Search results for: dispersive alfven wave
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1776

Search results for: dispersive alfven wave

576 Analysis of Three-Dimensional Longitudinal Rolls Induced by Double Diffusive Poiseuille-Rayleigh-Benard Flows in Rectangular Channels

Authors: O. Rahli, N. Mimouni, R. Bennacer, K. Bouhadef

Abstract:

This numerical study investigates the travelling wave’s appearance and the behavior of Poiseuille-Rayleigh-Benard (PRB) flow induced in 3D thermosolutale mixed convection (TSMC) in horizontal rectangular channels. The governing equations are discretized by using a control volume method with third order Quick scheme in approximating the advection terms. Simpler algorithm is used to handle coupling between the momentum and continuity equations. To avoid the excessively high computer time, full approximation storage (FAS) with full multigrid (FMG) method is used to solve the problem. For a broad range of dimensionless controlling parameters, the contribution of this work is to analyzing the flow regimes of the steady longitudinal thermoconvective rolls (noted R//) for both thermal and mass transfer (TSMC). The transition from the opposed volume forces to cooperating ones, considerably affects the birth and the development of the longitudinal rolls. The heat and mass transfers distribution are also examined.

Keywords: heat and mass transfer, mixed convection, poiseuille-rayleigh-benard flow, rectangular duct

Procedia PDF Downloads 287
575 A Feminist Approach to the COVID-19 Lockdown Process in Turkey

Authors: Aykut Sigin

Abstract:

In feminist theory, home is usually regarded as an unsafe place for women to be in, as it continually produces inequalities between men and women, favoring the former, and maintains the patriarchal status quo. The second-wave feminists argued that women need to raise their concerns regarding domestic problems and this eventually led to the emergence of the motto 'the personal is political', pointing out to the fact that the domestic problems one woman experienced were essentially the problems of women in general as the patriarchal ideology manifested itself at home. Although this motto was from the late 1960s, it still holds significance today. In the golden era of the Internet, women could use social media to voice their concerns more easily than ever. Following this line of thought, the aim of this study is to analyze the domestic problems of the women in Turkey during the lockdown caused by COVID-19 through social media as they find themselves at home with their fathers, husbands and/or brothers for longer periods of time than ever before. For this purpose, an investigation of the posts shared under '#EvdeKal' ('StayAtHome') was carried out. The results of the study made it clear that women find the lockdown process to be problematic, that they express their domestic concerns rather freely through social media, and that the inequalities caused by the patriarchal ideology persist in the 21st century.

Keywords: COVID-19, lockdown, home, feminism

Procedia PDF Downloads 115
574 Feature Extractions of EMG Signals during a Constant Workload Pedaling Exercise

Authors: Bing-Wen Chen, Alvin W. Y. Su, Yu-Lin Wang

Abstract:

Electromyography (EMG) is one of the important indicators during exercise, as it is closely related to the level of muscle activations. This work quantifies the muscle conditions of the lower limbs in a constant workload exercise. Surface EMG signals of the vastus laterals (VL), vastus medialis (VM), rectus femoris (RF), gastrocnemius medianus (GM), gastrocnemius lateral (GL) and Soleus (SOL) were recorded from fourteen healthy males. The EMG signals were segmented in two phases: activation segment (AS) and relaxation segment (RS). Period entropy (PE), peak count (PC), zero crossing (ZC), wave length (WL), mean power frequency (MPF), median frequency (MDF) and root mean square (RMS) are calculated to provide the quantitative information of the measured EMG segments. The outcomes reveal that the PE, PC, ZC and RMS have significantly changed (p<.001); WL presents moderately changed (p<.01); MPF and MDF show no changed (p>.05) during exercise. The results also suggest that the RS is also preferred for performance evaluation, while the results of the extracted features in AS are usually affected directly by the amplitudes. It is further found that the VL exhibits the most significant changes within six muscles during pedaling exercise. The proposed work could be applied to quantify the stamina analysis and to predict the instant muscle status in athletes.

Keywords: electromyographic feature extraction, muscle status, pedaling exercise, relaxation segment

Procedia PDF Downloads 285
573 Math Anxiety Effects on Complex Addition: An ERP Study

Authors: María Isabel Núñez-Peña, Macarena Suárez Pellicioni

Abstract:

In the present study, we used event-related potentials (ERP) to address the question of whether high (HMA) and low math-anxious (LMA) individuals differ on a complex addition verification task, which involved both carrying and non-carrying additions. ERPs were recorded while seventeen HMA and seventeen LMA individuals performed the verification task. Groups did not differ in trait anxiety or gender distribution. Participants were presented with two-digit additions and were asked to decide whether the proposed solution was correct or incorrect. Behavioral data showed a significant Carrying x Proposed solution x Group interaction for accuracy, showing that carrying additions were more error prone than non-carrying ones for both groups, although the difference non-carrying minus carrying was larger for the HMA group. As for ERPs, a P2 component larger in HMA individuals than in their LMA peers was found both for carrying and non-carrying additions. The P2 was followed by a sustained negative slow wave at parietal positions. Because the negative slow waves are thought to reflect the updating of working memory, these results give support to the relationship among working memory, math performance and math anxiety.

Keywords: math anxiety, carrying, working memory, P2

Procedia PDF Downloads 429
572 Estimation of Seismic Drift Demands for Inelastic Shear Frame Structures

Authors: Ali Etemadi, Polat H. Gulkan

Abstract:

The drift spectrum derived through the continuous shear-beam and wave propagation theory is known to be useful appliance to measure of the demand of pulse like near field ground motions on building structures. As regards, many of old frame buildings with poor or non-ductile column elements, pass the elastic limits and blurt the post yielding hysteresis degradation responses when subjected to such impulsive ground motions. The drift spectrum which, is based on a linear system cannot be predicted the overestimate drift demands arising from inelasticity in an elastic plastic systems. A simple procedure to estimate the drift demands in shear-type frames which, respond over the elastic limits is described and effect of hysteresis degradation behavior on seismic demands is clarified. Whereupon the modification factors are proposed to incorporate the hysteresis degradation effects parametrically. These factors are defined with respected to the linear systems. The method can be applicable for rapid assessment of existing poor detailed, non-ductile buildings.

