean absolute error (MEA), coefficient of correlation, (r) and coefficient of determination (R²); all meteorological variables except wind speed fit well. It was further revealed that maximum and minimum temperature, relative humidity and rainfall had high range of index of agreement (d) and ratio of standard deviation (rSD), implying that CFSR dataset could be used to compute boundary conditions such as groundwater recharge and potential evapotranspiration. The study concluded that satellite-based data such as the CFSR should be used as input when constructing groundwater flow models in river basins in Southwest Nigeria, where majority of the river basins are partially gaged and characterized with long missing hydro-metrological data.Keywords: boundary condition, goodness of fit, groundwater, satellite-based data
Procedia PDF Downloads 130325 Parametric Approach for Reserve Liability Estimate in Mortgage Insurance
Authors: Rajinder Singh, Ram Valluru
Abstract:
Chain Ladder (CL) method, Expected Loss Ratio (ELR) method and Bornhuetter-Ferguson (BF) method, in addition to more complex transition-rate modeling, are commonly used actuarial reserving methods in general insurance. There is limited published research about their relative performance in the context of Mortgage Insurance (MI). In our experience, these traditional techniques pose unique challenges and do not provide stable claim estimates for medium to longer term liabilities. The relative strengths and weaknesses among various alternative approaches revolve around: stability in the recent loss development pattern, sufficiency and reliability of loss development data, and agreement/disagreement between reported losses to date and ultimate loss estimate. CL method results in volatile reserve estimates, especially for accident periods with little development experience. The ELR method breaks down especially when ultimate loss ratios are not stable and predictable. While the BF method provides a good tradeoff between the loss development approach (CL) and ELR, the approach generates claim development and ultimate reserves that are disconnected from the ever-to-date (ETD) development experience for some accident years that have more development experience. Further, BF is based on subjective a priori assumption. The fundamental shortcoming of these methods is their inability to model exogenous factors, like the economy, which impact various cohorts at the same chronological time but at staggered points along their life-time development. This paper proposes an alternative approach of parametrizing the loss development curve and using logistic regression to generate the ultimate loss estimate for each homogeneous group (accident year or delinquency period). The methodology was tested on an actual MI claim development dataset where various cohorts followed a sigmoidal trend, but levels varied substantially depending upon the economic and operational conditions during the development period spanning over many years. The proposed approach provides the ability to indirectly incorporate such exogenous factors and produce more stable loss forecasts for reserving purposes as compared to the traditional CL and BF methods.Keywords: actuarial loss reserving techniques, logistic regression, parametric function, volatility
Procedia PDF Downloads 131324 Evaluation of the Self-Organizing Map and the Adaptive Neuro-Fuzzy Inference System Machine Learning Techniques for the Estimation of Crop Water Stress Index of Wheat under Varying Application of Irrigation Water Levels for Efficient Irrigation Scheduling
Authors: Aschalew C. Workneh, K. S. Hari Prasad, C. S. P. Ojha
Abstract:
The crop water stress index (CWSI) is a cost-effective, non-destructive, and simple technique for tracking the start of crop water stress. This study investigated the feasibility of CWSI derived from canopy temperature to detect the water status of wheat crops. Artificial intelligence (AI) techniques have become increasingly popular in recent years for determining CWSI. In this study, the performance of two AI techniques, adaptive neuro-fuzzy inference system (ANFIS) and self-organizing maps (SOM), are compared while determining the CWSI of paddy crops. Field experiments were conducted for varying irrigation water applications during two seasons in 2022 and 2023 at the irrigation field laboratory at the Civil Engineering Department, Indian Institute of Technology Roorkee, India. The ANFIS and SOM-simulated CWSI values were compared with the experimentally calculated CWSI (EP-CWSI). Multiple regression analysis was used to determine the upper and lower CWSI baselines. The upper CWSI baseline was found to be a function of crop height and wind speed, while the lower CWSI baseline was a function of crop height, air vapor pressure deficit, and wind speed. The performance of ANFIS and SOM were compared based on mean absolute error (MAE), mean bias error (MBE), root mean squared error (RMSE), index of agreement (d), Nash-Sutcliffe efficiency (NSE), and coefficient of correlation (R²). Both models successfully estimated the CWSI of the paddy crop with higher correlation coefficients and lower statistical errors. However, the ANFIS (R²=0.81, NSE=0.73, d=0.94, RMSE=0.04, MAE= 0.00-1.76 and MBE=-2.13-1.32) outperformed the SOM model (R²=0.77, NSE=0.68, d=0.90, RMSE=0.05, MAE= 0.00-2.13 and MBE=-2.29-1.45). Overall, the results suggest that ANFIS is a reliable tool for accurately determining CWSI in wheat crops compared to SOM.Keywords: adaptive neuro-fuzzy inference system, canopy temperature, crop water stress index, self-organizing map, wheat
Procedia PDF Downloads 55