Keywords: drift spectrum, shear-type frame, stiffness and strength degradation, pinching, smooth hysteretic model, quasi static analysis

Procedia PDF Downloads 509
571 Treatment of Municipal Wastewater by Means of Uv-Assisted Irradiation Technologies: Fouling Studies and Optimization of Operational Parameters

Authors: Tooba Aslam, Efthalia Chatzisymeon

Abstract:

UV-assisted irradiation technologies are well-established for water and wastewater treatment. UVC treatments are widely used at large-scale, while UVA irradiation has more often been applied in combination with a catalyst (e.g. TiO₂ or FeSO₄) in smaller-scale systems. A technical issue of these systems is the formation of fouling on the quartz sleeves that houses the lamps. This fouling can prevent complete irradiation, therefore reducing the efficiency of the process. This paper investigates the effects of operational parameters, such as the type of wastewater, irradiation source, H₂O₂ addition, and water pH on fouling formation and, ultimately, the treatment of municipal wastewater. Batch experiments have been performed at lab-scale while monitoring water quality parameters including: COD, TS, TSS, TDS, temperature, pH, hardness, alkalinity, turbidity, TOC, UV transmission, UV₂₅₄ absorbance, and metal concentrations. The residence time of the wastewater in the reactor was 5 days in order to observe any fouling formation on the quartz surface. Over this period, it was observed that chemical oxygen demand (COD) decreased by 30% and 59% during photolysis (Ultraviolet A) and photo-catalysis (UVA/Fe/H₂O₂), respectively. Higher fouling formation was observed with iron-rich and phosphorous-rich wastewater. The highest rate of fouling was developed with phosphorous-rich wastewater, followed by the iron-rich wastewater. Photo-catalysis (UVA/Fe/H₂O₂) had better removal efficiency than photolysis (UVA). This was attributed to the Photo-Fenton reaction, which was initiated under these operational conditions. Scanning electron microscope (SEM) measurements of fouling formed on the quartz sleeves showed that particles vary in size, shape, and structure; some have more distinct structures and are generally larger and have less compact structure than the others. Energy-dispersive X-ray spectroscopy (EDX) results showed that the major metals present in the fouling cake were iron, phosphorous, and calcium. In conclusion, iron-rich wastewaters are more suitable for UV-assisted treatment since fouling formation on quartz sleeves can be minimized by the formation of oxidizing agents during treatment, such as hydroxyl radicals.

Keywords: advanced oxidation processes, photo-fenton treatment, photo-catalysis, wastewater treatment

Procedia PDF Downloads 58
570 Multibody Constrained Dynamics of Y-Method Installation System for a Large Scale Subsea Equipment

Authors: Naeem Ullah, Menglan Duan, Mac Darlington Uche Onuoha

Abstract:

The lowering of subsea equipment into the deep waters is a challenging job due to the harsh offshore environment. Many researchers have introduced various installation systems to deploy the payload safely into the deep oceans. In general practice, dual floating vessels are not employed owing to the prevalent safety risks and hazards caused by ever-increasing dynamical effects sourced by mutual interaction between the bodies. However, while keeping in the view of the optimal grounds, such as economical one, the Y-method, the two conventional tugboats supporting the equipment by the two independent strands connected to a tri-plate above the equipment, has been employed to study multibody dynamics of the dual barge lifting operations. In this study, the two tugboats and the suspended payload (Y-method) are deployed for the lowering of subsea equipment into the deep waters as a multibody dynamic system. The two-wire ropes are used for the lifting and installation operation by this Y-method installation system. 6-dof (degree of freedom) for each body are considered to establish coupled 18-dof multibody model by embedding technique or velocity transformation technique. The fundamental and prompt advantage of this technique is that the constraint forces can be eliminated directly, and no extra computational effort is required for the elimination of the constraint forces. The inertial frame of reference is taken at the surface of the water as the time-independent frame of reference, and the floating frames of reference are introduced in each body as the time-dependent frames of reference in order to formulate the velocity transformation matrix. The local transformation of the generalized coordinates to the inertial frame of reference is executed by applying the Euler Angle approach. The spherical joints are articulated amongst the multibody as the kinematic joints. The hydrodynamic force, the two-strand forces, the hydrostatic force, and the mooring forces are taken into consideration as the external forces. The radiation force of the hydrodynamic force is obtained by employing the Cummins equation. The wave exciting part of the hydrodynamic force is obtained by using force response amplitude operators (RAOs) that are obtained by the commercial solver ‘OpenFOAM’. The strand force is obtained by considering the wire rope as an elastic spring. The nonlinear hydrostatic force is obtained by the pressure integration technique at each time step of the wave movement. The mooring forces are evaluated by using Faltinsen analytical approach. ‘The Runge Kutta Method’ of Fourth-Order is employed to evaluate the coupled equations of motion obtained for 18-dof multibody model. The results are correlated with the simulated Orcaflex Model. Moreover, the results from Orcaflex Model are compared with the MOSES Model from previous studies. The MBDS of single barge lifting operation from the former studies are compared with the MBDS of the established dual barge lifting operation. The dynamics of the dual barge lifting operation are found larger in magnitude as compared to the single barge lifting operation. It is noticed that the traction at the top connection point of the cable decreases with the increase in the length, and it becomes almost constant after passing through the splash zone.

Keywords: dual barge lifting operation, Y-method, multibody dynamics, shipbuilding, installation of subsea equipment, shipbuilding

Procedia PDF Downloads 191
569 Thermal Instability in Rivlin-Ericksen Elastico-Viscous Nanofluid with Connective Boundary Condition: Effect of Vertical Throughflow

Authors: Shivani Saini

Abstract:

The effect of vertical throughflow on the onset of convection in Rivlin-Ericksen Elastico-Viscous nanofluid with convective boundary condition is investigated. The flow is stimulated with modified Darcy model under the assumption that the nanoparticle volume fraction is not actively managed on the boundaries. The heat conservation equation is formulated by introducing the convective term of nanoparticle flux. A linear stability analysis based upon normal mode is performed, and an approximate solution of eigenvalue problems is obtained using the Galerkin weighted residual method. Investigation of the dependence of the Rayleigh number on various viscous and nanofluid parameter is performed. It is found that through flow and nanofluid parameters hasten the convection while capacity ratio, kinematics viscoelasticity, and Vadasz number do not govern the stationary convection. Using the convective component of nanoparticle flux, critical wave number is the function of nanofluid parameters as well as the throughflow parameter. The obtained solution provides important physical insight into the behavior of this model.

Keywords: Darcy model, nanofluid, porous layer, throughflow

Procedia PDF Downloads 121
568 Coupling Time-Domain Analysis for Dynamic Positioning during S-Lay Installation

Authors: Sun Li-Ping, Zhu Jian-Xun, Liu Sheng-Nan

Abstract:

In order to study the performance of dynamic positioning system during S-lay operations, dynamic positioning system is simulated with the hull-stinger-pipe coupling effect. The roller of stinger is simulated by the generalized elastic contact theory. The stinger is composed of Morrison members. Force on pipe is calculated by lumped mass method. Time domain of fully coupled barge model is analyzed combining with PID controller, Kalman filter and allocation of thrust using Sequential Quadratic Programming method. It is also analyzed that the effect of hull wave frequency motion on pipe-stinger coupling force and dynamic positioning system. Besides, it is studied that how S-lay operations affect the dynamic positioning accuracy. The simulation results are proved to be available by checking pipe stress with API criterion. The effect of heave and yaw motion cannot be ignored on hull-stinger-pipe coupling force and dynamic positioning system. It is important to decrease the barge’s pitch motion and lay pipe in head sea in order to improve safety of the S-lay installation and dynamic positioning.

Keywords: S-lay operation, dynamic positioning, coupling motion, time domain, allocation of thrust

Procedia PDF Downloads 441
567 Materials and Techniques of Anonymous Egyptian Polychrome Cartonnage Mummy Mask: A Multiple Analytical Study

Authors: Hanaa A. Al-Gaoudi, Hassan Ebeid

Abstract:

The research investigates the materials and processes used in the manufacturing of an Egyptian polychrome cartonnage mummy mask with the aim of dating this object and establishing trade patterns of certain materials that were used and available at the time of ancient Egypt. This anonymous-source object was held in the basement storage of the Egyptian Museum in Cairo (EMC) and has never been on display. Furthermore, there is no information available regarding its owner, provenance, date, and even the time of its possession by the museum. Moreover, the object is in a very poor condition where almost two-thirds of the mask was bent and has never received any previous conservation treatment. This research has utilized well-established multi-analytical methods to identify the considerable diversity of materials that have been used in the manufacturing of this object. These methods include Computed Tomography Scan (CT scan) to acquire detailed pictures of the inside physical structure and condition of the bended layers. Dino-Lite portable digital microscope, scanning electron microscopy with energy dispersive X-ray spectrometer (SEM-EDX), and the non-invasive imaging technique of multispectral imaging (MSI) to obtain information about the physical characteristics and condition of the painted layers and to examine the microstructure of the materials. Portable XRF Spectrometer (PXRF) and X-Ray powder diffraction (XRD) to identify mineral phases and the bulk element composition in the gilded layer, ground, and pigments; Fourier-transform infrared (FTIR) to identify organic compounds and their molecular characterization; accelerator mass spectrometry (AMS 14C) to date the object. Preliminary results suggest that there are no human remains inside the object, and the textile support is linen fibres with tabby weave 1/1 and these fibres are in a very bad condition. Several pigments have been identified, such as Egyptian blue, Magnetite, Egyptian green frit, Hematite, Calcite, and Cinnabar; moreover, the gilded layers are pure gold and the binding media in the pigments is Arabic gum and animal glue in the textile support layer.

Keywords: analytical methods, Egyptian museum, mummy mask, pigments, textile

Procedia PDF Downloads 113
566 On the Grid Technique by Approximating the Derivatives of the Solution of the Dirichlet Problems for (1+1) Dimensional Linear Schrodinger Equation

Authors: Lawrence A. Farinola

Abstract:

Four point implicit schemes for the approximation of the first and pure second order derivatives for the solution of the Dirichlet problem for one dimensional Schrodinger equation with respect to the time variable t were constructed. Also, special four-point implicit difference boundary value problems are proposed for the first and pure second derivatives of the solution with respect to the spatial variable x. The Grid method is also applied to the mixed second derivative of the solution of the Linear Schrodinger time-dependent equation. It is assumed that the initial function belongs to the Holder space C⁸⁺ᵃ, 0 < α < 1, the Schrodinger wave function given in the Schrodinger equation is from the Holder space Cₓ,ₜ⁶⁺ᵃ, ³⁺ᵃ/², the boundary functions are from C⁴⁺ᵃ, and between the initial and the boundary functions the conjugation conditions of orders q = 0,1,2,3,4 are satisfied. It is proven that the solution of the proposed difference schemes converges uniformly on the grids of the order O(h²+ k) where h is the step size in x and k is the step size in time. Numerical experiments are illustrated to support the analysis made.

Keywords: approximation of derivatives, finite difference method, Schrödinger equation, uniform error

Procedia PDF Downloads 105
565 Carbon-Doped TiO2 Nanofibers Prepared by Electrospinning

Authors: ChoLiang Chung, YuMin Chen

Abstract:

C-doped TiO2 nanofibers were prepared by electrospinning successfully. Different amounts of carbon were added into the nanofibers by using chitosan, aiming to shift the wave length that is required to excite the photocatalyst from ultraviolet light to visible light. Different amounts of carbon and different atmosphere fibers were calcined at 500oC, and the optical characteristic of C-doped TiO2 nanofibers had been changed. characterizes of nanofibers were identified by X-Ray Diffraction (XRD), Field Emission Scanning Electron Microscope (FE-SEM), UV-vis, Atomic Force Microscope (AFM), and Fourier Transform Infrared Spectroscopy (FTIR). The XRD is used to identify the phase composition of nanofibers. The morphology of nanofibers were explored by FE-SEM and AFM. Optical characteristics of absorption were measured by UV-Vis. Three dimension surface images of C-doped TiO2 nanofibers revealed different effects of processing. The results of XRD showed that the phase of C-doped TiO2 nanofibers transformed to rutile phase and anatase phase successfully. The results of AFM showed that the surface morphology of nanofibers became smooth after high temperature treatment. Images from FE-SEM revealed the average size of nanofibers. UV-vis results showed that the band-gap of TiO2 were reduced. Finally, we found out C-doped TiO2 nanofibers can change countenance of nanofiber and make it smoother.

Keywords: carbon, TiO2, chitosan, electrospinning

Procedia PDF Downloads 246
564 Localized Dynamic Lensing with Extended Depth of Field via Enhanced Light Sound Interaction

Authors: Hamid R. Chabok, Demetrios N. Christodoulides, Mercedeh Khajavikhan

Abstract:

In recent years, acousto-optic (AO) lenses with tunable foci have emerged as a powerful tool for optical beam shaping, imaging, and particle manipulation. In most current AO lenses, the incident light that propagates orthogonally to a standing ultrasonic wave converts to a Bessel-like beam pattern due to the Raman-Nath effect, thus forming annular fringes that result in compromised focus response. Here, we report a new class of AO dynamic lensing based on generating a 3D-variable refractive index profile via a z-axis-scan ultrasound transducer. By utilizing the co- /counter propagation of light and acoustic waves that interact over a longer distance, the laser beam can be strongly focused in a fully controllable manner. Using this approach, we demonstrate AO lenses with instantaneous extended depth of field (DoF) and laterally localized dynamic focusing. This new light-sound interaction scheme may pave the way towards applications that require remote focusing, 3D micromanipulation, and deep tissue therapy/imaging.

Keywords: acousto-optic, optical beam shaping, dynamic lensing, ultrasound

Procedia PDF Downloads 79
563 Effect of Varying Zener-Hollomon Parameter (Temperature and Flow Stress) and Stress Relaxation on Creep Response of Hot Deformed AA3104 Can Body Stock

Authors: Oyindamola Kayode, Sarah George, Roberto Borrageiro, Mike Shirran

Abstract:

A phenomenon identified by our industrial partner has experienced sag on AA3104 can body stock (CBS) transfer bar during transportation of the slab from the breakdown mill to the finishing mill. Excessive sag results in bottom scuffing of the slab onto the roller table, resulting in surface defects on the final product. It has been found that increasing the strain rate on the breakdown mill final pass results in a slab resistant to sag. The creep response for materials hot deformed at different Zener–Holloman parameter values needs to be evaluated experimentally to gain better understanding of the operating mechanism. This study investigates this identified phenomenon through laboratory simulation of the breakdown mill conditions for various strain rates by utilizing the Gleeble at UCT Centre for Materials Engineering. The experiment will determine the creep response for a range of conditions as well as quantifying the associated material microstructure (sub-grain size, grain structure etc). The experimental matrices were determined based on experimental conditions approximate to industrial hot breakdown rolling and carried out on the Gleeble 3800 at the Centre for Materials Engineering, University of Cape Town. Plane strain compression samples were used for this series of tests at an applied load that allow for better contact and exaggerated creep displacement. A tantalum barrier layer was used for increased conductivity and decreased risk of anvil welding. One set of tests with no in-situ hold time was performed, where the samples were quenched after deformation. The samples were retained for microstructure analysis of the micrographs from the light microscopy (LM), quantitative data and images from scanning electron microscopy (SEM) and energy dispersive X-ray (EDX), sub-grain size and grain structure from electron back scattered diffraction (EBSD).

Keywords: aluminium alloy, can-body stock, hot rolling, creep response, Zener-Hollomon parameter

Procedia PDF Downloads 72
562 Bright, Dark N-Soliton Solution of Fokas-Lenells Equation Using Hirota Bilinearization Method

Authors: Sagardeep Talukdar, Riki Dutta, Gautam Kumar Saharia, Sudipta Nandy

Abstract:

In non-linear optics, the Fokas-Lenells equation (FLE) is a well-known integrable equation that describes how ultrashort pulses move across the optical fiber. It admits localized wave solutions, just like any other integrable equation. We apply the Hirota bilinearization method to obtain the soliton solution of FLE. The proposed bilinearization makes use of an auxiliary function. We apply the method to FLE with a vanishing boundary condition, that is, to obtain a bright soliton solution. We have obtained bright 1-soliton and 2-soliton solutions and propose a scheme for obtaining an N-soliton solution. We have used an additional parameter that is responsible for the shift in the position of the soliton. Further analysis of the 2-soliton solution is done by asymptotic analysis. In the non-vanishing boundary condition, we obtain the dark 1-soliton solution. We discover that the suggested bilinearization approach, which makes use of the auxiliary function, greatly simplifies the process while still producing the desired outcome. We think that the current analysis will be helpful in understanding how FLE is used in nonlinear optics and other areas of physics.

Keywords: asymptotic analysis, fokas-lenells equation, hirota bilinearization method, soliton

Procedia PDF Downloads 90
561 GGA-PBEsol+TB-MBJ Studies of SrxPb1-xS Ternary Semiconductor Alloys

Authors: Y. Benallou, K. Amara, O. Arbouche

Abstract:

In this paper, we report a density functional study of the structural, electronic and elastic properties of the ordered phases of SrxPb1-xS ternary semiconductor alloys namely rocksalt compounds: PbS and SrS and the rocksalt-based compounds: SrPb3S4, SrPbS2, and Sr3PbS4. These First-principles calculations have been performed using the full potential linearized augmented plane wave method (FP-LAPW) within the Generalized Gradient Approximation developed by Perdew–Burke–Ernzerhor for solids (PBEsol). The calculated structural parameters like the lattice parameters, the bulk modulus B and their pressure derivative B' are in reasonable agreement with the available experimental and theoretical data. In addition, the elastic properties such as elastic constants (C11, C12, and C44), the shear modulus G, the Young modulus E, the Poisson’s ratio ν and the B/G ratio are also given. For the electronic properties calculations, the exchange and correlation effects were treated by the Tran-Blaha modified Becke-Johnson (TB-mBJ) potential to prevent the shortcoming of the underestimation of the energy gaps in both LDA and GGA approximations. The obtained results are compared to available experimental data and to other theoretical calculations.

Keywords: SrxPb1-xS, GGA-PBEsol+TB-MBJ, density functional, Perdew–Burke–Ernzerhor, FP-LAPW

Procedia PDF Downloads 372
560 Numerical Calculation of Dynamic Response of Catamaran Vessels Based on 3D Green Function Method

Authors: Md. Moinul Islam, N. M. Golam Zakaria

Abstract:

Seakeeping analysis of catamaran vessels in the earlier stages of design has become an important issue as it dictates the seakeeping characteristics, and it ensures safe navigation during the voyage. In the present paper, a 3D numerical method for the seakeeping prediction of catamaran vessel is presented using the 3D Green Function method. Both steady and unsteady potential flow problem is dealt with here. Using 3D linearized potential theory, the dynamic wave loads and the subsequent response of the vessel is computed. For validation of the numerical procedure catamaran vessel composed of twin, Wigley form demi-hull is used. The results of the present calculation are compared with the available experimental data and also with other calculations. The numerical procedure is also carried out for NPL-based round bilge catamaran, and hydrodynamic coefficients along with heave and pitch motion responses are presented for various Froude number. The results obtained by the present numerical method are found to be in fairly good agreement with the available data. This can be used as a design tool for predicting the seakeeping behavior of catamaran ships in waves.

Keywords: catamaran, hydrodynamic coefficients , motion response, 3D green function

Procedia PDF Downloads 196
559 The Effect Study of Meditation Music in the Elderly

Authors: Metee Pigultong

Abstract:

The research aims at 1) composition of meditation music, 2) study of the meditation time reliability. The population is the older adults who meditated practitioners in the Thepnimitra Temple, Don Mueang District, Bangkok. The sample group was the older persons who meditated practitioners from the age of 60 with five volunteers. The research methodology was time-series to conduct the research progression. The research instruments included: 1) meditation music, 2) brain wave recording form. The research results found that 1) the music combines the binaural beats suitable for the meditation of the older persons, consisting of the following features: a) The tempo rate of the meditation music is no more than 60 beats per minute. b) The musical instruments for the meditation music arrangement include only 4-5 pieces. c) The meditation music arrangement needs to consider the nature of the right instrument. d) Digital music instruments are suitable for composition. e) The pure-tone sound combined in music must generate a brain frequency at the level of 10 Hz. 2) After the researcher conducted a 3-weeks brain training procedure, the researcher performed three tests for the reliability level using Cronbach's Alpha method. The result showed that the meditation reliability had the level = .475 as a moderate concentration.

Keywords: binaural beats, music therapy, meditation, older person, the Buddhist meditated practitioners

Procedia PDF Downloads 170
558 Application of FT-NIR Spectroscopy and Electronic Nose in On-line Monitoring of Dough Proofing

Authors: Madhuresh Dwivedi, Navneet Singh Deora, Aastha Deswal, H. N. Mishra

Abstract:

FT-NIR spectroscopy and electronic nose was used to study the kinetics of dough proofing. Spectroscopy was conducted with an optic probe in the diffuse reflectance mode. The dough leavening was carried out at different temperatures (25 and 35°C) and constant RH (80%). Spectra were collected in the range of wave numbers from 12,000 to 4,000 cm-1 directly on the samples, every 5 min during proofing, up to 2 hours. NIR spectra were corrected for scatter effect and second order derivatization was done to transform the spectra. Principal component analysis (PCA) was applied for the leavening process and process kinetics was calculated. PCA was performed on data set and loadings were calculated. For leavening, four absorption zones (8,950-8,850, 7,200-6,800, 5,250-5,150 and 4,700-4,250 cm-1) were involved in describing the process. Simultaneously electronic nose was also used for understanding the development of odour compounds during fermentation. The electronic nose was able to differential the sample on the basis of aroma generation at different time during fermentation. In order to rapidly differentiate samples based on odor, a Principal component analysis is performed and successfully demonstrated in this study. The result suggests that electronic nose and FT-NIR spectroscopy can be utilized for the online quality control of the fermentation process during leavening of bread dough.

Keywords: FT-NIR, dough, e-nose, proofing, principal component analysis

Procedia PDF Downloads 368
557 Determination of the Structural Parameters of Calcium Phosphate for Biomedical Use

Authors: María Magdalena Méndez-González, Miguel García Rocha, Carlos Manuel Yermo De la Cruz

Abstract:

Calcium phosphate (Ca5(PO4)3(X)) is widely used in orthopedic applications and is widely used as powder and granules. However, their presence in bone is in the form of nanometric needles 60 nm in length with a non-stoichiometric phase of apatite contains CO3-2, Na+, OH-, F-, and other ions in a matrix of collagen fibers. The crystal size, morphology control and interaction with cells are essential for the development of nanotechnology. The structural results of calcium phosphate, synthesized by chemical precipitation with crystal size of 22.85 nm are presented in this paper. The calcium phosphate powders were analyzed by X-ray diffraction, energy dispersive spectroscopy (EDS), infrared spectroscopy and FT-IR transmission electron microscopy. Network parameters, atomic positions, the indexing of the planes and the calculation of FWHM (full width at half maximum) were obtained. The crystal size was also calculated using the Scherer equation d (hkl) = cλ/βcosѲ. Where c is a constant related to the shape of the crystal, the wavelength of the radiation used for a copper anode is 1.54060Å, Ѳ is the Bragg diffraction angle, and β is the width average peak height of greater intensity. Diffraction pattern corresponding to the calcium phosphate called hydroxyapatite phase of a hexagonal crystal system was obtained. It belongs to the space group P63m with lattice parameters a = 9.4394 Å and c = 6.8861 Å. The most intense peak is obtained 2Ѳ = 31.55 (FWHM = 0.4798), with a preferred orientation in 121. The intensity difference between the experimental data and the calculated values is attributable to the temperature at which the sintering was performed. The intensity of the highest peak is at angle 2Ѳ = 32.11. The structure of calcium phosphate obtained was a hexagonal configuration. The intensity changes in the peaks of the diffraction pattern, in the lattice parameters at the corners, indicating the possible presence of a dopant. That each calcium atom is surrounded by a tetrahedron of oxygen and hydrogen was observed by infrared spectra. The unit cell pattern corresponds to hydroxyapatite and transmission electron microscopic crystal morphology corresponding to the hexagonal phase with a preferential growth along the c-plane was obtained.

Keywords: structure, nanoparticles, calcium phosphate, metallurgical and materials engineering

Procedia PDF Downloads 490
556 Assessment of Exploitation Vulnerability of Quantum Communication Systems with Phase Encryption

Authors: Vladimir V. Nikulin, Bekmurza H. Aitchanov, Olimzhon A. Baimuratov

Abstract:

Quantum communication technology takes advantage of the intrinsic properties of laser carriers, such as very high data rates and low power requirements, to offer unprecedented data security. Quantum processes at the physical layer of encryption are used for signal encryption with very competitive performance characteristics. The ultimate range of applications for QC systems spans from fiber-based to free-space links and from secure banking operations to mobile airborne and space-borne networking where they are subjected to channel distortions. Under practical conditions, the channel can alter the optical wave front characteristics, including its phase. In addition, phase noise of the communication source and photo-detection noises alter the signal to bring additional ambiguity into the measurement process. If quantized values of photons are used to encrypt the signal, exploitation of quantum communication links becomes extremely difficult. In this paper, we present the results of analysis and simulation studies of the effects of noise on phase estimation for quantum systems with different number of encryption bases and operating at different power levels.

Keywords: encryption, phase distortion, quantum communication, quantum noise

Procedia PDF Downloads 535
555 Drug Design Modelling and Molecular Virtual Simulation of an Optimized BSA-Based Nanoparticle Formulation Loaded with Di-Berberine Sulfate Acid Salt

Authors: Eman M. Sarhan, Doaa A. Ghareeb, Gabriella Ortore, Amr A. Amara, Mohamed M. El-Sayed

Abstract:

Drug salting and nanoparticle-based drug delivery formulations are considered to be an effective means for rendering the hydrophobic drugs’ nano-scale dispersion in aqueous media, and thus circumventing the pitfalls of their poor solubility as well as enhancing their membrane permeability. The current study aims to increase the bioavailability of quaternary ammonium berberine through acid salting and biodegradable bovine serum albumin (BSA)-based nanoparticulate drug formulation. Berberine hydroxide (BBR-OH) that was chemically synthesized by alkalization of the commercially available berberine hydrochloride (BBR-HCl) was then acidified to get Di-berberine sulfate (BBR)₂SO₄. The purified crystals were spectrally characterized. The desolvation technique was optimized for the preparation of size-controlled BSA-BBR-HCl, BSA-BBR-OH, and BSA-(BBR)₂SO₄ nanoparticles. Particle size, zeta potential, drug release, encapsulation efficiency, Fourier transform infrared spectroscopy (FTIR), tandem MS-MS spectroscopy, energy-dispersive X-ray spectroscopy (EDX), scanning and transmitting electron microscopic examination (SEM, TEM), in vitro bioactivity, and in silico drug-polymer interaction were determined. BSA (PDB ID; 4OR0) protonation state at different pH values was predicted using Amber12 molecular dynamic simulation. Then blind docking was performed using Lamarkian genetic algorithm (LGA) through AutoDock4.2 software. Results proved the purity and the size-controlled synthesis of berberine-BSA-nanoparticles. The possible binding poses, hydrophobic and hydrophilic interactions of berberine on BSA at different pH values were predicted. Antioxidant, anti-hemolytic, and cell differentiated ability of tested drugs and their nano-formulations were evaluated. Thus, drug salting and the potentially effective albumin berberine nanoparticle formulations can be successfully developed using a well-optimized desolvation technique and exhibiting better in vitro cellular bioavailability.

Keywords: berberine, BSA, BBR-OH, BBR-HCl, BSA-BBR-HCl, BSA-BBR-OH, (BBR)₂SO₄, BSA-(BBR)₂SO₄, FTIR, AutoDock4.2 Software, Lamarkian genetic algorithm, SEM, TEM, EDX

Procedia PDF Downloads 153
554 Effect of the Birth Order and Arrival of Younger Siblings on the Development of a Child: Evidence from India

Authors: Swati Srivastava, Ashish Kumar Upadhyay

Abstract:

Using longitudinal data from three waves of Young Lives Study and Ordinary Least Square methods, study has investigated the effect of birth order and arrival of younger siblings on child development in India. Study used child’s height for age z-score, weight for age z-score, BMI for age z-score, Peabody Picture Vocabulary Test (PPVT-Score)c, maths score, Early Grade Reading Assessment Test (ERGA) score, and memory score to measure the physical and cognitive development of child during wave-3. Findings suggest that having a high birth order is detrimental for child development and the gap between adjacent siblings is larger for children late in the birth sequences than early in the birth sequences. Study also reported that not only older siblings but arrival of younger siblings before assessment of test also reduces the development of a child. The effects become stronger in case of female children than male children.

Keywords: height for age z-score, weight for age z-score, BMI for z-score, PPVT score, math score, EGRA score, memory score, birth order, siblings, Young Lives Study, India

Procedia PDF Downloads 316
553 Development of Superhydrophobic Cotton Fabrics and Their Functional Properties

Authors: Muhammad Zaman Khan, Vijay Baheti, Jiri Militky

Abstract:

The present study is focused on the development of multifunctional cotton fabric while having good physiological comfort properties. The functional properties developed include superhydrophobicity (Lotus effect) and UV protection. For this, TiO₂ nanoparticles along with fluorocarbon and organic-inorganic binder have been used to optimize the multifunctional properties. Deposition of TiO₂ nanoparticles with water repellent finish on cotton fabric has been carried out using the pad dry cure method at fix parameters. The morphology and elemental composition of as-deposited particles have been studied by using SEM and EDS. The chemical composition of nanoparticles was determined using energy dispersive spectroscopy. The treated samples exhibited excellent water repellency and UV protection factor. The study of the comfort properties of fabric showed that it had excellent physiological comfort properties. Optimized concentration of water repellent chemical (50g/l) was used in formulations with TiO₂ nanoparticles and organic-inorganic binder. Four formulations were prepared according to the design of the experiment. The formulations were applied to the cotton fabric by roller padding at room temperature (15–20°C). Surface morphology was investigated via SEM images. EDS analysis was also carried out to analyze the composition and atomic percentage of elements. The water contact angle (WCA) of cotton fabric increases with increase in TiO₂ nanoparticles concentration and reaches its maximum value (157°) when the concentration of TiO₂ is 20g/l. The water sliding angle (WSA) decreases and gains minimum value at the same concentration of TiO₂ at which WCA is highest. It was seen samples treated with formulations of TiO₂ nanoparticles exhibits excellent UPF, UV-A and UV-B blocking. However, there was no significant deterioration of air permeability. The water vapor permeability was also slightly decreased (4%) but is acceptable. It can be concluded that there is no significant change in both air and water vapor permeability after nanoparticles coating on the surface of the cotton fabric. The coated cotton fabric has little effect on the stiffness. The stiffness of coated samples was not increased significantly; thus comfort of cotton fabric is not decreased. This functionalized cotton fabric also exhibits good physiological comfort properties. ''The authors are also thankful to student grant competition 21312 provided at Technical University of Liberec''.

Keywords: comfort, functional, nanoparticles, UV protective

Procedia PDF Downloads 130
552 Post-Combustion CO₂ Capture: From Membrane Synthesis to Module Intensification

Authors: Imran Khan Swati, Mohammad Younas

Abstract:

This work aims to explore the potential applications of polymeric hydrophobic membranes and green ionic liquids (ILs). Protic and aprotic ILs were synthesized in the lab., characterized, and tested for CO₂/N₂ and CO₂/CH₄ separation using hydrophobic polymeric membranes via supported ionic liquid membrane (SILM). ILs were verified by FTIR spectroscopy. The SILMs were stable at room temperature up to 0.5 MPa. For CO₂, [BSmim][tos] had the greatest coefficient of solubility and permeability, along with all ILs. At 0.5 MPa, IL [BSmim][tos] was found with a selectivity of 56.2 and 47.5 for pure CO₂/N₂ and CO₂/CH₄, respectively. The ILs synthesized for this study are rated as [BSmim][tos]>[BSmpy][tos]>[Bmim][Cl]>[Bpy][Cl] based on their SILM separation performance. Furthermore, high values of selectivity of [BSmim][tos] and [BSmpy][tos] support the use of ILs for CO₂ separation using SILMs. The study was extended to synthesize and test the ammonium-based ILs, [2-HEA][f] and [2-HEA][Hs]. These ILs achieved 50 % less selectivity for CO₂/N₂ as compared to [BSmim][tos] and [BSmpy][tos]. Nevertheless, the permeability of CO₂ achieved with [2-HEA][f] and [2-HEA][Hs] is more than 20 times higher than the [BSmim][tos] and [BSmpy][tos]. Later, the CO₂/N₂ permeability and selectivity study was extended using a flat sheet membrane contactor with recirculated IL. The contact angle effects, liquid entry pressure (LEP), initial CO₂ concentration, and type of solvents and membrane material on the CO₂ capture efficiency and membrane wetting in the post-combustion capture (PCC) process have been experimentally investigated and evaluated. Polytetrafluoroethylene (PTFE) has shown the most hydrophobic property with 6-170 loss in the contact angle. Furthermore, [Omim][BF4] and [Bmim][BF6] have exhibited only 5-8 % loss in LEP using PTFE membrane support. The CO₂ capture efficiency has been achieved as 80.8-99.8 % in different combinations of ILs and membrane support, keeping all other variables constant. While increasing CO₂ concentration from 15 to 45 % vol., an increase of nearly three folds in the CO₂ mass transfer flux was observed. The combination of [Omim][BF4] and PTFE membrane witnessed good long-term stability with only a 20 % loss in CO₂ capture efficiency in 480 min of continuous operation. A 3- D simulation model for non-dispersive solvent absorption in membrane contactors provides insight into the optimum design of a separation system for a specific application minimizing the overall cost and making the process environment-friendly.

Keywords: Post-combustion CO2 capture, membrane synthesis, process development, permeability and selectivity, ionic liquids

Procedia PDF Downloads 55
551 Development of Electroencephalograph Collection System in Language-Learning Self-Study System That Can Detect Learning State of the Learner

Authors: Katsuyuki Umezawa, Makoto Nakazawa, Manabu Kobayashi, Yutaka Ishii, Michiko Nakano, Shigeichi Hirasawa

Abstract:

This research aims to develop a self-study system equipped with an artificial teacher who gives advice to students by detecting the learners and to evaluate language learning in a unified framework. 'Detecting the learners' means that the system understands the learners' learning conditions, such as each learner’s degree of understanding, the difference in each learner’s thinking process, the degree of concentration or boredom in learning, and problem solving for each learner, which can be interpreted from learning behavior. In this paper, we propose a system to efficiently collect brain waves from learners by focusing on only the brain waves among the biological information for 'detecting the learners'. The conventional Electroencephalograph (EEG) measurement method during learning using a simple EEG has the following disadvantages. (1) The start and end of EEG measurement must be done manually by the experiment participant or staff. (2) Even when the EEG signal is weak, it may not be noticed, and the data may not be obtained. (3) Since the acquired EEG data is stored in each PC, there is a possibility that the time of data acquisition will be different in each PC. This time, we developed a system to collect brain wave data on the server side. This system overcame the above disadvantages.

Keywords: artificial teacher, e-learning, self-study system, simple EEG

Procedia PDF Downloads 128
550 Advanced Energy Absorbers Used in Blast Resistant Systems

Authors: Martina Drdlová, Michal Frank, Radek Řídký, Jaroslav Buchar, Josef Krátký

Abstract:

The main aim of the presented experiments is to improve behaviour of sandwich structures under dynamic loading, such as crash or explosion. This paper describes experimental investigation on the response of new advanced materials to low and high velocity load. Blast wave energy absorbers were designed using two types of porous lightweight raw particle materials based on expanded glass and ceramics with dimensions of 0.5-1 mm, combined with polymeric binder. The effect of binder amount on the static and dynamic properties of designed materials was observed. Prism shaped specimens were prepared and loaded to obtain physico-mechanical parameters – bulk density, compressive and flexural strength under quasistatic load, the dynamic response was determined using Split Hopkinson Pressure bar apparatus. Numerical investigation of the material behaviour in sandwich structure was performed using implicit/explicit solver LS-Dyna. As the last step, the developed material was used as the interlayer of blast resistant litter bin, and it´s functionality was verified by real field blast tests.

Keywords: blast energy absorber, SHPB, expanded glass, expanded ceramics

Procedia PDF Downloads 445
549 Evaluation of Settlement of Coastal Embankments Using Finite Elements Method

Authors: Sina Fadaie, Seyed Abolhassan Naeini

Abstract:

Coastal embankments play an important role in coastal structures by reducing the effect of the wave forces and controlling the movement of sediments. Many coastal areas are underlain by weak and compressible soils. Estimation of during construction settlement of coastal embankments is highly important in design and safety control of embankments and appurtenant structures. Accordingly, selecting and establishing of an appropriate model with a reasonable level of complication is one of the challenges for engineers. Although there are advanced models in the literature regarding design of embankments, there is not enough information on the prediction of their associated settlement, particularly in coastal areas having considerable soft soils. Marine engineering study in Iran is important due to the existence of two important coastal areas located in the northern and southern parts of the country. In the present study, the validity of Terzaghi’s consolidation theory has been investigated. In addition, the settlement of these coastal embankments during construction is predicted by using special methods in PLAXIS software by the help of appropriate boundary conditions and soil layers. The results indicate that, for the existing soil condition at the site, some parameters are important to be considered in analysis. Consequently, a model is introduced to estimate the settlement of the embankments in such geotechnical conditions.

Keywords: consolidation, settlement, coastal embankments, numerical methods, finite elements method

Procedia PDF Downloads 139
548 A Fast Method for Graphene-Supported Pd-Co Nanostructures as Catalyst toward Ethanol Oxidation in Alkaline Media

Authors: Amir Shafiee Kisomi, Mehrdad Mofidi

Abstract:

Nowadays, fuel cells as a promising alternative for power source have been widely studied owing to their security, high energy density, low operation temperatures, renewable capability and low environmental pollutant emission. The nanoparticles of core-shell type could be widely described in a combination of a shell (outer layer material) and a core (inner material), and their characteristics are greatly conditional on dimensions and composition of the core and shell. In addition, the change in the constituting materials or the ratio of core to the shell can create their special noble characteristics. In this study, a fast technique for the fabrication of a Pd-Co/G/GCE modified electrode is offered. Thermal decomposition reaction of cobalt (II) formate salt over the surface of graphene/glassy carbon electrode (G/GCE) is utilized for the synthesis of Co nanoparticles. The nanoparticles of Pd-Co decorated on the graphene are created based on the following method: (1) Thermal decomposition reaction of cobalt (II) formate salt and (2) the galvanic replacement process Co by Pd2+. The physical and electrochemical performances of the as-prepared Pd-Co/G electrocatalyst are studied by Field Emission Scanning Electron Microscopy (FESEM), Energy Dispersive X-ray Spectroscopy (EDS), Cyclic Voltammetry (CV), and Chronoamperometry (CHA). Galvanic replacement method is utilized as a facile and spontaneous approach for growth of Pd nanostructures. The Pd-Co/G is used as an anode catalyst for ethanol oxidation in alkaline media. The Pd-Co/G not only delivered much higher current density (262.3 mAcm-2) compared to the Pd/C (32.1 mAcm-2) catalyst, but also demonstrated a negative shift of the onset oxidation potential (-0.480 vs -0.460 mV) in the forward sweep. Moreover, the novel Pd-Co/G electrocatalyst represents large electrochemically active surface area (ECSA), lower apparent activation energy (Ea), higher levels of durability and poisoning tolerance compared to the Pd/C catalyst. The paper demonstrates that the catalytic activity and stability of Pd-Co/G electrocatalyst are higher than those of the Pd/C electrocatalyst toward ethanol oxidation in alkaline media.

Keywords: thermal decomposition, nanostructures, galvanic replacement, electrocatalyst, ethanol oxidation, alkaline media

Procedia PDF Downloads 138
547 Existence and Stability of Periodic Traveling Waves in a Bistable Excitable System

Authors: M. Osman Gani, M. Ferdows, Toshiyuki Ogawa

Abstract:

In this work, we proposed a modified FHN-type reaction-diffusion system for a bistable excitable system by adding a scaled function obtained from a given function. We study the existence and the stability of the periodic traveling waves (or wavetrains) for the FitzHugh-Nagumo (FHN) system and the modified one and compare the results. The stability results of the periodic traveling waves (PTWs) indicate that most of the solutions in the fast family of the PTWs are stable for the FitzHugh-Nagumo equations. The instability occurs only in the waves having smaller periods. However, the smaller period waves are always unstable. The fast family with sufficiently large periods is always stable in FHN model. We find that the oscillation of pulse widths is absent in the standard FHN model. That motivates us to study the PTWs in the proposed FHN-type reaction-diffusion system for the bistable excitable media. A good agreement is found between the solutions of the traveling wave ODEs and the corresponding whole PDE simulation.

Keywords: bistable system, Eckhaus bifurcation, excitable media, FitzHugh-Nagumo model, periodic traveling waves

Procedia PDF Downloads 174